JPS6291807A - Measuring method for depth of surface reformed layer by ultrasonic wave - Google Patents

Measuring method for depth of surface reformed layer by ultrasonic wave

Info

Publication number
JPS6291807A
JPS6291807A JP60231825A JP23182585A JPS6291807A JP S6291807 A JPS6291807 A JP S6291807A JP 60231825 A JP60231825 A JP 60231825A JP 23182585 A JP23182585 A JP 23182585A JP S6291807 A JPS6291807 A JP S6291807A
Authority
JP
Japan
Prior art keywords
ultrasonic wave
depth
modified layer
reformed layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60231825A
Other languages
Japanese (ja)
Inventor
Tadao Sugano
菅野 忠雄
Shohei Hayakawa
早川 章平
Norihiko Saga
佐賀 紀彦
Masahiro Inoue
正博 井上
Hitoshi Imai
今井 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60231825A priority Critical patent/JPS6291807A/en
Publication of JPS6291807A publication Critical patent/JPS6291807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure depth of a surface reformed layer with a high accuracy by transmitting diagonally an incident ultrasonic wave to the surface reformed layer and measuring its reflection time. CONSTITUTION:An attenuation suppressing body 8 is allowed to contact closely to an attenuation suppressing film 8'. Subsequently, an ultrasonic probe 1 is placed on a surface formed layer 6 and an incident ultrasonic wave is transmitted diagonally from a transmitting vibrator 3. An emitted ultrasonic wave W1' which has reached right under a shielding body 9 and has been reflected by the surface of the reformed layer 6 is received by a receiving vibrator 4. Also, an emitted ultrasonic wave W2' which has been reflected by an interface 11 of the reformed layer 6 and a body 7 is also received by the vibrator 4. Also, an emitted ultrasonic wave W3' which has reached the vicinity of the shielding body 9 and has been reflected by the surface of the reformed layer 6 collides against the shielding body 9 and its transmission to the vibrator 4 side is obstructed. Accordingly, by making the ultrasonic wave W3' which is not contributed to a measurement ineffective, the measuring accuracy is improved. Also, the time extending from the oscillation to the reception of the ultra sonic wave W1' and W2' is measured, and from this measuring time, the depth of the surface reformed layer 6 is derived with a high accuracy.

Description

【発明の詳細な説明】 A6発明の目的 (1)  産業上の利用分野 本発明は超音波による表面改質層深さ測定方法に関する
DETAILED DESCRIPTION OF THE INVENTION A6 Object of the Invention (1) Industrial Application Field The present invention relates to a method for measuring the depth of a surface-modified layer using ultrasonic waves.

(2)従来の技術 従来、金属部材の表面改質層、例えば表面焼入れ層、チ
ル層、拡散被覆等による合金層等の深さを測定する場合
は、金属部材よりテストピースを切取り、そのテストピ
ースの切断面を研摩し、その研摩面を顕微鏡により観察
する、または研摩面の硬度を微小硬度計にて測定すると
いった手法が採られている。
(2) Conventional technology Conventionally, when measuring the depth of a surface-modified layer of a metal member, such as a surface hardening layer, a chill layer, an alloy layer formed by diffusion coating, etc., a test piece is cut out from the metal member and tested. Techniques used include polishing the cut surface of a piece and observing the polished surface using a microscope, or measuring the hardness of the polished surface with a microhardness meter.

(3)発明が解決しようとする問題点 しかしながら前記手法によると、改質層の深さ測定のた
めに多くの一寺間を要するという問題がある。
(3) Problems to be Solved by the Invention However, according to the above method, there is a problem in that a large number of steps are required to measure the depth of the modified layer.

本発明は上記に鑑み、超音波を利用することによりテス
トピースの切取り、研摩等の作業を不要にした非破壊方
式の表面改質層の深さ測定方法を提供することを目的と
する。
In view of the above, an object of the present invention is to provide a non-destructive method for measuring the depth of a surface-modified layer that uses ultrasonic waves and eliminates the need for operations such as cutting out and polishing a test piece.

B0発明の構成 (1)  問題点を解決するための手段本発明は、本体
の表面に形成された該本体と組織を異にする表面改質層
の深さを測定する方法であって、前記表面改質層に入射
超音波を斜めに発信し、該入射超音波を前記表面改質層
と前記本体との界面で反射させ、その反射に伴い前記表
面改質層から出射する出射超音波を受信し、前記入射超
音波の発信から前記出射超音波の受信までの時間を測定
し、該時間を表面改質層深さに換算することを特徴とす
る。
B0 Structure of the Invention (1) Means for Solving Problems The present invention is a method for measuring the depth of a surface-modified layer formed on the surface of a main body and having a structure different from that of the main body, comprising: An incident ultrasonic wave is transmitted obliquely to the surface modified layer, the incident ultrasonic wave is reflected at the interface between the surface modified layer and the main body, and the output ultrasonic wave is emitted from the surface modified layer due to the reflection. The method is characterized in that the time from the transmission of the incident ultrasonic wave to the reception of the emitted ultrasonic wave is measured, and the time is converted into the depth of the surface modified layer.

(2)作 用 入射超音波を表面改質層に斜めに入射させるので、入射
超音波の発信から出射超音波の受信までの時間分解能が
良好となり、前記発信から受信までの時間を正確に測定
することができる。この測定時間を表面改質層の深さに
換算することにより前記深さを精度良く求めることがで
きる。
(2) Effect Since the incident ultrasonic waves are made obliquely incident on the surface modified layer, the time resolution from the emission of the incident ultrasonic waves to the reception of the emitted ultrasonic waves is good, and the time from the emission to the reception can be accurately measured. can do. By converting this measurement time into the depth of the surface modified layer, the depth can be determined with high accuracy.

(3)実施例 第1図は本発明の実施に用いられる超音波探触器1を示
し、その超音波探触器1の振動子保持体2に発信用振動
子3と受信用振動子4が保持されている。発信用振動子
3は、それから発信される入射超音波を金属部材5の表
面改質層6に斜めに入射し得るように傾斜して配設され
、また受信用振動子4は、入射超音波が表面改質N6と
本体7との界面11で反射されて生じた斜めに出射され
る出射超音波を受信し得るように斜めに配設され、両振
動子3.4は、それらの間の2等分線に関して線対称の
配設関係を持つ。
(3) Embodiment FIG. 1 shows an ultrasonic probe 1 used for carrying out the present invention, in which a transducer holder 2 includes a transmitting transducer 3 and a receiving transducer 4. is retained. The transmitting transducer 3 is arranged at an angle so that the incident ultrasonic waves emitted therefrom can obliquely enter the surface modified layer 6 of the metal member 5, and the receiving transducer 4 are disposed obliquely so that they can receive the obliquely emitted outgoing ultrasonic waves that are reflected at the interface 11 between the surface-modified N6 and the main body 7, and both transducers 3.4 are It has a symmetrical arrangement with respect to the bisector.

また振動子保持体2にアクリル樹脂等の合成樹脂よりな
る減衰抑制体8が固着される。その減衰抑制体8は入射
および出射超音波の減衰を抑制しつつそれらの透過を許
容するもので、その減衰抑制のためには両超音波の空中
伝播を防止する必要がある。この要求を満足すべく、減
衰抑制体8は発信用振動子3の発信面3a、受信用振動
子4の受信面4aおよび表面改質層6の表面に密接する
ようになっている。
Further, a damping suppressor 8 made of synthetic resin such as acrylic resin is fixed to the vibrator holder 2 . The attenuation suppressor 8 suppresses attenuation of incident and outgoing ultrasonic waves while allowing them to pass through. In order to suppress attenuation, it is necessary to prevent air propagation of both ultrasonic waves. In order to satisfy this requirement, the damping suppressor 8 is brought into close contact with the transmitting surface 3a of the transmitting vibrator 3, the receiving surface 4a of the receiving vibrator 4, and the surface of the surface modified layer 6.

両振動子3,4間の2等分線上において振動子保持体2
および減衰抑制体8を2分割するようにコルク、ゴム、
合成樹脂等よりなる遮蔽体9が配設される。この遮蔽体
9は表面改質層6表面における入射超音波の反射に伴う
測定に寄与しない出射超音波が受信用振動子4に受信さ
れるのを防止する。
The vibrator holder 2 is placed on the bisector between both vibrators 3 and 4.
and cork, rubber, etc. so as to divide the damping suppressor 8 into two.
A shielding body 9 made of synthetic resin or the like is provided. This shield 9 prevents the receiving transducer 4 from receiving emitted ultrasonic waves that do not contribute to measurement due to reflection of incident ultrasonic waves on the surface of the surface-modified layer 6 .

両振動子3.4はオシログラフIOに接続され、そのオ
シログラフ10により時間の経過に伴う受信超音波を波
形を以て記録する。
Both transducers 3.4 are connected to an oscillograph IO, and the oscillograph 10 records received ultrasonic waves as waveforms over time.

次に表面改質層6の深さ測定について説明する。Next, depth measurement of the surface modified layer 6 will be explained.

金属部材としてのねずみ鋳鉄(JIS  Fe12)製
摺動部材5の摺動面にプラズマ加熱、レーザー加熱等の
高温加熱を施して摺動面を再溶融した後冷却し、摺動面
をチル組織の表面改質層6より構成する。本体7の金属
)Jl織はねずみ鋳鉄組織のままである。
The sliding surface of the sliding member 5 made of gray cast iron (JIS Fe12) as a metal member is subjected to high-temperature heating such as plasma heating or laser heating to re-melt the sliding surface and then cooled to form a chilled structure. It is composed of a surface modified layer 6. The metal weave of the main body 7 remains a gray cast iron structure.

表面改質層6の表面にエチレングリコール等の有機溶剤
、機械油等を塗布して薄い減衰抑制膜8′を形成し、表
面改質層6表面の平滑化を図る。
An organic solvent such as ethylene glycol, machine oil, etc. is applied to the surface of the surface modified layer 6 to form a thin attenuation suppressing film 8', thereby smoothing the surface of the surface modified layer 6.

超音波探触器1を、その減衰抑制体8を減衰抑制膜8′
の表面に密接させて表面改質層6上に載置する。この場
合前記減衰抑制膜8′により減衰抑制体8と表面改質層
6間への空気の介入が防止される。
The ultrasonic probe 1 is connected to the attenuation suppressing body 8 by an attenuation suppressing film 8'.
is placed on the surface modified layer 6 in close contact with the surface of the substrate. In this case, the attenuation suppressing film 8' prevents air from entering between the attenuation suppressing body 8 and the surface modified layer 6.

発信用振動子3から周波数5〜20MHzの入射超音波
を斜めに発信して減衰抑制体8および減衰抑制膜8′を
透過させる。その入射超音波のうち遮蔽体9の直下に達
して表面改質層6の表面で反射されたものWlに伴う出
射超音波Wl’は減衰抑制膜8′および減衰抑制体8を
透過して受信用振動子4に受信される。
An incident ultrasonic wave with a frequency of 5 to 20 MHz is obliquely transmitted from the transmitting vibrator 3 and transmitted through the attenuation suppressor 8 and the attenuation suppressing film 8'. Among the incident ultrasonic waves, the outgoing ultrasonic waves Wl' associated with the waves Wl that reach directly below the shielding body 9 and are reflected on the surface of the surface modified layer 6 are transmitted through the attenuation suppressing film 8' and the attenuation suppressing body 8 and are received. received by the transducer 4.

また入射超音波のうち表面改質層6に入射されたちのw
zが表面改質層6と本体7との界面11で反射されるこ
とにより生じた出射超音波W2’は、減衰抑制膜8′お
よび減衰抑制体8を透過して受信用振動子4に受信され
る。
Also, among the incident ultrasonic waves, the waves that are incident on the surface modified layer 6 are
The emitted ultrasonic wave W2' generated by the reflection of z at the interface 11 between the surface modified layer 6 and the main body 7 is transmitted through the attenuation suppressing film 8' and the attenuation suppressing body 8, and is received by the receiving transducer 4. be done.

さらに入射超音波のうち遮蔽体9の近傍に達したちのW
3が表面改質層6の表面で反射されることによって生じ
た出射超音波W3’は遮蔽体9に衝突して受信用振動子
4側への透過を阻止され、これにより測定に寄与しない
出射超音波W3’を無効にして測定精度の向上が図られ
る。
Furthermore, the W of the incident ultrasonic waves that reaches the vicinity of the shielding body 9
The emitted ultrasonic wave W3' generated by the reflection of the ultrasonic wave W3' on the surface of the surface modified layer 6 collides with the shielding body 9 and is blocked from transmitting to the receiving transducer 4 side. The measurement accuracy is improved by disabling the ultrasonic wave W3'.

前記のように発信用振動子3より入射超音波W5.W2
を表面改質層6に斜めに入射させるので、表面改質層6
表面、それと本体7との界面11における入射超音波W
l、W2の時間分解能が良好となる。また減衰抑制体8
および減衰抑制層8′により入射超音波W、、W!およ
び出射超音波W1’、WZ’の空中伝播を防止してそれ
らの減衰を抑制するので、受信用振動子4の超音波受信
量の低減が抑えられる。
As described above, the incident ultrasonic wave W5. W2
is incident on the surface modified layer 6 obliquely, so that the surface modified layer 6
Incident ultrasonic wave W at the surface and the interface 11 between it and the body 7
The time resolution of l and W2 is improved. Also, the damping suppressor 8
and the incident ultrasonic waves W,, W! due to the attenuation suppression layer 8'. Also, since the air propagation of the emitted ultrasonic waves W1' and WZ' is prevented and their attenuation is suppressed, the reduction in the amount of ultrasonic waves received by the receiving transducer 4 is suppressed.

受信用振動子4により受信された出射超音波W、 ’ 
、Wg ’はオシログラフ10により波形として記録さ
れる。
Outgoing ultrasonic waves W, ' received by the receiving transducer 4
, Wg' are recorded as waveforms by the oscillograph 10.

第2図はオシログラフ10の波形を示し、a波は入射超
音波W1が表面改質層6の表面で反射することにより発
生し、b波は入射超音波W2が表面改質層6と本体7と
の界面11で反射することにより発生する。したがって
b波の発生時間T2とa波の発生時間T1の差を求める
ことにより入射超音波W2の発信から出射超音波Wz’
の受信までの時間が測定される。
FIG. 2 shows the waveforms of the oscilloscope 10. The a wave is generated when the incident ultrasonic wave W1 is reflected on the surface of the surface modified layer 6, and the b wave is generated when the incident ultrasonic wave W2 is reflected between the surface modified layer 6 and the main body. This occurs due to reflection at the interface 11 with 7. Therefore, by finding the difference between the generation time T2 of the b wave and the generation time T1 of the a wave, the difference between the emission of the incident ultrasonic wave W2 and the output ultrasonic wave Wz'
The time until reception is measured.

第3図は前記発信から受信までの時間と表面数tlの深
さとの関係を示すグラフであり、例えば時間T2とT、
の差が1μsecであれば、表面改質層6の深さは約1
.2鶴と換算される。このようなグラフは表面改質層の
深さを異にし、しかもそれら深さの分っている種々のテ
ストピースに前記測定方法を繰返して適用することによ
り得られる。
FIG. 3 is a graph showing the relationship between the time from transmission to reception and the depth of the surface number tl. For example, time T2 and T,
If the difference is 1 μsec, the depth of the surface modified layer 6 is approximately 1 μsec.
.. It is converted to 2 cranes. Such a graph can be obtained by repeatedly applying the above measurement method to various test pieces having different depths of the surface modification layer and whose depths are known.

前記超音波探触器1による表面改質N6の深さ測定は、
その層6の深さが0.3〜3.0鶴の範囲にある場合に
特に有効であり、測定誤差は±0.05鶴と高精度であ
る。
The depth measurement of the surface modified N6 by the ultrasonic probe 1 is as follows:
It is particularly effective when the depth of the layer 6 is in the range of 0.3 to 3.0 mm, and the measurement error is ±0.05 mm, which is highly accurate.

この場合、表面改質層6と本体7との界面11における
入射超音波W2の入射角(出射超音波W2′の反射角)
αおよび減衰抑制体8の斜面と底面とのなす角βはそれ
ぞれ10〜30°が適当である。前記超音波探触器1に
おいてはαおよびβはそれぞれ略21″に設定されてい
る。
In this case, the incident angle of the incident ultrasonic wave W2 at the interface 11 between the surface modified layer 6 and the main body 7 (reflection angle of the emitted ultrasonic wave W2')
It is appropriate that α and the angle β between the slope and the bottom surface of the damping suppressor 8 are respectively 10 to 30°. In the ultrasonic probe 1, α and β are each set to approximately 21″.

第4図は超音波探触器1の変形例を示し、減衰抑制体8
内に発信および受信用振動子3,4を埋設したものであ
る。
FIG. 4 shows a modification of the ultrasonic probe 1, in which the attenuation suppressor 8
Transmitting and receiving transducers 3 and 4 are embedded inside.

C1発明の効果 本発明によれば、超音波を利用することにより測定作業
が容易で、しかも高精度な値を得ることのできる非破壊
方式の表面改質層深さ測定方法を提供することができる
C1 Effects of the Invention According to the present invention, it is possible to provide a non-destructive method for measuring the depth of a surface modified layer that uses ultrasonic waves to facilitate measurement work and obtain highly accurate values. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明測定方法の実施状態を示す縦断正面図、
第2図はオシログラフの波形図、第3図は表面改質層の
深さと超音波の発信から受信までの時間の関係を示すグ
ラフ、第4図は超音波探触器の変形例の縦断正面図であ
る。 w、、W2.W3・・・入射超音波、W、’、Wt’。 W=’・・・出射超音波、 ■・・・超音波探触器、3・・・発信用振動子、3a・
・・発信面、4・・・受信用振動子、4a・・・受信面
、6・・・表面改質層、7・・・本体、8・・・減衰抑
制体、9・・・遮蔽体、11・・・界面 第1図 (psec) 第4図
FIG. 1 is a longitudinal sectional front view showing the implementation state of the measuring method of the present invention;
Figure 2 is an oscillograph waveform diagram, Figure 3 is a graph showing the relationship between the depth of the surface modification layer and the time from transmission to reception of ultrasound, and Figure 4 is a longitudinal cross-section of a modified example of the ultrasound probe. It is a front view. w,, W2. W3...Incoming ultrasound, W,', Wt'. W='...Emission ultrasonic wave, ■...Ultrasonic probe, 3... Transmission transducer, 3a.
... Transmission surface, 4... Reception transducer, 4a... Receiving surface, 6... Surface modified layer, 7... Main body, 8... Damping suppressor, 9... Shielding body , 11... Interface Figure 1 (psec) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 本体の表面に形成された該本体と組織を異にする表面改
質層の深さを測定する方法であって、前記表面改質層に
入射超音波を斜めに発信し、該入射超音波を前記表面改
質層と前記本体との界面で反射させ、その反射に伴い前
記表面改質層から出射する出射超音波を受信し、前記入
射超音波の発信から前記出射超音波の受信までの時間を
測定し、該時間を表面改質層深さに換算することを特徴
とする、超音波による表面改質層深さ測定方法。
A method for measuring the depth of a surface modified layer formed on the surface of a main body that has a different structure from that of the main body, the method comprising: transmitting incident ultrasound obliquely to the surface modified layer; Receiving an emitted ultrasonic wave that is reflected at the interface between the surface modified layer and the main body and emitted from the surface modified layer due to the reflection, and the time from transmission of the incident ultrasonic wave to reception of the emitted ultrasonic wave. A method for measuring the depth of a surface modified layer using ultrasonic waves, the method comprising measuring the time and converting the time to the depth of the surface modified layer.
JP60231825A 1985-10-17 1985-10-17 Measuring method for depth of surface reformed layer by ultrasonic wave Pending JPS6291807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60231825A JPS6291807A (en) 1985-10-17 1985-10-17 Measuring method for depth of surface reformed layer by ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231825A JPS6291807A (en) 1985-10-17 1985-10-17 Measuring method for depth of surface reformed layer by ultrasonic wave

Publications (1)

Publication Number Publication Date
JPS6291807A true JPS6291807A (en) 1987-04-27

Family

ID=16929606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231825A Pending JPS6291807A (en) 1985-10-17 1985-10-17 Measuring method for depth of surface reformed layer by ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS6291807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090804A (en) * 2004-09-22 2006-04-06 Ishikawajima Inspection & Instrumentation Co Two-vibrator type ultrasonic probe for high temperature
JP2016148563A (en) * 2015-02-11 2016-08-18 高周波熱錬株式会社 Ultrasonic probe for measuring heat treatment layer depth, and method for measuring heat treatment layer depth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147024U (en) * 1974-10-05 1976-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147024U (en) * 1974-10-05 1976-04-07

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090804A (en) * 2004-09-22 2006-04-06 Ishikawajima Inspection & Instrumentation Co Two-vibrator type ultrasonic probe for high temperature
JP4502257B2 (en) * 2004-09-22 2010-07-14 株式会社Ihi検査計測 Two transducer type ultrasonic probe for high temperature
JP2016148563A (en) * 2015-02-11 2016-08-18 高周波熱錬株式会社 Ultrasonic probe for measuring heat treatment layer depth, and method for measuring heat treatment layer depth

Similar Documents

Publication Publication Date Title
US4435984A (en) Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
Kargl et al. Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations
Cooper et al. Characterization of surface-breaking defects in metals with the use of laser-generated ultrasound
Goujon et al. Behaviour of acoustic emission sensors using broadband calibration techniques
US4430593A (en) Acoustic transducer
US5641906A (en) Apparatus and method for automated non-destructive inspection of integrated circuit packages
Aindow et al. Laser-based non-destructive testing techniques for the ultrasonic characterization of subsurface flaws
Kawald et al. Investigation of the dispersion relations of surface acoustic waves propagating on a layered cylinder
US4640131A (en) Method and apparatus for the ultrasonic testing of bolts with a wall thickness discontinuity
JPS6291807A (en) Measuring method for depth of surface reformed layer by ultrasonic wave
US4995260A (en) Nondestructive material characterization
Moss et al. Investigation of ultrasonic transducers using optical techniques
US5046363A (en) Apparatus for rapid non-destructive measurement of die attach quality in packaged integrated circuits
JP2004524536A (en) High Frequency Ultrasonic Measurement of Partial Layer Thickness of Thin-Walled Tube by Contact Method
JP2659236B2 (en) Ultrasonic probe
JP3589759B2 (en) Scale thickness measuring device for pipe inner surface
Mattsson et al. Three-dimensional ultrasonic crack detection in anisotropic materials
Kumar et al. Evaluation of ultrasonic attenuation without invoking the diffraction correction separately
Athanassiadis et al. Broadband leaky Lamb waves excited by optical breakdown in water
Weight A model to predict the ultrasonic echo responses of small targets in solids
Vincent et al. Ultrasonic characterization of zirconia-based thermal barriers
JP2001124746A (en) Ultrasonic inspection method
JPS6229957Y2 (en)
GB2139757A (en) Method of ultrasonic non-destructive testing
JPH0519809Y2 (en)