JP2914093B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2914093B2
JP2914093B2 JP5134469A JP13446993A JP2914093B2 JP 2914093 B2 JP2914093 B2 JP 2914093B2 JP 5134469 A JP5134469 A JP 5134469A JP 13446993 A JP13446993 A JP 13446993A JP 2914093 B2 JP2914093 B2 JP 2914093B2
Authority
JP
Japan
Prior art keywords
layer
cladding layer
gaas
semiconductor laser
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5134469A
Other languages
Japanese (ja)
Other versions
JPH06350189A (en
Inventor
伊知朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5134469A priority Critical patent/JP2914093B2/en
Priority to US08/252,563 priority patent/US5446753A/en
Publication of JPH06350189A publication Critical patent/JPH06350189A/en
Application granted granted Critical
Publication of JP2914093B2 publication Critical patent/JP2914093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/221Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ、特に、
光ファイバアンプの励起用などに適した波長1μm帯の
半導体レーザに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser,
The present invention relates to a semiconductor laser having a wavelength of 1 μm and suitable for pumping an optical fiber amplifier.

【0002】[0002]

【従来の技術】この種の半導体レーザとして、InPを
基板とするものがある。InPを基板とする半導体レー
ザでは、エピタキシャル成長により形成された活性層の
うち光を導波する領域をメサ状に残し、そのメサ部の両
側を高抵抗の半導体で埋め込むことにより、電流と光を
閉じ込めるいわゆる埋め込み型構造が知られている。こ
れに対して、GaAsを基板とする半導体レーザでは、
同様の構造とすることが困難であった。ごく最近になっ
て、GaInPをクラッドとする埋め込み型半導体レー
ザが報告されているが、信頼性の点で実用化に至るには
まだ長い年月が予想される。このため、GaAs基板を
用いた半導体レーザでは、エピタキシャル成長により形
成された活性層をエッチング除去することなく全体に残
したままで、その上部に中央の電流通路領域を除いて電
流ブロック層を形成する構造が主流である。
2. Description of the Related Art As this kind of semiconductor laser, there is a semiconductor laser using InP as a substrate. In a semiconductor laser using InP as a substrate, a region where light is guided is left in a mesa shape in an active layer formed by epitaxial growth, and current and light are confined by embedding both sides of the mesa portion with a high-resistance semiconductor. A so-called embedded structure is known. On the other hand, in a semiconductor laser using GaAs as a substrate,
It was difficult to make a similar structure. Very recently, a buried semiconductor laser using GaInP as a cladding has been reported, but it is expected that it will be a long time before it is put to practical use in terms of reliability. For this reason, a semiconductor laser using a GaAs substrate has a structure in which an active layer formed by epitaxial growth is left as a whole without being removed by etching, and a current block layer is formed thereabove except for a central current path region. Mainstream.

【0003】[0003]

【発明が解決しようとする課題】しかし、この構造の場
合、横方向の等価屈折率の差を大きく取ることができな
いため、光が横方向に広がってしまい、横方向の広がり
角が小さくなりやすい。その結果、縦方向の放射角との
比(アスペクト比)が大きくなり、光ファイバ等との結
合が難しくなる。
However, in the case of this structure, the difference in the equivalent refractive index in the horizontal direction cannot be made large, so that the light spreads in the horizontal direction, and the spread angle in the horizontal direction tends to be small. . As a result, the ratio (aspect ratio) to the vertical radiation angle becomes large, and it becomes difficult to couple with an optical fiber or the like.

【0004】[0004]

【課題を解決するための手段】本発明の半導体レーザ
は、GaAsを基板とし、活性層のバンドギャップがG
aAsよりも小さい電流ブロック型半導体レーザにおい
て、基板と反対側の主クラッド層上にストライプ状電流
通路領域を除いて形成されたAlGaInP(Ga組成
が零の場合を含む)の電流ブロック層と、この電流ブロ
ック層に挟まれたストライプ状電流通路領域の主クラッ
ド層上に形成されたGaAsの補助クラッド層とを備え
たものである。また、GaAs補助クラッド層の上にさ
らにAlGaInP(AlまたはGaのいずれか一方の
組成が零の場合を含む)またはAlGaAs(Ga組成
が零の場合を含む)からなる第2補助クラッド層を備え
ることが望ましい。この場合、GaAs補助クラッド層
の厚みは少なくとも200Å以上あることが望ましい。
A semiconductor laser according to the present invention has GaAs as a substrate and an active layer having a band gap of G.
In a current blocking type semiconductor laser smaller than aAs, a current blocking layer of AlGaInP (including a case where the Ga composition is zero) formed on the main cladding layer on the opposite side of the substrate except for a stripe-shaped current path region; And a GaAs auxiliary cladding layer formed on the main cladding layer in the stripe-shaped current path region sandwiched between the current blocking layers. Further, a second auxiliary cladding layer made of AlGaInP (including a case where either one of Al and Ga is zero) or AlGaAs (including a case where Ga composition is zero) is further provided on the GaAs auxiliary cladding layer. Is desirable. In this case, the thickness of the GaAs auxiliary cladding layer is desirably at least 200 ° or more.

【0005】[0005]

【作用】電流ブロック層に挟まれたストライプ部(電流
通路領域)に屈折率の高い材料であるGaAsを基板の
反対側(上側)クラッド層の一部として用いているの
で、この部分での光の分布が基板と反対側(上側)に偏
る。一方、電流ブロック層に屈折率の低い材料であるA
lGaInP(Ga組成が零の場合を含む)を用いてい
るので、ストライプ部の光の分布が上側に偏ることと相
俟って、横方向の光閉じ込め効果が高くなる。すなわ
ち、横方向の等価屈折率差が大きくなる。
Since GaAs, which is a material having a high refractive index, is used as a part of the cladding layer on the opposite side (upper side) of the substrate in the stripe portion (current path region) sandwiched between the current blocking layers, light in this portion is obtained. Are biased to the opposite side (upper side) of the substrate. On the other hand, a material having a low refractive index, A, is used for the current blocking layer.
Since 1GaInP (including the case where the Ga composition is zero) is used, the light confinement effect in the horizontal direction is enhanced in combination with the light distribution of the stripe portion being biased upward. That is, the difference in the equivalent refractive index in the horizontal direction increases.

【0006】また、GaAs補助クラッド層の上に、G
aAsよりも屈折率の低いAlGaInP、GaIn
P、AlGaAs、AlInPなどによる第2補助クラ
ッド層を形成すると、縦方向の光の広がりを制限するこ
とができる。GaAs補助クラッド層を用いることで縦
方向の光が広がり過ぎて光閉じ込め係数が小さくなる
と、レーザ特性が悪化することが考えられるが、その場
合に第2補助クラッド層を用いると、光閉じ込め係数の
減少が抑制される。
On the GaAs auxiliary cladding layer, G
AlGaInP, GaIn having a lower refractive index than aAs
When the second auxiliary cladding layer is formed of P, AlGaAs, AlInP, or the like, it is possible to limit the spread of light in the vertical direction. When the light confinement coefficient is reduced by using the GaAs auxiliary cladding layer to spread the light in the vertical direction too much, the laser characteristics may be degraded. In this case, if the second auxiliary cladding layer is used, the light confinement coefficient may be reduced. Reduction is suppressed.

【0007】[0007]

【実施例】図1は、本発明の一実施例である半導体レー
ザの劈開面と平行な断面構造を模式的に示したものであ
る。また、図2は、この半導体レーザを構成している各
半導体層の厚さ、材料、(Al+Ga)対するAlの組
成比、不純物、導電型、不純物濃度を一覧表にしたもの
である。
FIG. 1 schematically shows a cross-sectional structure parallel to a cleavage plane of a semiconductor laser according to an embodiment of the present invention. FIG. 2 is a table listing the thickness, material, composition ratio of Al to (Al + Ga), impurities, conductivity type, and impurity concentration of each semiconductor layer constituting the semiconductor laser.

【0008】この半導体レーザを作製するには、まず、
60Torr程度の減圧MOVPE(有機金属気相成長
法)により、電流ブロック層7まで積層されたエピタキ
シャルウエハを作製する。GaAs基板1の上に、Ga
Asバッファ層2、n型AlGaInPクラッド層3、
活性層4、p型AlGaInPクラッド層5、p型Ga
InPクラッド層6およびn型AlGaInP電流ブロ
ック層7をエピタキシャル成長により形成する。活性層
4は量子井戸構造になっており、GaInP層41、G
aInAsP層42、GaAs層43、GaInAs層
44、GaAs45、GaInAsP層46およびGa
InP層47で構成されている。この活性層4では、G
aInAs層44が量子井戸層である。
To manufacture this semiconductor laser, first,
An epitaxial wafer stacked up to the current block layer 7 is manufactured by reduced pressure MOVPE (metal organic chemical vapor deposition) of about 60 Torr. On a GaAs substrate 1, Ga
As buffer layer 2, n-type AlGaInP cladding layer 3,
Active layer 4, p-type AlGaInP cladding layer 5, p-type Ga
An InP cladding layer 6 and an n-type AlGaInP current blocking layer 7 are formed by epitaxial growth. The active layer 4 has a quantum well structure, and includes a GaInP layer 41, a G
aInAsP layer 42, GaAs layer 43, GaInAs layer 44, GaAs 45, GaInAsP layer 46 and Ga
It is composed of an InP layer 47. In this active layer 4, G
The aInAs layer 44 is a quantum well layer.

【0009】このエピタキシャルウエハの作製におい
て、AlGaInPは高温成長が望ましく、GaInA
sは低温成長が望ましいので、n型AlGaInPクラ
ッド層3までを740℃で成長させ、その後650℃ま
で下げて活性層4を成長させ、p型AlGaInPクラ
ッド層5から再び740℃に戻してn型AlGaInP
電流ブロック層7まで成長させる。
In manufacturing this epitaxial wafer, AlGaInP is desirably grown at a high temperature.
Since s is preferably grown at a low temperature, the n-type AlGaInP cladding layer 3 is grown at 740 ° C., and then the temperature is lowered to 650 ° C. to grow the active layer 4. AlGaInP
The current blocking layer 7 is grown.

【0010】つぎに、この様にして形成されたエピタキ
シャルウエハの最上層であるn型AlGaInP電流ブ
ロック層7の中央部をストライプ状にエッチング除去す
る。このエッチングは図3に示すように、まず、表面全
体に窒化シリコン膜31を0.1μmの厚さに堆積した
後、リソグラフィー技術により中央部を幅3μmに渡っ
て除去する。その後、この窒化シリコン膜31をマスク
として、電流ブロック層7をエッチングする。エッチン
グ液として、たとえば60℃の濃硫酸を用い、ウエハ表
面の色が変わるまでエッチングを行う。ウエハの色が変
化したところがGaInP層6の露出したところであ
る。
Next, the central portion of the n-type AlGaInP current block layer 7, which is the uppermost layer of the epitaxial wafer thus formed, is etched and removed in a stripe shape. In this etching, as shown in FIG. 3, first, a silicon nitride film 31 is deposited to a thickness of 0.1 μm on the entire surface, and then the central portion is removed over a width of 3 μm by lithography. Thereafter, the current block layer 7 is etched using the silicon nitride film 31 as a mask. Etching is performed, for example, using concentrated sulfuric acid at 60 ° C. as an etchant until the color of the wafer surface changes. The place where the color of the wafer has changed is where the GaInP layer 6 is exposed.

【0011】その後、窒化シリコン膜31を弗酸:水=
1:1でエッチングして、その上にp型GaAs層8、
p型GaInP層9、p型GaInAsP層10および
p型GaAs層11を順に再成長させる。p型GaAs
層8のうち、ストライプ状の溝の底部すなわちp型Ga
InPクラッド層6上に形成された部分は、上側クラッ
ド層の一部として機能する。また、さらにその上のp型
GaInP層9もクラッド層の一部として機能する。た
だし、p型GaAs補助クラッド層8は、その屈折率の
高さを利用して、光の分布を上方に引き上げるためのも
のであるのに対し、p型GaInP第2補助クラッド層
9は、GaAsよりも屈折率が低いことを利用して光の
上方への広がりを制限し、レーザ特性の低下を防止する
ためのものである。p型GaInAsP層10およびp
型GaAs層11は、さらにその上に形成されるp側電
極とのコンタクト抵抗を低減するためのものである。な
お、p型GaAs補助クラッド層8は三族元素が1種類
であるので、再成長が容易であるという点でも有利であ
る。
After that, the silicon nitride film 31 is changed to hydrofluoric acid: water =
Etching at 1: 1 and a p-type GaAs layer 8 thereon
The p-type GaInP layer 9, the p-type GaInAsP layer 10, and the p-type GaAs layer 11 are sequentially regrown. p-type GaAs
In the layer 8, the bottom of the stripe-shaped groove, that is, p-type Ga
The portion formed on the InP cladding layer 6 functions as a part of the upper cladding layer. Further, the p-type GaInP layer 9 thereon further functions as a part of the cladding layer. However, the p-type GaAs auxiliary cladding layer 8 is for raising the light distribution by utilizing its high refractive index, whereas the p-type GaInP second auxiliary cladding layer 9 is made of GaAs. By using the fact that the refractive index is lower than that, the upward spread of light is limited, and the deterioration of laser characteristics is prevented. p-type GaInAsP layer 10 and p
The type GaAs layer 11 is for further reducing the contact resistance with the p-side electrode formed thereon. Since the p-type GaAs auxiliary cladding layer 8 is composed of one group III element, it is advantageous in that regrowth is easy.

【0012】次に、p型GaAs層11の上にp側電極
を蒸着し、GaAs基板1を裏面から削って100μm
程度の厚さにして、そこにn側電極を蒸着する。その
後、アニール処理によりp側電極およびn側電極を合金
化し、劈開および実装工程を経てレーザとなる。
Next, a p-side electrode is vapor-deposited on the p-type GaAs layer 11, and the GaAs substrate 1 is cut from the back surface to a thickness of 100 μm.
An approximately n-side electrode is deposited thereon. Thereafter, the p-side electrode and the n-side electrode are alloyed by annealing, and the laser is formed through a cleavage and mounting process.

【0013】このようにして作製された本実施例の半導
体レーザは、電流ブロック層7によって狭い電流通路が
形成された利得導波型の半導体レーザであると共に、電
流ブロック層7とGaAs補助クラッド層8との屈折率
の差を利用した屈折率導波型の半導体レーザでもある。
電流ブロック層7に挟まれたGaAs補助クラッド層8
は屈折率が高いので光の分布が上方に偏る。そして、電
流ブロック層7はGaAs補助クラッド層8よりも屈折
率が低いので横方向の光閉じ込めが行われる。電流ブロ
ック層7の厚みを0.5μmから例えば1μmに厚くす
ると共に、埋め込むp型GaAs補助クラッド層8の厚
さを0.1μmから0.5μmに厚くすると、光の分布
はさらに上方に移動し、横方向の光の閉じ込めをさらに
きつくすることができる。また、基板側(下側)のn型
クラッド層3の屈折率を低くすることによっても、光の
分布を上方に偏らせることができる。本実施例では、n
型クラッド層3の材料はAlGaInPであり、(Al
+Ga)に対するAlの組成比が0.4であるが、Al
組成比を大きくすることにより、屈折率を下げることが
できる。
The semiconductor laser of this embodiment fabricated in this manner is a gain-guided semiconductor laser in which a narrow current path is formed by the current blocking layer 7, and the current blocking layer 7 and the GaAs auxiliary cladding layer. It is also a refractive index guided semiconductor laser utilizing the difference in the refractive index from No. 8.
GaAs auxiliary cladding layer 8 sandwiched between current blocking layers 7
Since the refractive index is high, the light distribution is biased upward. Since the current blocking layer 7 has a lower refractive index than that of the GaAs auxiliary cladding layer 8, the light is confined in the lateral direction. When the thickness of the current blocking layer 7 is increased from 0.5 μm to, for example, 1 μm, and the thickness of the embedded p-type GaAs auxiliary cladding layer 8 is increased from 0.1 μm to 0.5 μm, the light distribution moves further upward. The lateral light confinement can be further enhanced. The light distribution can also be deflected upward by lowering the refractive index of the n-type cladding layer 3 on the substrate side (lower side). In this embodiment, n
The material of the mold cladding layer 3 is AlGaInP;
+ Ga) has a composition ratio of 0.4 to Al
The refractive index can be reduced by increasing the composition ratio.

【0014】図4および図5は、基板から電流ブロック
層まで形成されたエピタキシャルウエハの他の実施例の
積層構造を模式的に示したものであり、各層の右側に厚
さ等が記載されている。図4のエピタキシャルウエハで
は、n側のクラッド層がGaInP層53を主体としそ
の上に薄いAlGaInP層54が付加された構成とな
っている。そのため、第1実施例に比べて、n側クラッ
ドの等価屈折率が小さくなり、光の分布が上下均等に近
づく。これによって、横方向の光閉じ込め効果は減少す
るが、光強度が最大となる部分が活性層55付近に近づ
く。
FIGS. 4 and 5 schematically show a laminated structure of another embodiment of the epitaxial wafer formed from the substrate to the current block layer. The thickness and the like are described on the right side of each layer. I have. The epitaxial wafer of FIG. 4 has a configuration in which the n-side cladding layer is mainly composed of a GaInP layer 53 and a thin AlGaInP layer 54 is added thereon. Therefore, as compared with the first embodiment, the equivalent refractive index of the n-side cladding becomes smaller, and the light distribution approaches the upper and lower portions evenly. As a result, the light confinement effect in the horizontal direction is reduced, but the portion where the light intensity becomes maximum approaches the vicinity of the active layer 55.

【0015】また、図5のエピタキシャルウエハでは、
p側クラッド層をGaInP層65のみで構成してい
る。第1実施例と比較すると屈折率の低いAlGaIn
P層を有しないことになり、その分p側の光の染みだし
が大きくなる。したがって、横方向の等価屈折率差が大
きくなり、横方向の光閉じ込めをきつくすることができ
る。
In the epitaxial wafer shown in FIG.
The p-side cladding layer is constituted only by the GaInP layer 65. AlGaIn having a lower refractive index compared to the first embodiment
Since there is no P layer, the exudation of light on the p-side increases accordingly. Therefore, the difference in the equivalent refractive index in the horizontal direction increases, and the light confinement in the horizontal direction can be made tight.

【0016】なお、上記いずれの実施例においても、電
流ブロック層7、58、66の材料としてAlGaIn
Pを用いているが、Gaの組成が零であってもよい。ま
た、第2補助クラッド層9として、GaInPを用いて
いるが、その他にAlGaInP、AlInP、AlG
aAs、AlAsを用いることもできる。
In each of the above embodiments, the material of the current blocking layers 7, 58, 66 is AlGaIn.
Although P is used, the composition of Ga may be zero. Further, GaInP is used as the second auxiliary cladding layer 9, but other than AlGaInP, AlInP, AlG
aAs and AlAs can also be used.

【0017】以上の実施例は、電流ブロック層に溝を形
成し、その溝にGaAs補助クラッド層を再成長により
形成するものであるが、逆にGaAs補助クラッド層を
ストライプ状に残し、その両側に電流ブロック層を再成
長により形成してもよい。その具体的実施例を次に説明
する。
In the above embodiment, a groove is formed in the current blocking layer, and the GaAs auxiliary cladding layer is formed in the groove by regrowth. Conversely, the GaAs auxiliary cladding layer is left in a stripe shape, and both sides are formed. The current blocking layer may be formed by regrowth. A specific embodiment will be described below.

【0018】図6に示したエピを作製し、その後幅5μ
mのストライプ領域を窒化シリコン膜80で覆い、図7
のように逆メサ状にエッチングした。この際、まずGa
lnp層77を残し、GaAs層79,GalnAsP
層78を選択的にエッチングするために燐酸:過酸化水
素:水=5:1:40を用い6分エッチングした。次に
GaAs補助クラッド層76を残し、Galnp層77
をエッチングするために塩酸:燐酸:水=220:11
0:165を用いて20分エッチングした。さらに前述
の燐酸+過酸化水素系のエッチャントでGaAs補助ク
ラッド層76をエッチングした。その後、窒化シリコン
膜80をマスクとして、電流ブロック層としてのシリコ
ンドープAlGalnP(Al/[Al+Ga]=0.
2)(n=2×17cm-3)を1.3μm、さらにZn
ドープGaAs(1.5×19cm-3)を0.3μm成
長した。その後通常のプロセスでレーザとした。こうし
て得られたレーザの横方向広がり角は15度と大きかっ
た。本実施例でのGaAs補助クラッド層兼エッチスト
ッパは300Åであるが、これを100Åにすると実質
的に補助クラッド層としての機能をはたさなくなる。実
際に、この100Åのエッチストッパを持つエピから同
様にしてレーザを作製したところ横方向広がり角度は約
10度と小さかった。これはこのエッチストッパが補助
クラッド層として十分に機能せず横方向の屈折率差が大
きく取れなかったためと考えられる。
An epi as shown in FIG.
7 is covered with a silicon nitride film 80, and FIG.
As shown in FIG. At this time, first, Ga
The GaAs layer 79, the GalnAsP
The layer 78 was selectively etched using phosphoric acid: hydrogen peroxide: water = 5: 1: 40 for 6 minutes. Next, the GaAs auxiliary cladding layer 76 is left, and the Galnp layer 77 is left.
Hydrochloric acid: phosphoric acid: water = 220: 11
Etching was performed for 20 minutes using 0: 165. Further, the GaAs auxiliary cladding layer 76 was etched with the above-mentioned phosphoric acid + hydrogen peroxide-based etchant. Thereafter, using silicon nitride film 80 as a mask, silicon-doped AlGalnP (Al / [Al + Ga] = 0.
2) (n = 2 × 17 cm −3 ) at 1.3 μm and Zn
Doped GaAs (1.5 × 19 cm −3 ) was grown to 0.3 μm. Thereafter, a laser was formed by a normal process. The lateral spread angle of the laser thus obtained was as large as 15 degrees. Although the GaAs auxiliary cladding layer and the etch stopper in this embodiment is 300 °, if the GaAs auxiliary cladding layer and the etching stopper are set to 100 °, the function as the auxiliary cladding layer is not substantially achieved. Actually, when a laser was manufactured in the same manner from this epi having an etch stopper of 100 °, the lateral spread angle was as small as about 10 degrees. This is presumably because the etch stopper did not function sufficiently as an auxiliary cladding layer and a large difference in the refractive index in the lateral direction could not be obtained.

【0019】[0019]

【発明の効果】以上説明したように、本発明の半導体レ
ーザによれば、基板と反対側のクラッド層上に電流通路
を挟むようにAlGaInP電流ブロック層が形成さ
れ、電流ブロック層に挟まれた部分にGaAsからなる
補助クラッド層が形成されているので、横方向の等価屈
折率差を大きくとることができ、その結果、横方向の放
射角を大きくすることができる。しかもこの等価屈折率
差は、クラッド層材料の組成や厚みを変えることにより
調整することができるため、横方向の放射角調整も容易
である。これによって、アスペクト比を調整でき光ファ
イバと結合させた際の損失を低く抑えることができる。
As described above, according to the semiconductor laser of the present invention, the AlGaInP current blocking layer is formed on the cladding layer opposite to the substrate so as to sandwich the current path, and is sandwiched between the current blocking layers. Since the auxiliary cladding layer made of GaAs is formed in a portion, the difference in the equivalent refractive index in the lateral direction can be increased, and as a result, the radiation angle in the lateral direction can be increased. Moreover, since the equivalent refractive index difference can be adjusted by changing the composition and thickness of the cladding layer material, the adjustment of the radiation angle in the horizontal direction is easy. As a result, the aspect ratio can be adjusted, and the loss at the time of coupling with the optical fiber can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である半導体レーザの劈開面
に平行な面で断面を模式的に示した断面図。
FIG. 1 is a cross-sectional view schematically showing a cross section taken along a plane parallel to a cleavage plane of a semiconductor laser according to an embodiment of the present invention.

【図2】図1の半導体レーザの各エピタキシャル層の材
料等の一覧を示す図表である。
FIG. 2 is a table showing a list of materials and the like of each epitaxial layer of the semiconductor laser of FIG. 1;

【図3】図1の半導体レーザの製造工程において電流ブ
ロック層に溝を形成した状態を示す断面図。
FIG. 3 is a sectional view showing a state in which a groove is formed in a current block layer in a manufacturing process of the semiconductor laser of FIG. 1;

【図4】本発明の他の実施例である半導体レーザを作製
する際のエピタキシャルウエハの積層構造を模式的に示
す断面図。
FIG. 4 is a cross-sectional view schematically showing a laminated structure of an epitaxial wafer when manufacturing a semiconductor laser according to another embodiment of the present invention.

【図5】本発明のさらに他の実施例である半導体レーザ
を作製する際のエピタキシャルウエハの積層構造を模式
的に示す断面図。
FIG. 5 is a cross-sectional view schematically showing a laminated structure of an epitaxial wafer when manufacturing a semiconductor laser according to still another embodiment of the present invention.

【図6】本発明のさらに他の実施例である半導体レーザ
を作製する際のエピタキシャルウエハの積層構造を模式
的に示す断面図。
FIG. 6 is a cross-sectional view schematically showing a laminated structure of an epitaxial wafer when manufacturing a semiconductor laser according to still another embodiment of the present invention.

【図7】図6のエピタキシャルウエハを用いた半導体レ
ーザを製造する際の途中の工程を示す断面図。
FIG. 7 is a sectional view showing a step in the course of manufacturing a semiconductor laser using the epitaxial wafer of FIG. 6;

【符号の説明】[Explanation of symbols]

1,51,61,71…GaAs基板、3,53,5
4,63,73…下側クラッド層、4,55,64,7
4…活性層、5,6,56,57,65,75…上側ク
ラッド層、7…電流ブロック層、8,76…GaAs補
助クラッド層、9,77…GaInP第2補助クラッド
層。
1, 51, 61, 71: GaAs substrate, 3, 53, 5
4, 63, 73: Lower cladding layer, 4, 55, 64, 7
4 Active layer, 5, 6, 56, 57, 65, 75 Upper cladding layer, 7 Current blocking layer, 8, 76 GaAs auxiliary cladding layer, 9, 77 GaInP second auxiliary cladding layer.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaAsを基板とし、活性層のバンドギ
ャップがGaAsよりも小さい電流ブロック型半導体レ
ーザにおいて、 前記基板と反対側の主クラッド層上にストライプ状電流
通路領域を除いて形成されたAlGaInP(Ga組成
が零の場合を含む)の電流ブロック層と、 前記電流ブロック層に挟まれたストライプ状電流通路領
域の前記主クラッド層上に形成されたGaAsの補助ク
ラッド層とを備えたことを特徴とする半導体レーザ。
1. A current block semiconductor laser using GaAs as a substrate and an active layer having a smaller band gap than GaAs. An AlGaInP formed on a main cladding layer opposite to the substrate except for a stripe-shaped current path region. (Including a case where the Ga composition is zero), and a GaAs auxiliary cladding layer formed on the main cladding layer in a stripe-shaped current path region sandwiched between the current blocking layers. Characteristic semiconductor laser.
【請求項2】 前記GaAs補助クラッド層の上にさら
にAlGaInP(AlまたはGaのいずれか一方の組
成が零の場合を含む)またはAlGaAs(Ga組成が
零の場合を含む)の第2補助クラッド層を備えたことを
特徴とする請求項1に記載の半導体レーザ。
2. A second auxiliary cladding layer of AlGaInP (including a case where one of Al and Ga is zero) or AlGaAs (including a case where the Ga composition is zero) is further formed on the GaAs auxiliary cladding layer. The semiconductor laser according to claim 1, further comprising:
【請求項3】 前記基板と反対側の前記主クラッド層お
よび基板側のクラッド層の組成は、光の縦方向の分布が
前記基板と反対側に偏るように調整されていることを特
徴とする請求項1または2のいずれかに記載の半導体レ
ーザ。
3. The composition of the main clad layer on the side opposite to the substrate and the composition of the clad layer on the substrate side is adjusted such that the distribution of light in the vertical direction is biased toward the side opposite to the substrate. The semiconductor laser according to claim 1.
JP5134469A 1993-06-04 1993-06-04 Semiconductor laser Expired - Fee Related JP2914093B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5134469A JP2914093B2 (en) 1993-06-04 1993-06-04 Semiconductor laser
US08/252,563 US5446753A (en) 1993-06-04 1994-06-01 Current block type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134469A JP2914093B2 (en) 1993-06-04 1993-06-04 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH06350189A JPH06350189A (en) 1994-12-22
JP2914093B2 true JP2914093B2 (en) 1999-06-28

Family

ID=15129053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134469A Expired - Fee Related JP2914093B2 (en) 1993-06-04 1993-06-04 Semiconductor laser

Country Status (2)

Country Link
US (1) US5446753A (en)
JP (1) JP2914093B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW291585B (en) * 1994-07-04 1996-11-21 Mitsubishi Chem Corp
US5963572A (en) * 1995-12-28 1999-10-05 Sanyo Electric Co., Ltd. Semiconductor laser device and manufacturing method thereof
JP2929990B2 (en) * 1996-01-26 1999-08-03 日本電気株式会社 Semiconductor laser
US5727012A (en) * 1996-03-07 1998-03-10 Lucent Technologies Inc. Heterostructure laser
JP3787195B2 (en) * 1996-09-06 2006-06-21 シャープ株式会社 Method of manufacturing gallium nitride compound semiconductor light emitting device
US5889805A (en) * 1996-11-01 1999-03-30 Coherent, Inc. Low-threshold high-efficiency laser diodes with aluminum-free active region
US6195381B1 (en) * 1998-04-27 2001-02-27 Wisconsin Alumni Research Foundation Narrow spectral width high-power distributed feedback semiconductor lasers
US6542527B1 (en) 1998-08-27 2003-04-01 Regents Of The University Of Minnesota Vertical cavity surface emitting laser
US6374383B1 (en) * 1999-06-07 2002-04-16 Maxtor Corporation Determining error locations using error correction codes
US6614821B1 (en) 1999-08-04 2003-09-02 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US6400743B1 (en) * 1999-08-05 2002-06-04 Fuji Photo Film Co., Ltd. High-power semiconductor laser device having current confinement structure and index-guided structure
EP1104057B1 (en) * 1999-11-19 2005-07-27 Fuji Photo Film Co., Ltd. High-power semiconductor laser device having current confinement structure and index-guided structure
US6515305B2 (en) 2000-09-18 2003-02-04 Regents Of The University Of Minnesota Vertical cavity surface emitting laser with single mode confinement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537078A (en) * 1991-07-31 1993-02-12 Furukawa Electric Co Ltd:The Quantum well semiconductor laser element and manufacture thereof
JP3183683B2 (en) * 1991-09-06 2001-07-09 シャープ株式会社 Window type semiconductor laser device
JPH05145178A (en) * 1991-11-18 1993-06-11 Furukawa Electric Co Ltd:The Strained quantum well semiconductor laser element
JP3444610B2 (en) * 1992-09-29 2003-09-08 三菱化学株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
US5446753A (en) 1995-08-29
JPH06350189A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
JP3481458B2 (en) Semiconductor laser
US5208821A (en) Buried heterostructure lasers using MOCVD growth over patterned substrates
US7405421B2 (en) Optical integrated device
US20090203161A1 (en) Semiconductor laser diode with a ridge structure buried by a current blocking layer made of un-doped semiconductor grown at a low temperature and method for producing the same
JP2914093B2 (en) Semiconductor laser
JP3791589B2 (en) End face non-injection type semiconductor laser and manufacturing method thereof
JPH0656906B2 (en) Semiconductor laser device
JPH09107153A (en) Short-wave vcsel having active region with no aluminum
JP4797782B2 (en) Semiconductor optical device
JPH11506273A (en) Radiation-emitting semiconductor diode with a separate confinement layer of a semiconductor material containing up to 30% of aluminum or a semiconductor material without aluminum
JP2980302B2 (en) Semiconductor laser
US5586135A (en) Semiconductor laser having an AlGaInP cladding layer
JPH07162093A (en) Semiconductor laser and its manufacture
JP4345673B2 (en) Semiconductor laser
JPH077232A (en) Optical semiconductor device
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JP2973215B2 (en) Semiconductor laser device
JPH0745902A (en) Semiconductor laser and manufacture thereof
JP2708949B2 (en) Method of manufacturing semiconductor laser device
JPH05226767A (en) Buried semiconductor laser and its production
JPH077217A (en) Semiconductor laser and manufacture thereof
JPH06196820A (en) Semiconductor laser and manufacture thereof
JP2841599B2 (en) Semiconductor laser device
JPH04275479A (en) Semiconductor laser
JPH07176830A (en) Manufacture of semiconductor light-emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees