JPS6290525A - Method and apparatus for analyzing converter exhaust gas - Google Patents

Method and apparatus for analyzing converter exhaust gas

Info

Publication number
JPS6290525A
JPS6290525A JP22986585A JP22986585A JPS6290525A JP S6290525 A JPS6290525 A JP S6290525A JP 22986585 A JP22986585 A JP 22986585A JP 22986585 A JP22986585 A JP 22986585A JP S6290525 A JPS6290525 A JP S6290525A
Authority
JP
Japan
Prior art keywords
exhaust gas
flue
dust
converter
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22986585A
Other languages
Japanese (ja)
Inventor
Norio Hirayama
平山 憲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22986585A priority Critical patent/JPS6290525A/en
Publication of JPS6290525A publication Critical patent/JPS6290525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To always estimate the refining process of a converter with high accuracy, by controlling converter exhaust gas to predetermined pressure to bring the same to a high temp. plasma state and measuring the luminous intensity of the emission spectrum component of said exhaust gas at every wavelength. CONSTITUTION:The converter exhaust gas from a flue 1 is adjusted to constant quantity and constant pressure by a quantitative emission pump 4 to be introduced into a high frequency induction plasma generation apparatus 5 and brought to a high temp. plasma state by the high frequency current generated by a high frequency generator 51 to emit light and the luminous intensity of the spectrum component of each of exhaust gas and dust with respect to each wavelength is measured by a spectrometer 6. A component concn. calculator 7 calculates the component concns. of exhaust gas and dust on the basis of the relation between a stored component element and a specific wavelength and the relation between the luminous intensity of the spectrum component and the concn. of the element. Therefore, the exhaust gas and the dust are simultaneously and continuously analyzed regardless of the change of the condition in the flue and the refining process of a converter can be always estimated with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、転炉排ガスの分析方法および装置に関する
。詳しくは、転炉排ガスおよびダストの成分濃度を同時
にかつ連続的に分析し、転炉精錬過程を精密に推定する
方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for analyzing converter exhaust gas. Specifically, the present invention relates to a method and apparatus for simultaneously and continuously analyzing component concentrations of converter exhaust gas and dust to accurately estimate the converter refining process.

(従来の技術) 高炉から得られた銑鉄は、転炉で精錬される。(Conventional technology) Pig iron obtained from the blast furnace is refined in a converter.

この精錬過程においては、脱炭、脱珪、脱燐等の量また
は速度に応じてメインランスの高さ、送酸速度、副原料
投入量、底吹きガス流量、同圧力等を制御しなければな
らない。従ってこれらの脱炭、脱珪、脱燐等の量または
速度を正確に推定する必要がある。
In this refining process, it is necessary to control the height of the main lance, the oxygen supply rate, the amount of auxiliary material input, the flow rate of bottom blowing gas, the pressure, etc. according to the amount or speed of decarburization, desiliconization, dephosphorization, etc. It won't happen. Therefore, it is necessary to accurately estimate the amount or rate of decarburization, desiliconization, dephosphorization, etc.

脱炭、脱珪、脱燐等の量または速度を推定するため従来
は、排ガス煙道の最高部に質量分析計等を設置して排ガ
スの成分濃度を計測していた。即ち排ガスの成分濃度の
計測値に基づいて精錬過程を推定し、メインランスの高
さ、送酸速度、副原料投入量、底吹きガス流量、同圧力
等の操業パラメータを制御してきた。
In order to estimate the amount or rate of decarburization, desiliconization, dephosphorization, etc., conventionally, a mass spectrometer or the like was installed at the highest part of the exhaust gas flue to measure the component concentration of the exhaust gas. That is, the refining process has been estimated based on measured values of the component concentrations of exhaust gas, and operational parameters such as the height of the main lance, oxygen supply rate, amount of auxiliary raw materials input, bottom blowing gas flow rate, and pressure have been controlled.

(発明が解決しようとする問題点) 質量分析計等による排ガス成分濃度の分析はガス体に限
られる為、サンプリング装置にはフィルタが必要である
。1000℃を越す環境に設置され、しかも温度や温度
が大幅に変化し、またダストも多い、従ってこのような
分析計のメインランスは容易でなく、装置の破壊や目詰
りを起こす事が多い。
(Problems to be Solved by the Invention) Since analysis of the concentration of exhaust gas components using a mass spectrometer or the like is limited to gas bodies, a filter is required in the sampling device. The analyzer is installed in an environment exceeding 1000 degrees Celsius, where the temperature changes significantly and there is a lot of dust.Therefore, the main lance of such an analyzer is not easy to install and often causes destruction or clogging of the device.

また従来はガス体のみから得られる情報に基づいて転炉
吹鈍の推定モデルを作り精錬過程を推定していたが、精
密な推定には排ガスのみの成分分析では不十分である。
In addition, in the past, an estimation model of converter blowing was made based on information obtained only from the gas body and the refining process was estimated, but component analysis of exhaust gas alone is insufficient for accurate estimation.

即ち、精錬過程を正確に把握するためには、C02C0
2、C2、N2、H2等のガス体成分のみならず、銑鉄
に含まれる珪素、燐、硫黄等の酸化の程度や、滓化能力
を知る必要がある。にもかかわらず、従来の方法は、ガ
ス体、ダスト、温度等の条件のうちガス体から得られる
情報のみしか用いていなかった。っまりt#錬過程を正
確に知るためには、スラグ成分、例えばFe01Si0
2、P2O5,MnO,CaO等の生成の程度を知る必
要があり、このためには、ダストの成分分析が不可欠で
ある。ガス体のみの分析にたよる従来の方法では、スラ
グ生成状態を計測できないので、推定モデルを作成して
スラグ成分を推定するしかなく、推定誤差がおこること
は避けがたい0例えば高燐鋼から極低燐銅をふくむ多様
な精錬の要求のすべてに対して高い推定精度を維持する
ことは不可能であった。
That is, in order to accurately understand the refining process, C02C0
2. It is necessary to know not only the gas components such as C2, N2, H2, etc., but also the degree of oxidation of silicon, phosphorus, sulfur, etc. contained in pig iron, and the slag forming ability. Nevertheless, conventional methods only use information obtained from the gas body among conditions such as gas body, dust, and temperature. In order to accurately understand the refining process, it is necessary to check the slag components, such as Fe01Si0.
2. It is necessary to know the degree of generation of P2O5, MnO, CaO, etc., and for this purpose, component analysis of dust is essential. Conventional methods that rely only on the analysis of gas bodies cannot measure the state of slag formation, so the only way to estimate the slag composition is to create an estimation model, and estimation errors are unavoidable.For example, from high phosphorus steel to extremely low It has been impossible to maintain high estimation accuracy for all the various refining requirements involving phosphorous copper.

したがって、本発明の目的は、これらの従来技術の問題
点を解消する転炉排ガスの分析方法及び装置を提供する
ことである。
Therefore, an object of the present invention is to provide a method and apparatus for analyzing converter exhaust gas that solves the problems of these conventional techniques.

とくに排ガス中のガス体とダストを同時にかつ連続的に
分析し、常に高精度で精錬過程の脱炭や珪素、マンガン
、燐等の酸化を推定することを可能にする転炉排ガスの
分析方法および装置を提供することを目的とする。
In particular, a converter exhaust gas analysis method that simultaneously and continuously analyzes gas bodies and dust in the exhaust gas and makes it possible to constantly and highly accurately estimate decarburization during the refining process and oxidation of silicon, manganese, phosphorus, etc. The purpose is to provide equipment.

(問題点を解決するための手段および作用)本発明者は
、これらの目的を達成するため研究を重ねた結果、各元
素がそれぞれ特有の発光スペクトルを有することを利用
する分光分析を用いれば、排ガスおよびダストの成分を
同時にかつ連続的に分析でき、転炉における精錬過程を
精密に推定できることに想到した。すなわち、各元素は
、励起状態において特有の波長の紫外線、可視光、赤外
線を発する。排ガスおよびダストの発光スペクトルを構
成する各成分光の強度を測定すれば、各成分元素の濃度
を算定することができる。
(Means and effects for solving the problems) As a result of repeated research to achieve these objectives, the present inventor found that by using spectroscopic analysis that takes advantage of the fact that each element has its own unique emission spectrum, We have come up with the idea that the components of exhaust gas and dust can be analyzed simultaneously and continuously, and the refining process in the converter can be accurately estimated. That is, each element emits ultraviolet light, visible light, and infrared light of specific wavelengths in an excited state. By measuring the intensity of each component light constituting the emission spectrum of exhaust gas and dust, the concentration of each component element can be calculated.

ところが、煙道内の排ガスの圧力や温度等の条件は変化
するものである。従って、煙道内の発光を直接、測定し
た場合、これらの条件に関し補正することが必要になる
。しかし煙道内の排ガスおよびダストを煙道外に導出し
て一定の発光条件下で発光させてそのスペクトル成分光
強度を測定すれば、煙道内の条件の変化に関係なく排ガ
スおよびダストの成分濃度を算出できる。
However, conditions such as the pressure and temperature of the exhaust gas in the flue change. Therefore, if the luminescence in the flue is directly measured, it will be necessary to correct for these conditions. However, if the exhaust gas and dust in the flue are led out of the flue and emitted under certain luminous conditions and the spectral component light intensity is measured, the component concentration of the exhaust gas and dust can be calculated regardless of changes in the conditions inside the flue. can.

従って、本発明に従う転炉排ガスの分析方法は、転炉排
ガス煙道内の排ガスおよびダストを該煙道から導出して
所定の圧力に調整し、 該所定圧力の排ガスおよびダストを高温にして発光せし
め、 該発光をスペクトルに分解してスペクトル成分光強度を
各波長について測定し、 測定された各波長についてのスペクトル成分光強度に基
づき該煙道内の排ガスおよびダストの成分濃度を継続的
に算出するものである。
Therefore, the method for analyzing converter flue gas according to the present invention involves extracting the flue gas and dust in the flue of converter flue gas from the flue, adjusting it to a predetermined pressure, and raising the flue gas and dust at the predetermined pressure to a high temperature to emit light. , which decomposes the luminescence into spectra, measures the spectral component light intensity for each wavelength, and continuously calculates the component concentration of exhaust gas and dust in the flue based on the measured spectral component light intensity for each wavelength. It is.

また、本発明に従う転炉排ガスの分析装置は、転炉排ガ
ス煙道内の排ガスおよびダストを該煙道外に導出する導
出管と、 該導出管により煙道から導出された排ガスおよびダスト
を一定の圧力に調整する定量吐出ポンプと、 該定量吐出ポンプから送られた一定圧力の排ガスおよび
ダストを高温にして発光せしめる発光装置と、 該発光装置における排ガスおよびダストの発光をスペク
トルに分解し、各波長についてスペクトル成分光強度を
測定する分光器と、 該分光器で測定された各波長についてのスペクトル成分
光強度に基づき煙道内の排ガスおよびダストの成分濃度
を算出する成分濃度算出器と、を備える。
Furthermore, the analyzer for converter flue gas according to the present invention includes a lead-out pipe that leads the flue gas and dust in the converter flue gas flue to the outside of the flue; A light-emitting device that heats exhaust gas and dust at a constant pressure sent from the metered-discharge pump to emit light; A light-emitting device that decomposes the emission of exhaust gas and dust in the light-emitting device into spectra, and analyzes each wavelength for each wavelength. It includes a spectrometer that measures the spectral component light intensity, and a component concentration calculator that calculates the component concentration of exhaust gas and dust in the flue based on the spectral component light intensity for each wavelength measured by the spectrometer.

なお、排ガスおよびダストの成分濃度の算出は、予め煙
道内の排ガスおよびダストの成分濃度と各波長について
のスペクトル成分光強度の関係を実験的に決定して該関
係を記憶手段に記憶せしめ、該記憶手段に記憶された関
係に基づき行うのが好ましい。
Note that the component concentrations of exhaust gas and dust can be calculated by experimentally determining the relationship between the component concentration of exhaust gas and dust in the flue and the spectral component light intensity for each wavelength, and storing the relationship in a storage means. Preferably, this is done based on the relationship stored in the storage means.

次に、添付図面を参照しながら、本発明の実施例につい
て説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.

(実施例) 第1図は本発明の一実施例装置のブロック図である。(Example) FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention.

精錬中に転炉(図示せず)から発生した排ガスおよびダ
ストは煙道l内にみちびかれる。煙道壁2には、排ガス
およびダストの導出管3が水冷管31を介して装着され
、煙道l内の排ガスおよびダストを矢印の方向に定量吐
出ポンプ4に導出する。
Exhaust gases and dust generated from a converter (not shown) during smelting are channeled into flue l. An exhaust gas and dust outlet pipe 3 is attached to the flue wall 2 via a water-cooled pipe 31, and the exhaust gas and dust in the flue 1 are led out to a metering discharge pump 4 in the direction of the arrow.

導出管3は、ガスサンプリングプローブ32とこれに一
端が接続されたT字管33よりなる。ガスサンプリング
プローブ32は、これを囲繞する水冷管31に挿入され
て煙道壁2に取付けられる。ガスサンプリングプローブ
32の内面は、クロムメッキ等の硬質金属メッキをする
事が好ましい。煙道1から導かれた排ガス中の高温ダス
トによる摩耗やダスト付着を防ぐためである。
The lead-out pipe 3 includes a gas sampling probe 32 and a T-shaped pipe 33 connected to the gas sampling probe 32 at one end. The gas sampling probe 32 is inserted into a water-cooled pipe 31 surrounding it and attached to the flue wall 2. The inner surface of the gas sampling probe 32 is preferably plated with a hard metal such as chrome plating. This is to prevent wear and dust adhesion caused by high-temperature dust in the exhaust gas led from the flue 1.

一方、水冷管31は、たがいに連通ずる円環状の二層の
内外水路31A、31Bより構成され、内水路31Aの
入水口31Cから導入された冷却水は内外水路31A、
31Bを経て出水口31Dから排水される。この結果、
高温の煙道1に突出したガスサンプリングプローブ32
は、冷却水により常に冷却される。煙道1の排ガス温度
は吹錬中は500℃から1700℃にも達するのでガス
サンプリングプローブ32を熱的破壊から守るためには
水冷管31が必要である。水冷管31の煙道lに突出す
る外面部分はクロムメッキ等の硬質金属メッキをする事
が好ましい。煙道lを流れる排ガス中の高温ダストによ
る摩耗やダスト付着による破壊を防ぐためである。
On the other hand, the water cooling pipe 31 is composed of annular two-layer inner and outer waterways 31A and 31B that communicate with each other, and the cooling water introduced from the water inlet 31C of the inner and outer waterways 31A,
The water is drained from the water outlet 31D via 31B. As a result,
Gas sampling probe 32 protruding into the hot flue 1
is constantly cooled by cooling water. Since the temperature of the exhaust gas in the flue 1 reaches from 500°C to 1700°C during blowing, the water-cooled pipe 31 is necessary to protect the gas sampling probe 32 from thermal damage. It is preferable that the outer surface of the water-cooled pipe 31 protruding into the flue l be plated with a hard metal such as chrome plating. This is to prevent wear due to high-temperature dust in the exhaust gas flowing through the flue l and damage due to dust adhesion.

T字管33には、クリーニングブツシュロッド34が挿
入され、ガスサンプリングプローブ32およびT字管3
3の内面に付着したダストを、必要に応じて除去する。
A cleaning bushing rod 34 is inserted into the T-tube 33, and the gas sampling probe 32 and the T-tube 3
Remove dust adhering to the inner surface of No. 3 as necessary.

定量吐出ポンプ4は、例えばセラミック翼または表面を
クロムメブキ処理した翼を有するタービンポンプより構
成される。煙道1内の圧力は、約±500 H20の範
囲で変化し得るものであるので、高周波誘導プラズマ発
光装置5へ一定量一定圧力の排ガスを供給するために定
量吐出ポンプ4を設けている。定量吐出ポンプ4から高
周波誘導プラズマ発光装置5への排ガス供給管にはさら
に圧力計41が設けられ、該圧力計41により計測され
た圧力に基づき、該供給管から分岐する放出管に設けら
れた圧力調整弁42を調整して高周波誘導プラズマ発光
装置5に送られる排ガスの圧力を所定値に調節する。
The metered discharge pump 4 is constituted by, for example, a turbine pump having ceramic blades or blades whose surfaces are coated with chrome. Since the pressure within the flue 1 can vary within a range of approximately ±500 H20, a metering discharge pump 4 is provided to supply a constant amount of exhaust gas at a constant pressure to the high frequency induced plasma light emitting device 5. A pressure gauge 41 is further provided in the exhaust gas supply pipe from the quantitative discharge pump 4 to the high frequency induced plasma light emitting device 5, and based on the pressure measured by the pressure gauge 41, a pressure gauge 41 is provided in the discharge pipe branching from the supply pipe. The pressure regulating valve 42 is adjusted to adjust the pressure of the exhaust gas sent to the high frequency induced plasma light emitting device 5 to a predetermined value.

高周波誘導プラズマ発光装置5に送られた排ガスおよび
ダストは、高周波電流発生器51の発生する高周波電流
により高温のプラズマ状態となり、発光する。即ち、各
元素は、それぞれに特有の線スペクトルで発光するもの
であり、たとえば、紫外線域において炭素は193.0
90m、 229.69r+n+、珪素13180.7
3nm、288.16nm、鉄は、271.44nm、
229.82nm、396.93nm、288.37n
m、288.08等の波長の線スペクトルを有している
。排ガスおよびダストの成分分析に必要な燐、マンガン
等についても同様であるが、各元素とその特有の波長の
関係は広く知られている通りである。従って、高周波誘
導プラズマ発光装置5内においてプラズマ状態となった
排ガスおよびダストは、その成分濃度に特有のスペクト
ル成分光強度で発光する。
The exhaust gas and dust sent to the high-frequency induced plasma light emitting device 5 are brought into a high-temperature plasma state by the high-frequency current generated by the high-frequency current generator 51, and emit light. In other words, each element emits light with its own unique line spectrum. For example, in the ultraviolet range, carbon emits light with a line spectrum of 193.0
90m, 229.69r+n+, silicon 13180.7
3nm, 288.16nm, iron is 271.44nm,
229.82nm, 396.93nm, 288.37n
It has a line spectrum with wavelengths such as m, 288.08, etc. The same applies to phosphorus, manganese, etc., which are necessary for component analysis of exhaust gas and dust, and the relationship between each element and its specific wavelength is widely known. Therefore, the exhaust gas and dust that have become plasma in the high frequency induced plasma light emitting device 5 emit light with a spectral component light intensity specific to the component concentration.

Arガス圧送器52は、圧力調整弁53を介してArガ
スを高周波誘導プラズマ発光装置5に供給し、高周波誘
導プラズマ発光装置をパージする。
The Ar gas pump 52 supplies Ar gas to the high frequency induced plasma light emitting device 5 via the pressure regulating valve 53 to purge the high frequency induced plasma light emitting device.

高周波誘導プラズマ発光袋w5内における排ガスおよび
ダストの発光は分光器6においてスペクトルに分解され
、各波長についてスペクトル成分光強度が測定される。
The emission of exhaust gas and dust within the high-frequency induced plasma luminescence bag w5 is decomposed into spectra in the spectrometer 6, and the spectral component light intensity is measured for each wavelength.

第2図は、分光器6の出力の一例を示したものである。FIG. 2 shows an example of the output of the spectrometer 6.

図において発光スペクトル成分光強度に対応する値は、
横軸のnm単位でしめされた各成分光の波長の関数とし
て与えられている。即ち、分光器6は、高周波誘導プラ
ズマ発光装置5内の発光のスペクトル成分光強度を各成
分光の波長の関数として出力するものである。
In the figure, the values corresponding to the light intensity of the emission spectrum components are:
It is given as a function of the wavelength of each component light expressed in nm units on the horizontal axis. That is, the spectrometer 6 outputs the intensity of the spectral components of the light emitted within the high frequency induced plasma light emitting device 5 as a function of the wavelength of each component light.

成分濃度算出器7のメモリ71は各元素等についてその
発光スペクトルに特有の波長を記憶するとともに、それ
らの波長のスペクトル成分光強度と各元素の濃度の間の
関係を記憶する。即ち、各元素は、それぞれに特有の線
スペクトルを有するものであるが、メモリ71はこれら
の線スペクトルを構成する波長と各元素の関係を記tq
シている。
The memory 71 of the component concentration calculator 7 stores wavelengths specific to the emission spectrum of each element, and also stores the relationship between the spectral component light intensity of those wavelengths and the concentration of each element. That is, each element has its own unique line spectrum, and the memory 71 records the relationship between the wavelengths making up these line spectra and each element.
It's on.

たとえば、紫外線域において炭素は193.09na+
、 229.69nn+、珪素は180.73nI11
.288.16nm、鉄は、271゜44nm、  2
29.82na+、  396.93nm、 288.
37nw、 288.08等の波長の線スペクトルを有
している。排ガスおよびダストの成分分析に必要な燐、
マンガン等についても同様であるが、各元素とその特有
の波長の関係は広く知られている通りである。また、温
度等の発光条件が一定の値にある高周波誘導プラズマ発
光装置5における排ガスおよびダストの成分元素等の濃
度と発光スペクトル成分光強度のあいだの関係は予め実
験的に定められ、これらの関係ちまたメモリ71に記憶
される。第3図および第4図は、それぞれ排ガスおよび
ダスト中の鉄及び珪素の濃度(縦軸)と鉄及び珪素に特
有の波長のスペクトル成分光強度(横軸)の間の関係を
示すグラフの一例であり、これらの関係は、メモリ71
に記憶されている。
For example, in the ultraviolet range, carbon is 193.09 na+
, 229.69nn+, silicon is 180.73nI11
.. 288.16nm, iron is 271°44nm, 2
29.82na+, 396.93nm, 288.
It has a line spectrum of wavelengths such as 37nw and 288.08. Phosphorus, necessary for component analysis of exhaust gas and dust,
The same applies to manganese and the like, but the relationship between each element and its specific wavelength is widely known. In addition, the relationship between the concentration of the constituent elements of exhaust gas and dust and the light intensity of the emission spectrum components in the high-frequency induced plasma light emitting device 5 where the light emission conditions such as temperature are constant is determined experimentally in advance, and these relationships are determined experimentally in advance. It is also stored in the memory 71. Figures 3 and 4 are examples of graphs showing the relationship between the concentration of iron and silicon in exhaust gas and dust (vertical axis) and the intensity of spectral components of wavelengths specific to iron and silicon (horizontal axis), respectively. and these relationships are the memory 71
is stored in

成分濃度算出器7の演算器72は、メモリ71に記憶さ
れた成分元素と特有の波長の関係およびスペクトル成分
光強度と元素濃度等との関係に基づき、排ガスおよびダ
ストの成分濃度を算出する。
The calculator 72 of the component concentration calculator 7 calculates the component concentrations of exhaust gas and dust based on the relationship between the component elements and specific wavelengths and the relationship between the spectral component light intensity and the element concentration, etc., stored in the memory 71.

(効果) 本発明によれば、以上のように煙道1内の排ガスおよび
ダストを同時にしかも連続的に分析することができ、極
めて高い精度で転炉の精錬過程を推定することが可能に
なる。とくに煙道1内の排ガスおよびダストを導出管3
により煙道1外に導出し定量吐出ポンプ4により所定の
圧力に調節して高周波誘導プラズマ発光装置5に送って
一定の発光条件の下で発光せしめてそのスペクトル成分
光強度を測定し、これにより排ガスおよびダストの成分
4度を算出することとしたので、煙道1内の条件の変化
に関係なく排ガスおよびダストの成分74度を正確に測
定することが可能である。
(Effects) According to the present invention, as described above, the exhaust gas and dust in the flue 1 can be simultaneously and continuously analyzed, and the refining process of the converter can be estimated with extremely high accuracy. . In particular, the exhaust gas and dust in the flue 1 are removed from the outlet pipe 3.
is led out of the flue 1, adjusted to a predetermined pressure by a metering pump 4, and sent to a high-frequency induced plasma light emitting device 5 to emit light under certain light emitting conditions, and the intensity of the spectral component light is measured. Since we decided to calculate the exhaust gas and dust components at 4 degrees, it is possible to accurately measure the exhaust gas and dust components at 74 degrees regardless of changes in the conditions within the flue 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の一部断面ブロック図、 第2図は、第1図の装置の分光器6の出力の一例を示t
グラフ、 第3および4図は、成分濃度算出器7のメモリ71の記
憶する成分元素濃度とスペクトル成分光強度の関係の一
例のグラフである。 1 :煙道    2 :煙道壁2 3 :導出管   31:水冷管 4 :定量吐出ポンプ
FIG. 1 is a partial cross-sectional block diagram of an embodiment of the present invention, and FIG. 2 shows an example of the output of the spectrometer 6 of the apparatus shown in FIG.
Graphs 3 and 4 are graphs of an example of the relationship between the component element concentration and the spectral component light intensity stored in the memory 71 of the component concentration calculator 7. 1: Flue 2: Flue wall 2 3: Outlet pipe 31: Water-cooled pipe 4: Meter discharge pump

Claims (8)

【特許請求の範囲】[Claims] (1)転炉排ガス煙道内の排ガスおよびダストを該煙道
から導出して所定の圧力に調整し、該所定圧力の排ガス
およびダストを高温にして発光せしめ、 該発光をスペクトルに分解してスペクトル成分光強度を
各波長について測定し、 測定された各波長についてのスペクトル成分光強度に基
づき該煙道内の排ガスおよびダストの成分濃度を継続的
に算出する、 転炉排ガスの分析方法。
(1) Exhaust gas and dust in the converter flue gas flue are led out from the flue and adjusted to a predetermined pressure, the flue gas and dust at the predetermined pressure are heated to a high temperature and emit light, and the emitted light is decomposed into a spectrum to produce a spectrum. A method for analyzing converter exhaust gas, comprising: measuring component light intensity for each wavelength; and continuously calculating component concentrations of exhaust gas and dust in the flue based on the measured spectral component light intensity for each wavelength.
(2)予め煙道内の排ガスおよびダストの成分濃度と各
波長についてのスペクトル成分光強度の関係を実験的に
決定して該関係を記憶手段に記憶せしめ、該記憶手段に
記憶された関係に基づき煙道内の排ガスおよびダストの
成分濃度を算出する特許請求の範囲第1項記載の転炉排
ガスの分析方法。
(2) Experimentally determine the relationship between the component concentration of exhaust gas and dust in the flue and the spectral component light intensity for each wavelength in advance, store this relationship in a storage means, and based on the relationship stored in the storage means 2. The converter exhaust gas analysis method according to claim 1, which calculates component concentrations of exhaust gas and dust in a flue.
(3)煙道から導出された排ガスおよびダストを高周波
誘導プラズマ発光装置により高温にして発光せしめる特
許請求の範囲第1項記載の転炉排ガスの分析方法。
(3) The method for analyzing converter exhaust gas according to claim 1, wherein the exhaust gas and dust discharged from the flue are heated to a high temperature by a high-frequency induction plasma light emitting device to emit light.
(4)煙道から導出された排ガスおよびダストを定量吐
出ポンプにより一定圧力に調整する特許請求の範囲第1
項記載の転炉排ガスの分析方法。
(4) Claim 1, in which the exhaust gas and dust led out from the flue are adjusted to a constant pressure by a metered discharge pump.
Converter exhaust gas analysis method described in section.
(5)転炉排ガス煙道内の排ガスおよびダストを該煙道
外に導出する導出管と、 該導出管により煙道から導出された排ガスおよびダスト
を一定の圧力に調整する定量吐出ポンプと、 該定量吐出ポンプから送られた一定圧力の排ガスおよび
ダストを高温にして発光せしめる発光装置と、 該発光装置における排ガスおよびダストの発光をスペク
トルに分解し、各波長についてスペクトル成分光強度を
測定する分光器と、 該分光器で測定された各波長についてのスペクトル成分
光強度に基づき煙道内の排ガスおよびダストの成分濃度
を算出する成分濃度算出器と、を備える転炉排ガスの分
析装置。
(5) a discharge pipe that guides the exhaust gas and dust in the converter flue gas flue out of the flue; a fixed-quantity discharge pump that adjusts the exhaust gas and dust discharged from the flue by the discharge pipe to a constant pressure; and the fixed quantity. A light emitting device that heats exhaust gas and dust at a constant pressure sent from a discharge pump to emit light, and a spectrometer that separates the emission of exhaust gas and dust in the light emitting device into spectra and measures the spectral component light intensity for each wavelength. , a component concentration calculator that calculates the component concentration of exhaust gas and dust in the flue based on the spectral component light intensity of each wavelength measured by the spectrometer.
(6)成分濃度算出器は、予め煙道内の排ガスおよびダ
ストの成分濃度と各波長についてのスペクトル成分光強
度の関係を実験的に決定して該関係を記憶するメモリを
備え、該メモリに記憶された関係に基づき煙道内の排ガ
スおよびダストの成分濃度を算出する特許請求の範囲第
5項記載の転炉排ガスの分析装置。
(6) The component concentration calculator is equipped with a memory that stores the relationship by experimentally determining the relationship between the component concentration of exhaust gas and dust in the flue and the spectral component light intensity for each wavelength in advance, and stores the relationship in the memory. 6. The analyzer for converter exhaust gas according to claim 5, which calculates the component concentrations of exhaust gas and dust in the flue based on the relationship determined.
(7)発光装置は高周波誘導プラズマ発光装置から成る
特許請求の範囲第5項記載の転炉排ガスの分析装置。
(7) The analyzer for converter exhaust gas according to claim 5, wherein the light emitting device is a high frequency induced plasma light emitting device.
(8)導出管の煙道からの排ガスおよびダスト導入部分
は、水冷管に挿入されて煙道に装着されて成る特許請求
の範囲第5項記載の転炉排ガスの分析装置。
(8) The analyzer for converter exhaust gas according to claim 5, wherein the exhaust gas and dust introduction portion from the flue of the outlet pipe is inserted into a water-cooled pipe and attached to the flue.
JP22986585A 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas Pending JPS6290525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22986585A JPS6290525A (en) 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22986585A JPS6290525A (en) 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas

Publications (1)

Publication Number Publication Date
JPS6290525A true JPS6290525A (en) 1987-04-25

Family

ID=16898907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22986585A Pending JPS6290525A (en) 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas

Country Status (1)

Country Link
JP (1) JPS6290525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210396469A1 (en) * 2018-11-13 2021-12-23 Arcelormittal Direct reduction shaft furnace with probe for measuring interior gas analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210396469A1 (en) * 2018-11-13 2021-12-23 Arcelormittal Direct reduction shaft furnace with probe for measuring interior gas analysis

Similar Documents

Publication Publication Date Title
ES2653943T3 (en) Method and device to predict, control and / or regulate steelworks processes
CN102288740A (en) Measuring probes for measuring and sampling with a metal melt
CN115494010A (en) Molten steel component and temperature continuous detection system and method
US4591132A (en) Apparatus for controlling the gas carburization of steel
KR20230098852A (en) Converter operation method and converter blow control system
US3871871A (en) Monitoring and control of pig iron refining
JPS6290525A (en) Method and apparatus for analyzing converter exhaust gas
TWI700374B (en) Molten metal composition estimating device, molten metal composition estimating method, and molten metal manufacturing method
CN100577821C (en) The decarburization refining method that contains the chromium molten steel
JPS60129628A (en) Continuous measurement of molten steel temperature
JPS6042644A (en) Continuous analyzing method of component of molten metal in refining container
JP6331601B2 (en) Blowing control method in steelmaking converter.
SU992593A1 (en) Method for interrupting blasting of oxygen converter with pre-set carbon content
JPS5847451B2 (en) Blowing method of bottom blowing converter
CN112782158B (en) Monitoring system for blister copper desulfurization
SU1191470A1 (en) Method of monitoring temperature conditions of converter melting
JPH10281952A (en) Rapid analysis by laser of molten steel component and laser analyzing device
JP4788089B2 (en) Molten metal component measuring device
JPH03229813A (en) Blowing method for converter
GB2171198A (en) Monitoring a heterogeneous transformation process
JPH07118723A (en) Converter refining method
SU591516A1 (en) Method of controlling steel vacuum treatment process
JPS5732308A (en) Method for operating blast furnace
JPS62293128A (en) Method and device for continuous measurement of temperature of molten metal
JPH0238932A (en) Continuous temperature measuring method for molten metal