JPS6290968A - Optical integrated circuit and manufacture thereof - Google Patents

Optical integrated circuit and manufacture thereof

Info

Publication number
JPS6290968A
JPS6290968A JP23154685A JP23154685A JPS6290968A JP S6290968 A JPS6290968 A JP S6290968A JP 23154685 A JP23154685 A JP 23154685A JP 23154685 A JP23154685 A JP 23154685A JP S6290968 A JPS6290968 A JP S6290968A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
ingaasp
doped
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23154685A
Other languages
Japanese (ja)
Inventor
Masato Ishino
正人 石野
Yoichi Sasai
佐々井 洋一
Minoru Kubo
実 久保
Kenichi Matsuda
賢一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23154685A priority Critical patent/JPS6290968A/en
Publication of JPS6290968A publication Critical patent/JPS6290968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To efficiently obtain an element having high coupling efficiency by growing a protective layer of specific band gap wavelength on an active layer, removing the protective layer of an optical and the active layer, melting back the protective layer, and growing the optical guide layer of specific band gap wavelength. CONSTITUTION:A Te-doped N<+> type InP buffer layer 2, an InGaAsP active layer 3 of band gap wavelength lambdag=1.3mum, and an InGaAs protective layer 10 of lambdag=1.5mum are sequentially epitaxially grown on an S-doped N<+> type InP substrate 1. Then, with a laser A as a mask the layer 10 of an optical guide B and the layer 3 are selectively removed. The protective layer is melt back by the second epitaxial growth, and a Zn-doped P<-> type InGaAsP optical guide layer 6 of lambdag=1.1mum shorter than the wavelength of the active layer, a Zn-doped P<+> type InP clad layer 4, a Zn-doped P<+> type InGaAsP contacting layer 5 are sequentially grown. Thus, an optical integrated circuit having high yield planar structure and high coupling efficiency is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は集積化外部共振器型レーザ(M E C−LD
)やDBR−レーザーさらにはモノリシック元スイッチ
一体化レーザー等の基本構造となる光集積回路およびそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an integrated external cavity laser (MEC-LD).
), DBR-lasers, monolithic switch-integrated lasers, etc., and their manufacturing method.

従来の技術 光導波路と半導体レーザーを同一基板上にモノリシック
に結合する技術は集積化外部共振器型レーザ(MEC−
LD)やDBR−I、D、さらにはモノリシック光スイ
ッチ一体化レーザー等の作製するのに必要不可欠である
。これまでこの結合技術は主にDBR−LDの開発の中
で進められてきた。この例として比較的結合効率の良い
ものとしてはパッドジヨイント型1.66μm帯DBR
−LDがある〔エレクトロニクスレターズ(EllCt
−rOn、 Lett 、) Vol、 17. P9
45.1981:]。第3図にこの構造を1・3μm帯
Ml!:C−LDに適用した場合の構造断面図を示す。
Conventional technology The technology to monolithically couple an optical waveguide and a semiconductor laser on the same substrate is an integrated external cavity laser (MEC-
It is indispensable for manufacturing LD), DBR-I, D, and even monolithic optical switch integrated lasers. Up until now, this coupling technology has been advanced mainly in the development of DBR-LD. As an example of this, a pad joint type 1.66 μm band DBR with relatively good coupling efficiency is used.
-There is an LD [Electronics Letters (EllCt
-rOn, Lett,) Vol, 17. P9
45.1981:]. Figure 3 shows this structure in the 1.3 μm band Ml! : Shows a structural sectional view when applied to C-LD.

ここで1はSドープr”−InP基板、2はToドープ
ri’−InPバッファ層、3はλg = 1−3 μ
m (7) InGaAsP1性層、4はZnドープ−
−InPクラッド層、6はλg=1.1μmのZnドー
プp+InGaASP :y yタクト層、6はλg=
1.1μEIIのInGaAsP光導波層、7はInP
クラッド層である。このような構造を液相エピタキシャ
ル成長法により作製する場合、まずn−1nP基板上に
2〜4の層を順次エピタキシャル成長した後に、光導波
路部BのP −InPクラッド層4、InGaAsP活
性層3を選択エツチングで取り除いた段差を有するエピ
タキシャル基板に、2回目のエピタキシャル成長で、レ
ーザー部Aではコンタクト層5、光導波路部Bでは光導
波層6となるλg=1・1μmのInGaAsP層、さ
らにInPクラッド層7を順次成長する。次にレーザー
部ムのInPクラッド層7を選択エツチングで除去して
InGaAsPコンタクト層を露出する。さらに埋め込
みエピタキシャル成長等の手段により電流狭搾および光
波の横方向の閉じ込めを行なう。このような構造ではレ
ーザー邦人の活性層3と光導波路部Bの光導波層6がほ
とんど同一光軸上に存在し80係以上の高い結合効率が
期待できる。
Here, 1 is an S-doped r''-InP substrate, 2 is a To-doped ri'-InP buffer layer, and 3 is λg = 1-3 μ
m (7) InGaAsP monolayer, 4 is Zn-doped.
-InP cladding layer, 6 is Zn-doped p+InGaASP with λg = 1.1 μm: y y tact layer, 6 is λg =
1.1μEII InGaAsP optical waveguide layer, 7 is InP
This is the cladding layer. When manufacturing such a structure by liquid phase epitaxial growth, first, 2 to 4 layers are epitaxially grown in sequence on an n-1nP substrate, and then the P-InP cladding layer 4 and the InGaAsP active layer 3 of the optical waveguide section B are selected. On the epitaxial substrate having the steps removed by etching, a second epitaxial growth is performed to form an InGaAsP layer with λg = 1.1 μm, which becomes the contact layer 5 in the laser part A and the optical waveguide layer 6 in the optical waveguide part B, and then an InP cladding layer 7. grow sequentially. Next, the InP cladding layer 7 of the laser section is removed by selective etching to expose the InGaAsP contact layer. Furthermore, current narrowing and lateral confinement of light waves are performed by means such as buried epitaxial growth. In such a structure, the active layer 3 of the laser and the optical waveguide layer 6 of the optical waveguide section B are almost on the same optical axis, and a high coupling efficiency of 80 coefficients or more can be expected.

しかしながら、この構造を実際に液相成長法(LPE法
)で成長する場合、レーザー部ムと光導波路部Bの境界
となる段差側面8の面方位および段差形成の際のエツチ
ング処理次第で、2回目のエピタキシャル成長で側面8
にエピタキシャル層6,7が成長せずV状の溝が形成さ
れたり、段差側面への光導波層6の異常成長により結合
部の光導波層6の膜厚が異常に厚くなったりする0さら
にレーザー部ムと光導波路部Bの表面を同一の高さにす
るのは難しくどうしても段差が形成されてしまう。V状
の溝や段差の存在は素子のプレナー化の立場から非常に
不利である。すなわち以後のストライブ形成の際の局所
的太りゃ配線の段切れ等を引き起こす。また異状成長は
活性層と光導波路の結合効率の低下の原因となる。この
ように段差上のエピタキシャル成長を利用したノ(ット
ジョイント構造ではプレ−ナ造にならず、結合効率も期
待される程良くならない。
However, when this structure is actually grown by liquid phase epitaxy (LPE method), 2. Side 8 in the second epitaxial growth
In addition, the epitaxial layers 6 and 7 may not grow and a V-shaped groove is formed, or the thickness of the optical waveguide layer 6 at the coupling portion may become abnormally thick due to abnormal growth of the optical waveguide layer 6 on the side surface of the step. It is difficult to make the surfaces of the laser section B and the optical waveguide section B at the same height, and a step is inevitably formed. The presence of V-shaped grooves and steps is extremely disadvantageous from the standpoint of planarization of the device. That is, if the strip becomes locally thick during subsequent stripe formation, it may cause disconnection of the wiring. Further, abnormal growth causes a decrease in coupling efficiency between the active layer and the optical waveguide. In this way, the knot joint structure that utilizes epitaxial growth on steps does not have a planar structure, and the coupling efficiency is not as good as expected.

一方結合効率も良く、素子もプレナー型となる光導波路
一体化LD構造が近年発表されている。
On the other hand, an LD structure with an integrated optical waveguide has been announced in recent years, which has good coupling efficiency and a planar type element.

(OQEBB−7P、47) これはBundle −Integrated −Gu
ide (BIG)構造と呼ばれ、第4図にその断面構
造を示す。この構造の特徴はレーザー邦人においてIn
GaAsP活性層3とF”’L InGaAsP光導波
層6の間に0.1μm程度のP−−InP中間層9が存
在し、光導波層6とp −InPクラッド層4がレーザ
ー邦人と光導波路部Bで共通の層となっている点である
。この構造のLPE法での製造法を第5図に示す。まず
1回目の成長としてSドープn −InP基板1上にT
(OQEBB-7P, 47) This is Bundle -Integrated-Gu
It is called the IDE (BIG) structure, and its cross-sectional structure is shown in FIG. The feature of this structure is that the Japanese laser
A P--InP intermediate layer 9 of about 0.1 μm exists between the GaAsP active layer 3 and the F"'L InGaAsP optical waveguide layer 6, and the optical waveguide layer 6 and the p-InP cladding layer 4 form a laser beam and an optical waveguide. This is a common layer in part B. The manufacturing method of this structure using the LPE method is shown in Figure 5. First, as the first growth, T is grown on the S-doped n-InP substrate 1.
.

ドープ♂−InPバッファ層2、λg=1.3μmのI
nGaAsP1性層3、さらに0.1μm程度のZnド
ープターIIn中間層9まで成長する。(第6図(2L
)。
Doped ♂-InP buffer layer 2, I with λg=1.3μm
The nGaAsP1 layer 3 is further grown to a Zn doped IIn intermediate layer 9 of about 0.1 μm. (Figure 6 (2L
).

次にレーザー邦人をマスクしてInP中間層9゜InG
aAsP活性層3を選択エッチャントで除去する(第5
図(b))。マスクを除去したのち、2回目の成長とし
て、λg=1.1 μmのZnドープp −InGaA
sP光導波層6、Znドープ−−rnPクラッド層4、
λ1= 1.1 μm (7:) Znドープf (n
GaAsP −t yタクト層を順次成長する(第6図
(C))。このようにこの構造では完全に表面を平担化
することができ(プレーナ構造)、以後の埋め込みエピ
タキシャル成長やその他のプロセスが非常に容易に行な
うことができる。また結合効率もInGaAsP1性層
3の膜厚を0.16 μn、 In中間層9をo、1μ
m、  InGaAsP光導波層6を0・3μmとした
場合97%もの直が得られ、結合部でのロスはほとんど
無視できる。
Next, mask the laser Japanese and insert the InP intermediate layer 9°InG.
The aAsP active layer 3 is removed using a selective etchant (fifth
Figure (b)). After removing the mask, a Zn-doped p-InGaA film with λg = 1.1 μm was grown for the second time.
sP optical waveguide layer 6, Zn-doped--rnP cladding layer 4,
λ1= 1.1 μm (7:) Zn doped f (n
GaAsP-t y tact layers are sequentially grown (FIG. 6(C)). In this way, the surface of this structure can be completely flattened (planar structure), and subsequent buried epitaxial growth and other processes can be performed very easily. In addition, the coupling efficiency was determined by setting the film thickness of the InGaAsP monolayer 3 to 0.16 μn, and the thickness of the In intermediate layer 9 to 1 μm.
When the thickness of the InGaAsP optical waveguide layer 6 is 0.3 μm, a directivity of 97% can be obtained, and the loss at the coupling portion can be almost ignored.

しかしながら、この製造法では2回目のLPX成長前の
昇温時に活性層3上には0.1μm程度の薄いInP層
が露出しており、InPの熱損傷による欠陥が活性層/
InP中間層のへテロ界面に達し、レーザーの発光効率
を低下させる原因となる。これを緩和するためにrnP
中間層をより厚くするとレーザー部は多モード発振とな
って光導波路との結合効率が低下することになる。
However, in this manufacturing method, a thin InP layer of about 0.1 μm is exposed on the active layer 3 when the temperature is raised before the second LPX growth, and defects due to thermal damage to the InP occur in the active layer/
It reaches the hetero interface of the InP intermediate layer and causes a decrease in laser light emission efficiency. To alleviate this, rnP
If the intermediate layer is made thicker, the laser section will oscillate in multiple modes, reducing the coupling efficiency with the optical waveguide.

発明が解決しようとする問題点 以上述べたごとく、第3図に示したEバラ)−ジヨイン
ト型ではプレナー構造にならず結合効率も期待できる程
高くならない。また第4図に示したBIG構造ではプレ
ナー構造にはなるが特性の良いレーザーが得にくい。そ
の他の従来の構造をとっても同様の問題点を抱える。
Problems to be Solved by the Invention As mentioned above, the E-joint type shown in FIG. 3 does not have a planar structure and the coupling efficiency does not become as high as expected. Further, although the BIG structure shown in FIG. 4 has a planar structure, it is difficult to obtain a laser with good characteristics. Other conventional structures also have similar problems.

このように従来の構造の光集積回路では半導体レーザの
特性を損なうことなく、高い結合効率の素子を歩留まり
良く得にくいという問題点があった。
As described above, the optical integrated circuit having the conventional structure has the problem that it is difficult to obtain a device with high coupling efficiency at a high yield without impairing the characteristics of the semiconductor laser.

問題点を解決するための手段 本発明は上述の問題点を克服すべく、−回目のエピタキ
シャル成長でInGa人sP活性層上にλg=1 、F
5 μmのInGaAsPもしくはInGaAs保護層
を成長し、元導波路部の保護層および活性層を除去した
のち2回目のエピタキシャル成長で保護層を選択的にメ
ルトバックするとともにInGaAsP光導波層、In
Pクラッド層、InGaAsPコンタクト層を成長する
ことにより得られ、レーザー部の構造が活性層上に直接
光導波層が存在する構造の光集積回路を提供するもので
ある。
Means for Solving the Problems In order to overcome the above-mentioned problems, the present invention provides a layer of λg=1, F
After growing a 5 μm InGaAsP or InGaAs protective layer and removing the protective layer and active layer of the original waveguide, the protective layer is selectively melted back in the second epitaxial growth, and the InGaAsP optical waveguide layer and InGaAsP optical waveguide layer are grown.
This is obtained by growing a P cladding layer and an InGaAsP contact layer, and provides an optical integrated circuit in which the structure of the laser section is such that an optical waveguide layer exists directly on the active layer.

作用 このような構造および製造法を採用することにより、プ
レーナ構造で、高い結合効率を有しながら2回目の成長
前の高温でのリーク時に熱損傷により活性層へテロ界面
に欠陥が導入されることがなくレーザーの特性が低下し
ない。またレーザー部での多少の膜厚のばらつきによっ
てもシングルモード条件がくずれることのない光導波路
一体化半導体レーザ素子が容易に得られるものである。
By adopting this structure and manufacturing method, the planar structure has high coupling efficiency, but defects are introduced at the active layer heterointerface due to thermal damage during leakage at high temperatures before the second growth. The characteristics of the laser do not deteriorate. Furthermore, it is possible to easily obtain an optical waveguide-integrated semiconductor laser device in which the single mode condition is not compromised even by slight variations in film thickness in the laser portion.

実施例 以下、本発明の一実施例をMEOレーザに適用した場合
を例にして述べる。第1図は本発明の構造の断面を示す
。本構造はレーザー邦人と光導波部Bに分かれ、レーザ
ー邦人はSドープn”−InP基板1、Toドープn±
−InPバッファ層2、λg=1.3μnのInGaA
sP活性層3、λg:1.1μmノZnドープp −I
nGaAsP光導波層6、Znドー7°p”−InP層
4、Znドープp” −InGaAsP:r y タク
ト層6で構成され、光導波部Bはri”−1nP基板1
、ntInPバッフ7層2、p−1nGaAgP光導波
層6、p−InPクラッド層4、p+−釦GaAsP:
r7タクト層5で構成される。
EXAMPLE Hereinafter, a case will be described in which an example of the present invention is applied to a MEO laser. FIG. 1 shows a cross section of the structure of the invention. This structure is divided into a Japanese laser and an optical waveguide part B. The Japanese laser has an S-doped n''-InP substrate 1 and a To-doped n±
-InP buffer layer 2, InGaA with λg=1.3 μn
sP active layer 3, λg: 1.1 μm Zn-doped p-I
The optical waveguide B is composed of an nGaAsP optical waveguide layer 6, a Zn-doped 7°p''-InP layer 4, and a Zn-doped p''-InGaAsP:ry tact layer 6.
, ntInP buffer 7 layer 2, p-1nGaAgP optical waveguide layer 6, p-InP cladding layer 4, p+-button GaAsP:
It is composed of an r7 tact layer 5.

この構造の製造法は第2図に示すとおりであムまずSド
ープn+−InP基板1上にTeドープn+−InPバ
ッファ層2を長さ5μm、  λg = 1−3 μm
(7) InGaAsP活性層3を0.15 μm 、
 InGaAs保護層を0・1μm?順次LPE法によ
シェピタキシャル成長スル(第2 図(a)) 。次K
 CV D 5in2膜でレーザー邦人をマスクしたの
ち、光導波部BのInGaAs保護層10、InGaA
sP活性層3を硫酸系エッチャントで選択的に除去する
(第2図(b))。
The manufacturing method for this structure is as shown in FIG. 2. First, a Te-doped n+-InP buffer layer 2 is formed on an S-doped n+-InP substrate 1 with a length of 5 μm and λg = 1-3 μm.
(7) InGaAsP active layer 3 with a thickness of 0.15 μm,
InGaAs protective layer 0.1μm? The epitaxial growth was performed sequentially by the LPE method (Fig. 2(a)). Next K
After masking the laser beam with a CVD 5in2 film, the InGaAs protective layer 10 of the optical waveguide section B and the InGaAs
The sP active layer 3 is selectively removed using a sulfuric acid-based etchant (FIG. 2(b)).

この微少の段差を有するエピタキシャル基板を用い、2
回目のエピタキシャル成長で、λg = 1・1μmの
Znnドーグ−−1nGaAsP光導波層6を0.3μ
m、Znドープp −InPクラッド層4f2μm。
Using this epitaxial substrate with minute steps, 2
In the second epitaxial growth, the Znn-1n GaAsP optical waveguide layer 6 with λg = 1.1 μm was grown by 0.3 μm.
m, Zn-doped p-InP cladding layer 4f2 μm.

Znnドーグ−−rnGaAsP:+ 7−j’タクト
層 f 0.54mをLPE法により順次成長する(第
2図(C))。
ZnnDog--rnGaAsP:+7-j' tact layer f 0.54 m is sequentially grown by LPE method (FIG. 2(C)).

InGaAs保護層10上にはλg (1,1μmのI
nGaAsPは本来成長せず、p−InGaAsP光導
波層(λg=1・1μm)6?成長するときに選択的に
メルトバックされる。特に膜厚が0.1μm以下であれ
ば完全にメルトバックされ活性層3と光導波層6の間に
InGaAs保護層1oが残ることはない0 このような製造法で作製した素子は、2回目のLPE成
長の際の高温でのソーク時にInGaAsP1性層3が
InGaAs保護層10で覆われているのへ活性層界面
に欠陥が導入されて半導体レーザの発光効率を低下させ
ることはない。というのはInPは550℃以上の高温
処理によってpが飛ぶことによる熱損傷をかなりの深さ
まで受けるのに対しInGa人Sは成長温度付近(56
0℃〜6了o ’C)でほとんど熱損傷を受けないから
である。
On the InGaAs protective layer 10, λg (I of 1.1 μm
nGaAsP does not originally grow, and the p-InGaAsP optical waveguide layer (λg=1.1 μm)6? They are selectively melted back as they grow. In particular, if the film thickness is 0.1 μm or less, it will completely melt back and the InGaAs protective layer 1o will not remain between the active layer 3 and the optical waveguide layer 6. Since the InGaAsP monolayer 3 is covered with the InGaAs protective layer 10 during soaking at high temperature during LPE growth, defects are not introduced to the active layer interface and reduce the luminous efficiency of the semiconductor laser. This is because InP suffers heat damage to a considerable depth due to p flying off during high-temperature treatment above 550°C, whereas InGaS suffers thermal damage to a considerable depth near the growth temperature (56°C).
This is because there is almost no thermal damage at temperatures between 0°C and 6°C.

また2回目のエピタキシャル成長で表面はほとんど平担
なプレーナ構造となり、以後の電流狭搾や三次元光導波
路作製や配線等のプロセスが容易になり歩留まりが向上
するとともにマウントの際、Pサイドダウンを採用でき
レーザーパワーを上げることができる。
In addition, the second epitaxial growth gives the surface an almost flat planar structure, which facilitates subsequent processes such as current confinement, three-dimensional optical waveguide fabrication, and wiring, which improves yield. When mounting, P-side down is used. You can increase the laser power.

一方、結合効率に関して・もこの場合90%以上得るこ
とができ、活性層と光導波層の間にInP中間層がない
ので多少膜厚が厚くなってもレーザー部で多モード発振
することはない。
On the other hand, in this case, the coupling efficiency can be more than 90%, and since there is no InP intermediate layer between the active layer and the optical waveguide layer, multimode oscillation will not occur in the laser part even if the film thickness becomes somewhat thick. .

このような光導波路一体化半導体レーザ素子を用いたI
PC型レーザは低閾値で数百キロヘルツ以下の狭い発振
スペクトルが得られ、高速変調時のチャーピングの抑制
、戻り光によるノイズの低下を図ることができる。DB
Rレーザや、他の光集積回路へ適用した場合も良好な特
性が期待できる。
I using such an optical waveguide-integrated semiconductor laser device
The PC type laser has a low threshold value and a narrow oscillation spectrum of several hundred kilohertz or less, and can suppress chirping during high-speed modulation and reduce noise due to returned light. DB
Good characteristics can also be expected when applied to R lasers and other optical integrated circuits.

ところで、本発明では活性層保護としてInGaAs 
(λg= 1−7μm)を用いたが、これはλg=1.
5〜1.7 μmのInGaAsPテもよい。しかしλ
gが小さくなるにつれてλg=1.1μmのInGaA
sPに対してメルトバックされにくくなるので光導波層
のInGaAsPの組成はよりλgが小さい方向にする
必要がある。
By the way, in the present invention, InGaAs is used to protect the active layer.
(λg=1-7μm) was used, but this is λg=1.
InGaAsP with a thickness of 5 to 1.7 μm is also suitable. But λ
As g becomes smaller, InGaA with λg = 1.1 μm
Since it is difficult to melt back against spP, the composition of InGaAsP in the optical waveguide layer needs to be set in a direction in which λg is smaller.

発明の効果 以上のように、本発明はレーザー部がInP基板、In
Pバッファ層、InGaAsP活性層、InGaAsP
光導波層、InPクラッド層、InGaAsPコンタク
ト層で構成され、光導波部がInP基板、InPバッフ
ァ層、InGaAsP光導波層、InPクラッド層、I
nGaAsPコンタクト層で構成された光導波路一体化
半導体レーザー構造で、−回目の成長でInGaムsP
活性層上にλg =1.5〜1−774mのInGaA
sPもしくはInGaAS保護層を成長したのち、光導
波部における保護層と活性層を除去し、2回目のLPE
成長  ゛で保護層をメルトバックするとともに光導波
層、クラッド層、コンタクト層を順次成長することによ
り、単体の半導体レーザの特性を損なうことなく、歩留
まりの良いブレーナ構造で高い結合効率ヲ有し、かつレ
ーザーのシングルモード化が容易な光集積回路が得られ
、これを基本とする種々のデバイスで良好な特性を得る
ことができる。
Effects of the Invention As described above, in the present invention, the laser section is made of an InP substrate, an InP substrate, and an InP substrate.
P buffer layer, InGaAsP active layer, InGaAsP
It is composed of an optical waveguide layer, an InP cladding layer, and an InGaAsP contact layer, and the optical waveguide section is composed of an InP substrate, an InP buffer layer, an InGaAsP optical waveguide layer, an InP cladding layer, and an InP cladding layer.
In an optical waveguide integrated semiconductor laser structure composed of an nGaAsP contact layer, InGaAsP is grown in the -th growth.
InGaA with λg = 1.5 ~ 1-774 m on the active layer
After growing the sP or InGaAS protective layer, the protective layer and active layer in the optical waveguide are removed, and a second LPE is performed.
By melting back the protective layer during growth and sequentially growing the optical waveguide layer, cladding layer, and contact layer, it has a brainer structure with high yield and high coupling efficiency without impairing the characteristics of a single semiconductor laser. Moreover, an optical integrated circuit in which the laser can be easily converted into a single mode can be obtained, and various devices based on this can obtain good characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるMECレーザの断面図
、第2図は同MECレーザの製造方法を示す工程図、第
3図は従来のバットジヨイント型MIECレーザの断面
図、第4図は従来のBIG構造MECレーザの断面図、
第5図は第4図のレーザの製造方法を示す工程図である
。 1・・・・・・Sドープf−InP基板、3・・・・・
・InGaAsP活性層、6・・・・・・Znnドープ
−−InGaAsP光導波層、9・・・・・・Znnド
ープ−−InP中間層、10・・・・・・InGaAS
保護層、ム・・・・・・レーザー部、B・・・・・・光
導波部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 (λ) /θ (b) 、り 第3図 一2二B− 第4図
FIG. 1 is a cross-sectional view of an MEC laser according to an embodiment of the present invention, FIG. 2 is a process diagram showing a method for manufacturing the same MEC laser, FIG. 3 is a cross-sectional view of a conventional butt joint type MIEC laser, and FIG. The figure is a cross-sectional view of a conventional BIG structure MEC laser.
FIG. 5 is a process diagram showing a method for manufacturing the laser shown in FIG. 4. 1... S-doped f-InP substrate, 3...
・InGaAsP active layer, 6...Znn-doped--InGaAsP optical waveguide layer, 9...Znn-doped--InP intermediate layer, 10...InGaAS
Protective layer, M... Laser section, B... Optical waveguide section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (λ) /θ (b), Figure 3 122B- Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)素子内にレーザー部と光導波部を有し、前記発光
部においてはInP基板、バンドギャップ波長(λg)
がλaであるInGaAsP活性層、InGaAs光導
波層(λg<λa)を有し、前記光導波部はInP基板
、InGaAsP光導波層(λg<λa)を有してなる
光集積回路。
(1) The device has a laser part and an optical waveguide part, and the light emitting part has an InP substrate and a bandgap wavelength (λg).
1. An optical integrated circuit comprising an InGaAsP active layer and an InGaAs optical waveguide layer (λg<λa) in which the wavelength is λa, and the optical waveguide section has an InP substrate and an InGaAsP optical waveguide layer (λg<λa).
(2)液相もしくは気相エピタキシャル成長法でInP
基板上にInGaAsP活性層、さらにバンドギャップ
波長(λg)が1.5μm〜1.7μmのInGaAs
PもしくはInGaAs保護層を形成し、前記光導波部
の前記保護層および活性層を選択的に除去したのち、液
相エピタキシャル成長法で前記InGaAsP光導波層
を成長するのに必要なメルトを用いて前記保護層を選択
的にメルトバックするとともに前記InGaAsP光導
波層を形成し、引き続きInPクラッド層、InGaA
sPコンタクト層を形成するようにした光集積回路の製
造方法。
(2) InP by liquid phase or vapor phase epitaxial growth method
InGaAsP active layer on the substrate, and InGaAs with a bandgap wavelength (λg) of 1.5 μm to 1.7 μm.
After forming a P or InGaAs protective layer and selectively removing the protective layer and the active layer of the optical waveguide, the InGaAsP optical waveguide layer is grown using a melt necessary for growing the InGaAsP optical waveguide layer by liquid phase epitaxial growth. The protective layer is selectively melted back and the InGaAsP optical waveguide layer is formed, and then the InP cladding layer and the InGaA
A method for manufacturing an optical integrated circuit in which an sP contact layer is formed.
(3)λg=1.5〜1.7μmのInGaAsPもし
くはInGaAs保護層の膜厚が0.1μm以下である
ことを特徴とする特許請求の範囲第2項記載の光集積回
路の製造方法。
(3) The method for manufacturing an optical integrated circuit according to claim 2, wherein the thickness of the InGaAsP or InGaAs protective layer with λg=1.5 to 1.7 μm is 0.1 μm or less.
JP23154685A 1985-10-17 1985-10-17 Optical integrated circuit and manufacture thereof Pending JPS6290968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23154685A JPS6290968A (en) 1985-10-17 1985-10-17 Optical integrated circuit and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23154685A JPS6290968A (en) 1985-10-17 1985-10-17 Optical integrated circuit and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6290968A true JPS6290968A (en) 1987-04-25

Family

ID=16925189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23154685A Pending JPS6290968A (en) 1985-10-17 1985-10-17 Optical integrated circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6290968A (en)

Similar Documents

Publication Publication Date Title
JP2004179274A (en) Optical semiconductor device
JP2008113041A (en) Waveguide
US4883771A (en) Method of making and separating semiconductor lasers
JPH02288288A (en) Manufacture of buried hetero-structure laser diode
KR100251348B1 (en) Rwg laser diode and its manufacturing method
JP3339486B2 (en) Semiconductor laser, manufacturing method thereof, optical module and optical communication system using semiconductor laser
JPS6290968A (en) Optical integrated circuit and manufacture thereof
JPH0831659B2 (en) Method for manufacturing semiconductor light emitting device
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPH07111361A (en) Buried type semiconductor laser device and manufacture thereof
JP2542570B2 (en) Method for manufacturing optical integrated device
JPS6290969A (en) Manufacture of optical integrated circuit
KR100248431B1 (en) High power semiconductor laser
KR100239792B1 (en) Ingaasp/inp bh ld
JPS59197182A (en) Distribution feedback type semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
KR970004499B1 (en) A method for manufacture of semiconductor laser
JPS6351558B2 (en)
JPH0377675B2 (en)
JPS596588A (en) Semiconductor laser
JPS61187287A (en) Semiconductor light-emitting device
KR100237858B1 (en) Laser diode
JPH06120615A (en) Manufacture of semiconductor laser element
JPS6328093A (en) Manufacture of optical integrated circuit
JPH0528916B2 (en)