JPS6290981A - Manufacture of infrared detecting element - Google Patents

Manufacture of infrared detecting element

Info

Publication number
JPS6290981A
JPS6290981A JP60219339A JP21933985A JPS6290981A JP S6290981 A JPS6290981 A JP S6290981A JP 60219339 A JP60219339 A JP 60219339A JP 21933985 A JP21933985 A JP 21933985A JP S6290981 A JPS6290981 A JP S6290981A
Authority
JP
Japan
Prior art keywords
film
wafer
sensing element
infrared sensing
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60219339A
Other languages
Japanese (ja)
Other versions
JPH0449271B2 (en
Inventor
Yasuaki Yoshida
保明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60219339A priority Critical patent/JPS6290981A/en
Publication of JPS6290981A publication Critical patent/JPS6290981A/en
Publication of JPH0449271B2 publication Critical patent/JPH0449271B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To manufacture an element without contacting an anodic oxidation film with medicine by forming a specific groove on an infrared detecting element wafer, then forming a metal deposited film, and subjecting to an anodic oxidation with the film as a mask to form the first protective film. CONSTITUTION:A compound semiconductor 2 is formed on a high resistance substrate 1, and a wafer 7 is formed. Then, the wafer 7 is etched to arrive at the substrate 1 or to form a groove 13 of shape deeper than the substrate. Then, a metal deposited film 14 is formed on the wafer 7. Then, the wafer 7 is subjected to a plasma anodic oxidation to form an anodic oxidation film 8 to become the first protective film 4. A ZnS film 9 is formed on the entire surface of the wafer 7. Then, the semiconductor 2 is exposed to form an electrode hole 10 and an element dividing line 12. Subsequently, an electrode 6 is formed, the wafer 7 is eventually cut along the dividing line 12 of the element, and an infrared detecting element is formed. Since the element can be formed without contacting the anodic oxidation film with medicine, the yield of the element is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光導1を現象を利用した赤外線検知素子の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing an infrared sensing element using the phenomenon of light guide 1.

〔従来の技術〕[Conventional technology]

第4図は従来の光導”ttmの赤外線検知素子の構造を
示す平面図、第5図はその断面図である。
FIG. 4 is a plan view showing the structure of a conventional light guide "ttm" infrared sensing element, and FIG. 5 is a sectional view thereof.

これらの図において、1は高抵抗の基板、2は例えばH
gCdTeなとの化合物半導体、3は受光面、4は前記
化合物半導体2の陽極酸化膜により形成される受光面3
の第1の保護膜、5は例えばZnSから成る受光面3の
第2の保護膜、6は例えばInから成る電極である。
In these figures, 1 is a high-resistance substrate, 2 is, for example, H
A compound semiconductor such as gCdTe; 3 is a light-receiving surface; 4 is a light-receiving surface 3 formed by an anodic oxide film of the compound semiconductor 2;
5 is a second protective film of the light-receiving surface 3 made of, for example, ZnS, and 6 is an electrode made of, for example, In.

次に、第6図(a)、 (b)、 (C)を用いて従来
の光導電型の赤外線検知素子の製造方法について説明す
る。
Next, a method for manufacturing a conventional photoconductive infrared sensing element will be explained using FIGS. 6(a), 6(b), and 6(c).

まず、高抵抗の4檄1上K Hg Cd Teなどの化
合物半導体2をエピタキシャル成長などの方法により所
定の厚さに形成し、赤外線検知素子ウェハ(以下単にウ
ェハという)7を裏作する。
First, a high-resistance compound semiconductor 2 such as 4KHgCdTe is formed to a predetermined thickness by a method such as epitaxial growth, and an infrared sensing element wafer (hereinafter simply referred to as wafer) 7 is fabricated.

次にウェハ7の表面全面に、第1の保護膜4となる陽極
酸化膜8を、例えばプラズマ陽極酸化により形成する。
Next, an anodic oxide film 8 that will become the first protective film 4 is formed over the entire surface of the wafer 7 by, for example, plasma anodic oxidation.

プラズマ陽極酸化は、高周波放電によって発生させた酸
素プラズマ中に試料を挿入し、プラズマ内の他の電極に
対し試料に正の電圧を印加して陽極酸化を行う方法であ
る。
Plasma anodic oxidation is a method in which a sample is inserted into oxygen plasma generated by high-frequency discharge, and a positive voltage is applied to the sample with respect to other electrodes in the plasma to perform anodic oxidation.

次に、第2の保護膜5となるZnS@9をスパッタリン
グなどの方法により前記陽極酸化膜8の表面全面に形成
する。
Next, ZnS@9, which will become the second protective film 5, is formed on the entire surface of the anodic oxide film 8 by a method such as sputtering.

続いて、前記陽極酸化m8およびZnS膜9の1部を写
真製版法を用いてエツチングし、第6図tatのような
電極孔10をあけ、化合吻半導体2を露出させる。
Subsequently, the anodic oxidation m8 and a part of the ZnS film 9 are etched using a photolithography method to open an electrode hole 10 as shown in FIG. 6 and expose the compound semiconductor 2.

次に、メタルマスク等を用い、電極となる材料。Next, use a metal mask etc. to select the material that will become the electrode.

例えば、エロm11を、第6図(b)のよ5に受光面3
の形成予定領域を除いた部分に蒸着する。
For example, place the erotic m11 on the light receiving surface 3 as shown in FIG. 6(b).
is deposited on the area excluding the area where it is planned to be formed.

その後、製造する素子の形状にあわせ、In111゜Z
nS膜9.陽極酸化1118.化合物半纏体201部を
写真製版法を用いて高抵抗の基衣1に迷するまでエツチ
ングし、第6図(c)のよプな素子の分割線12を形成
する。
After that, according to the shape of the element to be manufactured, In111゜Z
nS film9. Anodic oxidation 1118. 201 parts of the compound semi-enveloped body is etched using a photolithography method until it gets lost in the high-resistance substrate 1, thereby forming the dividing line 12 of the element as shown in FIG. 6(c).

最後罠、ダイシングンーなどを用いて素子の分割&t1
2に、沿って個々の素子に切断し、第4図のような赤外
線検知素子を製造していた。
Divide the element using the final trap, dicing, etc. & t1
The infrared sensing element as shown in FIG. 4 was manufactured by cutting into individual elements along the lines shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、以上のよ5な従来の方法では、電極孔10およ
び素子の分割線12の形成時に、第lの保護膜4および
第2の保d膜5罠亀裂が生じ、赤外線検知素子を製造す
ることか困難であるという問題点があった。これはHg
 Cd Teの陽極酸化膜8が薬品に対し【非常に弱〜
・膜であるため、サイドエツチングが短い範囲で止まら
ず、レジストの下の陽極酸化膜Kまでエツチング液がし
み込んでしまうために起った問題点である。
However, in the above five conventional methods, cracks occur in the first protective film 4 and the second protective film 5 when forming the electrode holes 10 and the parting lines 12 of the element, making it difficult to manufacture an infrared sensing element. The problem was that it was difficult. This is Hg
The Cd Te anodic oxide film 8 is very weak to chemicals.
- Because the resist is a film, the side etching does not stop within a short range, and the problem arises because the etching solution penetrates into the anodic oxide film K below the resist.

この発明は、上記のような問題点を解消するためなされ
たもので、第1の保護膜である陽極酸化膜を、以後の工
程で、レジスト、エツチング液等の薬品に触れさせるこ
となく、赤外線検知素子を製造する方法を提供すること
を目的とする。
This invention was made to solve the above-mentioned problems, and the first protective film, which is an anodic oxide film, can be exposed to infrared rays without coming into contact with chemicals such as resist or etching solution in subsequent steps. It is an object of the present invention to provide a method for manufacturing a sensing element.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る赤外線検知素子の製造方法は、赤外線検
知素子ウエハ上に、受光面と少なくとも一方の電極を囲
み、高抵抗の基板に達するか、それよりも深い深さの溝
を形成するとともに、所定形状の金属蒸着膜を形成し、
その金S蒸看膜をマスクとして赤外線検知素子ウニ八を
陽極酸化して第1の保護膜を形成し、その後、第1の保
換膜を覆うように第2の保mthを形成するものである
The method for manufacturing an infrared sensing element according to the present invention includes forming a groove on an infrared sensing element wafer that surrounds a light receiving surface and at least one electrode and has a depth that reaches or is deeper than a high-resistance substrate; Forming a metal vapor deposited film in a predetermined shape,
The first protective film is formed by anodizing the infrared sensing element Uni-Hachi using the gold-S vaporized film as a mask, and then the second protective film is formed to cover the first protective film. be.

〔作用〕[Effect]

この@明においては、溝と金Js蒸層換の作用により、
第1の保護膜である陽極酸化膜が選択的く形成されるの
で、以後の工程で陽極酸化膜をエツチング液等の薬品に
触れさせることなく、電極孔。
In this @ Ming, due to the action of the groove and gold Js evaporation layer exchange,
Since the anodic oxide film, which is the first protective film, is selectively formed, the anodic oxide film is not exposed to chemicals such as etching solution in subsequent steps, and the electrode holes can be completely sealed.

素子の分割線を形成することができる。Parting lines for elements can be formed.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す元4電型の赤外線検
知素子の構造を示す平面図、第2図はその断面図であり
、第3図(a)、 (b)、 (C)はこの発明による
赤外線検知素子の製造工程を示す図である。
FIG. 1 is a plan view showing the structure of a four-electrode infrared sensing element showing an embodiment of the present invention, FIG. 2 is a sectional view thereof, and FIGS. 3(a), (b), (C ) is a diagram showing the manufacturing process of the infrared sensing element according to the present invention.

これらの図において、1〜10.12は前記第4図〜第
6図に示したものと同じものであり、13はコの字型の
溝、14は金属熱−4Mである。コの字型の溝13は受
光面3の形成予定領域と片方の電極6の形成予定領域を
囲むよ5に形成されている。
In these figures, 1 to 10.12 are the same as shown in FIGS. 4 to 6, 13 is a U-shaped groove, and 14 is a metal heat-4M. The U-shaped groove 13 is formed to surround a region where the light-receiving surface 3 is to be formed and a region where one of the electrodes 6 is to be formed.

以下、第3図を用い【、この発明における赤外線検知素
子の製造方法について説明する。
The method for manufacturing an infrared sensing element according to the present invention will be described below with reference to FIG.

はじめに、従来例と同様に、高抵抗の基板1上にHg 
Cd Teなどの化合吻半尋体2をエピタキシャル成長
などの方法により所定の厚さに形成し、ウエハγを製作
する。
First, as in the conventional example, Hg is placed on a high-resistance substrate 1.
A wafer γ is manufactured by forming a compound half-layer body 2 made of CdTe or the like to a predetermined thickness by a method such as epitaxial growth.

次に、ウニ八7を446版法を用いてエツチングし、第
3図(a)のようなコの字型の溝13を形成する・溝1
3は高抵抗の基板1に達するか、それよりも深く掘るも
のとする。
Next, the sea urchin 8 is etched using the 446 plate method to form a U-shaped groove 13 as shown in Fig. 3(a).Groove 1
3 shall be dug to reach the high resistance substrate 1 or deeper than it.

続いて、ウニ八7に1例えはInなどを蒸着し、第3図
(b)のような形状の金属#層膜14を形成する0 次K、従来例と同様にウニ・・7をプラズマ陽極酸化し
、第1の保諌111i14となる陽極版化膜8を形成す
る。
Next, the sea urchin 7 is exposed to plasma in the same way as in the conventional example. Anodic oxidation is performed to form an anodized film 8 that will become the first insulator 111i14.

この時、金属蒸着膜14がマスクとなるので、第3図(
b)で金属蒸着膜14の外に露出している部分にのみ、
化合物半導体2の陽極酸化PA8が形成される。
At this time, the metal vapor deposited film 14 serves as a mask, so as shown in FIG.
Only on the exposed part of the metal vapor deposited film 14 in b),
Anodic oxidation PA8 of the compound semiconductor 2 is formed.

なお、陽極酸化のはじめの段階では、陽極は化電流は主
に抵抗の小さい金属蒸着膜14を通って流れ、化合物半
導体2はほとんど陽極酸化されない。しかし、この例の
Inのように酸化され易い金属を用いれば、表面に絶縁
酸化膜ができ陽極酸化直流は化合物半導体2を通って流
れるようくなるので、化合物半導体2の陽極酸化11g
8を容易に形成できる。
In the initial stage of anodic oxidation, the anode current mainly flows through the metal vapor deposited film 14 having low resistance, and the compound semiconductor 2 is hardly anodized. However, if a metal that is easily oxidized like In in this example is used, an insulating oxide film is formed on the surface and the anodic oxidation direct current flows through the compound semiconductor 2.
8 can be easily formed.

また金属蒸着膜14が丁べて醸化されたとしても、陽極
酸化[流は金属蒸着膜14の下の化合物半導体2を遡っ
てプラズマ陽極酸化装置の電極に達するので、陽極酸化
膜8の形成に支障はない。
Furthermore, even if the metal vapor deposited film 14 is completely cultivated, the anodic oxidation flow traces back the compound semiconductor 2 under the metal vapor deposition film 14 and reaches the electrode of the plasma anodization device, so that the anodic oxide film 8 is formed. There is no problem.

以上のようK、金属島7f膜14をマスクとして第1の
保i[!i膜4となる陽極酸化膜8を選択的に形成した
後、第2の保護pA5となるZnS膜9をスパッタリン
グによりウェハ7の表面全面に形成する。
As described above, using the metal island 7f film 14 as a mask, the first protection i[! After selectively forming the anodic oxide film 8 that will become the i film 4, a ZnS film 9 that will become the second protective pA 5 is formed over the entire surface of the wafer 7 by sputtering.

次に、写真製版法を用いて第3図<C)のように、Zn
S膜9とInの金りI4#層膜14をエツチングし、化
合物半導体2を露出させ、電極孔10と素子の分割線1
1を形成する。この時、第3図(C)かられかるよ5に
陽極酸化膜8とエツチング液が接触することなく゛1極
孔10、素子の分割線12を形成でざるので、従来列の
ような問題はおこらない。
Next, as shown in Fig. 3<C) using photolithography, Zn
The S film 9 and the In gold I4# layer film 14 are etched to expose the compound semiconductor 2, and the electrode hole 10 and the element parting line 1 are etched.
form 1. At this time, as shown in FIG. 3(C), the anodic oxide film 8 and the etching solution do not come into contact with each other in the groove 5, and the single electrode hole 10 and the element dividing line 12 are formed, so the problems like those in the conventional array are avoided. It doesn't happen.

続いて、メタルマスクを用いて電極孔10を覆うように
Inを蒸着し電極6を形成し、最後に、素子の分割41
12に沿ってダイシングンーを用いてウェハ7を切断し
、為1図のような赤外線検知素子を製造する。
Next, using a metal mask, In is evaporated to cover the electrode hole 10 to form the electrode 6, and finally, the device is divided 41.
The wafer 7 is cut along the lines 12 using a dicing machine to manufacture infrared sensing elements as shown in FIG.

なお、上記実施例では、電極孔10の形成時にInの金
属、@*l1a14もエツチングしたが、znS膜9の
みを選択的にエツチングし、露出した蒸着膜を電極とす
ることもできる。
In the above embodiment, the In metal @*l1a14 was also etched when forming the electrode holes 10, but it is also possible to selectively etch only the ZnS film 9 and use the exposed deposited film as an electrode.

また上記実施例では最後に各素子に分割し単素子型赤外
線検知素子を作ったが、数個おきに分割すれば7レイ型
業子あるいはマトリックス型素子を作ることもできる。
Furthermore, in the above embodiment, a single-element infrared sensing element was produced by dividing each element at the end, but it is also possible to produce a 7-ray type element or a matrix type element by dividing it into every few elements.

さらに、上記実施例では、コの字型の溝13を形成し、
単素子型赤外線検知素子を作ったが、例えば、櫛型の溝
を形成し、(2)のすぎ間ひとつをl素子とする7レイ
型素子を作ることもできる。
Furthermore, in the above embodiment, the U-shaped groove 13 is formed,
Although a single-element type infrared sensing element has been made, for example, a 7-ray type element can also be made in which comb-shaped grooves are formed and each gap in (2) is an l element.

〔発明の効果〕 この発明は以上説明したとおり、赤外線検知素子ウニ・
・上に、受光面と少なくとも一方の電極を囲み、高抵抗
の基板に違するかそれよりも深い深さの溝を形成すると
ともに、所定形状の金属蒸着膜を形成し、その金属蒸、
f膜をマスクとしてウニ・・を陽極酸化して第1の保護
膜を形成し、その後、第1の保護膜を覆うように第2の
保護膜を形成するようにしたので、mlの保護膜である
陽極酸化膜を薬品に接触させることなく素子を製造でき
るため、素子の歩留りが向上するという優れた効果を有
する。
[Effects of the Invention] As explained above, the present invention uses an infrared sensing element
- On the top, a groove with a depth equal to or deeper than the high-resistance substrate is formed, surrounding the light-receiving surface and at least one of the electrodes, and a metal evaporation film of a predetermined shape is formed, and the metal evaporation,
The first protective film was formed by anodizing the sea urchin using the F film as a mask, and then the second protective film was formed to cover the first protective film. Since the device can be manufactured without bringing the anodic oxide film into contact with chemicals, it has an excellent effect of improving the yield of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による元24電型の赤外線
検知素子の構造を示す平面図、第2図は第1図のn−n
線による断面図、第3図(a)〜(C)はこの発明によ
る赤外線検知素子の製造工程を示す図、第4図は従来の
光導電型の赤外線検知素子の構造を示す平面図、第5図
は第4図のv−viによる断面図、第6図(a)〜(C
)は従来の赤外線検知素子の製造工程を示す図である。 図において、1は高抵抗の基板、2は化合物半導体、3
は受光面、4はmlの保護膜、5はm2の保護膜、6は
′成極、7はウェハ、12は素子の分割線、13はフの
字型の溝、14は金属A7!lf膜である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大岩増雉   (外2名ン 第1図 第2図 第3図 第4図 第5図 第6図 手続補正書(自発) 3.補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者志岐守哉 4、代理人 住 所    東京都千代田区丸の内二丁目2番3号三
菱電機株式会社内 5、hO正の対家 明細書の発明の詳細な説明の欄および図面6、補正の内
容 (1)明細8第6頁13行の1R13jを、「コの字型
の溝13」と補正する。 (2)  第3図(C1を別紙のように補正する。 以  上
FIG. 1 is a plan view showing the structure of an original 24-electrode infrared sensing element according to an embodiment of the present invention, and FIG.
3(a) to 3(C) are diagrams showing the manufacturing process of the infrared sensing element according to the present invention, and FIG. 4 is a plan view showing the structure of a conventional photoconductive type infrared sensing element. Figure 5 is a sectional view taken along v-vi in Figure 4, and Figures 6 (a) to (C).
) is a diagram showing the manufacturing process of a conventional infrared sensing element. In the figure, 1 is a high-resistance substrate, 2 is a compound semiconductor, and 3 is a high-resistance substrate.
is the light-receiving surface, 4 is the ml protective film, 5 is the m2 protective film, 6 is the polarization, 7 is the wafer, 12 is the element dividing line, 13 is the fold-back groove, 14 is the metal A7! It is a lf film. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuka Oiwa (2 others; Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6) Procedural amendment (voluntary) 3. Person making the amendment Relationship to the case Patent applicant address Tokyo 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Co., Ltd. Representative Moriya Shiki 4, Agent address 5-5, Mitsubishi Electric Corporation 2-2-3 Marunouchi, Chiyoda-ku, Tokyo (1) Amend 1R13j on page 6, line 13 of specification 8 to "U-shaped groove 13." Figure 3 (Correct C1 as shown in the attached sheet.)

Claims (1)

【特許請求の範囲】[Claims] 高抵抗の基板上に赤外線検知素子となる化合物半導体を
形成して製造した赤外線検知素子ウェハ上に、受光面と
少なくとも一方の電極を囲み、高抵抗の基板に達するか
それよりも深い深さの溝を、行列状に形成する工程と、
前記赤外線検知素子ウェハ上に所定形状の酸化可能な金
属蒸着膜を形成する工程と、前記金属蒸着膜をマスクと
して前記赤外線検知素子ウェハを陽極酸化し、受光面の
第1の保護膜を形成する工程と、前記第1の保護膜上に
これを覆うように第2の保護膜を形成する工程と、前記
赤外線検知素子ウエハ上に、第1の保護膜と接触しない
ように電極および素子の分割線を形成する工程とを含む
ことを特徴とする赤外線検知素子の製造方法。
An infrared sensing element wafer is manufactured by forming a compound semiconductor that becomes an infrared sensing element on a high resistance substrate. forming grooves in a matrix;
forming an oxidizable metal vapor deposited film of a predetermined shape on the infrared sensing element wafer; and anodizing the infrared sensing element wafer using the metal vapor deposited film as a mask to form a first protective film on the light receiving surface. a step of forming a second protective film on the first protective film so as to cover the first protective film; and dividing electrodes and elements on the infrared sensing element wafer so as not to come into contact with the first protective film. 1. A method of manufacturing an infrared sensing element, comprising the step of forming a line.
JP60219339A 1985-10-02 1985-10-02 Manufacture of infrared detecting element Granted JPS6290981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219339A JPS6290981A (en) 1985-10-02 1985-10-02 Manufacture of infrared detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219339A JPS6290981A (en) 1985-10-02 1985-10-02 Manufacture of infrared detecting element

Publications (2)

Publication Number Publication Date
JPS6290981A true JPS6290981A (en) 1987-04-25
JPH0449271B2 JPH0449271B2 (en) 1992-08-11

Family

ID=16733903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219339A Granted JPS6290981A (en) 1985-10-02 1985-10-02 Manufacture of infrared detecting element

Country Status (1)

Country Link
JP (1) JPS6290981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546177A (en) * 2005-05-16 2008-12-18 Ii−Vi インコーポレイテッド High-performance CdxZn1-xTe (0 ≦ x ≦ 1) X-ray and γ-ray radiation detector and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546177A (en) * 2005-05-16 2008-12-18 Ii−Vi インコーポレイテッド High-performance CdxZn1-xTe (0 ≦ x ≦ 1) X-ray and γ-ray radiation detector and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0449271B2 (en) 1992-08-11

Similar Documents

Publication Publication Date Title
JP2577330B2 (en) Method of manufacturing double-sided gate static induction thyristor
JPS6145396B2 (en)
JPS60201666A (en) Semiconductor device
JPS6290981A (en) Manufacture of infrared detecting element
US3568305A (en) Method for producing a field effect device
JPS5627972A (en) Manufacture of compound semiconductor device
JPS5661169A (en) Preparation of compound semiconductor device
JPH022175A (en) Manufacture of thin film transistor
JPH0351823A (en) Production of mim type nonlinear switching element
JPH0951098A (en) Thin film transistor and manufacture thereof
JPS6467970A (en) Thin film transistor
JPS6261364A (en) Manufacture of thin film semiconductor device
JPS6148957A (en) Manufacture of mos capacitor
Zeto et al. Fabrication and characterization of a GaAs lateral optical switch with Ni/Ge/Au ohmic contacts
JPS57145377A (en) Manufacture of schottky barrier type field effect transistor
JPS58153365A (en) Two terminal type semiconductor constant current device
JPS6281069A (en) Manufacture of infrared detector
JPS5743482A (en) Semiconductor light emitting element
JPS6051263B2 (en) Manufacturing method of semiconductor device
JPS5972723A (en) Formation of ohmic electrode of iii-v group compound semiconductor
JPS57190363A (en) Semiconductor device and manufacture thereof
JPS61229323A (en) Manufacture of ohmic electrode
JPS63302575A (en) Manufacture of schottky barrier gate field effect transistor
JPS6321877A (en) Manufacture of semiconductor element
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor