JPS60129628A - Continuous measurement of molten steel temperature - Google Patents

Continuous measurement of molten steel temperature

Info

Publication number
JPS60129628A
JPS60129628A JP58237294A JP23729483A JPS60129628A JP S60129628 A JPS60129628 A JP S60129628A JP 58237294 A JP58237294 A JP 58237294A JP 23729483 A JP23729483 A JP 23729483A JP S60129628 A JPS60129628 A JP S60129628A
Authority
JP
Japan
Prior art keywords
molten steel
temperature
gas
fiber
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58237294A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamamoto
俊行 山本
Yoichi Tamura
洋一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58237294A priority Critical patent/JPS60129628A/en
Publication of JPS60129628A publication Critical patent/JPS60129628A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To measure accurately and continuously molten steel temperature, by combining gas blasting techniques in a dual blast refining process and irradiated energy measuring techniques using a microlens and optical fiber. CONSTITUTION:A temperature measuring unit 1 of a temperature measuring apparatus is set in a tuyere 3 perforated at the bottom of the furnace proper 2. This unit 1 is connected to a monochromic thermometer 5 through an optical fiber 4. Further, blasting gas is mainly composed of algon and oxygen. As the monochromic thermometer 5, it is desirable that use of an emission spectrum emitted on the occasion of oxidation reaction of ingredients of the molten steel, C, P, S, Fe, etc. is avoided and for the measurement of the irradiated energy, such wavelengths be used that permits observation of thermal radiation from the molten steel only.

Description

【発明の詳細な説明】 産業上豊科里分界 本発明は溶鋼の温度測定方法に関する。更に詳細には、
本発明は非消耗型の測温部を持つ放射温度計を用いて溶
鋼の温度を連続的に測定する方法に関する。 、 従】」1転 □ 転炉における吹錬中の溶鋼等のように非常に高温である
溶鋼の温度を測定する方法としては、従来、サブランス
先端に消耗型の熱電対を取り付けて測定する方法が一般
的に採用されている。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring the temperature of molten steel. More specifically,
The present invention relates to a method for continuously measuring the temperature of molten steel using a radiation thermometer having a non-consumable temperature measuring section. , 1 turn □ The conventional method of measuring the temperature of extremely high temperature molten steel, such as molten steel during blowing in a converter, is to attach a consumable thermocouple to the tip of the sublance. is commonly adopted.

転炉を利用した溶銑の吹錬の場合を挙げて詳細に説明す
ると、出鋼時の溶鋼成分(主にc、p、S)と溶鋼温度
を管理する事が主要な課題である。
To explain in detail the case of hot metal blowing using a converter, the main issue is to control the molten steel components (mainly c, p, s) and molten steel temperature at the time of tapping.

従来特に炭素と温度についてはサブランスを用い、吹錬
の中期時及び末期に各一度、溶鋼中に測定プローブを挿
入し、測定する事が広く行なわれている。
Conventionally, it has been widely practiced to measure carbon and temperature in particular by using a sublance and inserting a measuring probe into the molten steel once each in the middle and final stages of blowing.

この測定プローブは、サブランス先端に熱電対を設置し
たものだが、溶鋼に挿入すると数秒で熔解し、連続使用
はもとより再使用も不可能である。
This measurement probe has a thermocouple installed at the tip of the sublance, but it melts in a few seconds when inserted into molten steel, making it impossible to use it continuously or even reuse it.

従って、従来は、吹錬の中期及び末期とい□うように時
期牽選んで間欠的に測温を行っていた。しかし、この従
来技術による間欠的測定方法では高精度の溶鋼成分及び
温度の制御には不十分であり、又測定の度にプローブを
消耗するあで、ランニングコストが非常に高くなる等の
問題がある。
Therefore, in the past, temperatures were measured intermittently at selected times, such as during the middle and final stages of blowing. However, this intermittent measurement method using conventional technology is insufficient for controlling the composition and temperature of molten steel with high precision, and also has problems such as the probe being worn out each time a measurement is made, resulting in extremely high running costs. be.

又、近年の上底吹複合吹錬が採用されるに従い、吹錬の
各段階に於ける溶鋼温度を制御することが必要となり、
溶鋼温度を連続的に測定することが要望されている。
In addition, as top-bottom combined blowing has been adopted in recent years, it has become necessary to control the molten steel temperature at each stage of blowing.
There is a demand for continuous measurement of molten steel temperature.

光皿少貝旬 本発明の目的は、上記従来技術の問題点を解決し、溶鋼
温度を連続的に測定する方法を提供子ることにあり、製
鋼時の終点温度連中率の向上に寄与するとともに、従来
消耗型であったサブランスプローブによる測温と代替し
、測定コス゛トを低減せしめようとするものである。
An object of the present invention is to solve the problems of the above-mentioned conventional techniques and to provide a method for continuously measuring the temperature of molten steel, thereby contributing to an improvement in the end point temperature consistency rate during steel manufacturing. At the same time, it is intended to replace temperature measurement using a sublance probe, which has conventionally been a consumable type, and to reduce measurement costs.

更に本発明の目的は、転炉吹錬時の溶鋼温度を精度よく
連続的に測定する方法を提供して、転炉内の脱C,脱P
等の各種精錬反応を好適に行うことにある。
A further object of the present invention is to provide a method for accurately and continuously measuring the temperature of molten steel during converter blowing, and to improve decarbonization and dephosphorization in the converter.
The aim is to suitably perform various refining reactions such as.

−11B11戊 本発明により、複合吹錬における羽目からのガス吹き込
み技術とマ□イクロレンズ及び光ファイバーを使用した
放射エネルギー測定技術とを組合せた、製鋼炉における
溶鋼温度連続測定方法が提供される。
-11B11 The present invention provides a method for continuously measuring the temperature of molten steel in a steelmaking furnace, which combines a gas blowing technique from the siding in complex blowing and a radiant energy measuring technique using a microlens and an optical fiber.

更に詳細には、本発明により、製鋼炉の温習り部に相当
する炉壁に羽口を設け、集光レンズを先端部に備えた光
ファイバーと、該レンズ及び該ファイバーを内臓して該
レンズ及び該ファイバーの周囲にガスを噴出する機構と
を備えた測温部を該別口内に設置し、該ファイバーと接
続する放射温度計により溶鋼温度を連続的に測定するこ
とを特徴とする溶鋼温度連続測定方法が提供される。
More specifically, according to the present invention, a tuyere is provided on the furnace wall corresponding to the warming section of a steelmaking furnace, and an optical fiber is provided with a condensing lens at the tip, and an optical fiber with the lens and the fiber incorporated therein. molten steel temperature continuous, characterized in that a temperature measuring unit equipped with a mechanism for ejecting gas around the fiber is installed in the separate port, and the molten steel temperature is continuously measured by a radiation thermometer connected to the fiber; A measurement method is provided.

更に、本発明の好ましい態様に従うと、溶鋼の放射エネ
ルギーの測定は、溶鋼成分の酸化反応により生じる発光
スペクトルを避けた波長帯域に於いておこない、更に、
羽目から吹き込むガスの酸素分圧を吹込みガスが溶鋼を
冷却も・加熱もしないように調整する。 ゛ ・ ・ 本発明による溶鋼温度測定方法では、その測温部に重要
な特徴がある。
Furthermore, according to a preferred embodiment of the present invention, the radiant energy of molten steel is measured in a wavelength band that avoids the emission spectrum caused by the oxidation reaction of molten steel components, and further,
Adjust the oxygen partial pressure of the gas injected through the siding so that the injected gas neither cools nor heats the molten steel.゛ ・ ・ The molten steel temperature measuring method according to the present invention has an important feature in its temperature measuring section.

まず、測温位置は、湯溜り部に相当する炉体の壁部に穿
った羽目の内側先端付近の溶鋼表面である。ここで炉体
壁部とはぐ炉体の側壁部及び炉底部の双方を意味する。
First, the temperature measurement location is the molten steel surface near the inner tip of the slats bored in the wall of the furnace body, which corresponds to the sump. Here, the term "furnace wall" refers to both the side wall and bottom of the furnace body.

この羽目より先端部に集光レンズを備えた光ファイバー
を挿入して溶鋼の放射エネルギーを炉外に導く。
From this point, an optical fiber with a condensing lens is inserted at the tip to guide the radiant energy of the molten steel out of the furnace.

また、測温手段は、溶鋼表面よりの放射エネルギーを測
定する放射温度計が用いられる。
Further, as the temperature measuring means, a radiation thermometer that measures radiant energy from the surface of the molten steel is used.

ファイバー先端部に設けた集光レンズにより得られた光
束は、溶鋼成分(’c、P、S、St等)が酸化する際
に発するスペクトル等(これは基本的には線スペクトル
である)の測定ノイズとなる各種スペクトルを含む。従
うて、溶鋼からの熱放射エネルギーのみが岐測される波
長箒域のエネルギーのみを選択的に透過させるフィ゛ル
タを温度計本体に設けるのが好ましい。このように波長
帯域をえらぶ事で溶鋼からの放射エネルギーのみが測定
でき、溶鋼の温度測定は非常に精′密なものとなる。
The light beam obtained by the condensing lens provided at the tip of the fiber is based on the spectrum (which is basically a line spectrum) emitted when molten steel components ('c, P, S, St, etc.) oxidize. Contains various spectra that cause measurement noise. Therefore, it is preferable to provide the thermometer body with a filter that selectively transmits only the energy in the wavelength range where only the thermal radiation energy from the molten steel is detected. By selecting the wavelength band in this way, only the radiant energy from the molten steel can be measured, making the temperature measurement of the molten steel extremely accurate.

本発明で使用する放゛射温度針は、測定対象となる温度
域の発光スペクトルの波長域に対応する狭帯酸形温度計
が好ましい。
The radiation temperature needle used in the present invention is preferably a narrow band acid thermometer that corresponds to the wavelength range of the emission spectrum of the temperature range to be measured.

更に、羽目からは測温部材の周囲を通じて羽目先端がつ
まらない様十分な流量のガスを吹込み、測温部材が7g
鋼に接触するのを防止し、或いは溶鋼からの放射熱で溶
解しないように冷却し、更に/8鋼の流出を防止する。
Furthermore, a sufficient flow rate of gas was blown through the slats around the temperature measuring member so that the tip of the siding would not get stuck, and the temperature measuring member was 7 g.
It prevents contact with steel or cools it so that it does not melt due to radiant heat from molten steel, and also prevents /8 steel from flowing out.

このとき、不活性ガスだけを流した場合、ガスにより溶
鋼表面が冷却され測定温度に誤差が生しるため、吹込む
ガスに適当な量の酸素を混合し、吹込み部位付近の溶鋼
の反応を高め、不活性ガス吹込みによる溶鋼温度の辰下
を打ち消して測定するのが好ましい。この吹込みガス中
の酸素分圧は予め適正値をめておき、この値に従って吹
込みを行う。
At this time, if only inert gas is flowed, the surface of the molten steel will be cooled by the gas and an error will occur in the measured temperature. Therefore, an appropriate amount of oxygen is mixed with the injected gas to increase the reaction of the molten steel near the blown area. It is preferable to measure by increasing the temperature of the molten steel and canceling out the drop in molten steel temperature caused by inert gas injection. An appropriate value is determined in advance for the oxygen partial pressure in the blown gas, and the blowing is performed according to this value.

かくして、本発明による溶鋼温度測定方法では、極めて
正確に溶鋼温度の測定を実施することができる。
Thus, with the method for measuring molten steel temperature according to the present invention, molten steel temperature can be measured extremely accurately.

プ11舛 以下:添付の図面を参照して本発明を具体的な実施例に
より、その効果を説明する。
Part 11: Effects of the present invention will be explained by specific examples with reference to the accompanying drawings.

第1図は、底吹き型測温用羽目を転炉へ取り付けた状況
を示す概略図である。図示の如く、本実施例では、本発
明の方法で用いる温度測定装置の測温部1を、炉体2の
底部に穿った羽口3に設置しており、この測温部1は光
ファイバー4を介して単色温度計5に接続されている。
FIG. 1 is a schematic diagram showing a situation in which bottom-blowing temperature measurement panels are attached to a converter. As shown in the figure, in this embodiment, a temperature measuring section 1 of the temperature measuring device used in the method of the present invention is installed in a tuyere 3 bored at the bottom of a furnace body 2, and this temperature measuring section 1 is connected to an optical fiber 4. It is connected to the monochromatic thermometer 5 via.

また、吹込みガスはアルゴンと酸素を主体にしている。In addition, the blown gas is mainly argon and oxygen.

尚、この態様では、測温用羽口は転炉炉底に設置してい
るが、炉体側壁に設置する等、他の態様も本発明の範囲
を逸脱するものではない。
In this embodiment, the temperature measuring tuyere is installed at the bottom of the converter furnace, but other embodiments, such as installing it on the side wall of the furnace body, do not depart from the scope of the present invention.

第2図は3重管構造の測温部の断面模式図である。3重
管の内、最内管11はその内部に集光レンズ12とそれ
に接続された光ファイバー13を収容しており、また、
その炉内側の先端は、他の管よりも若干炉外側へ後退し
ている。最内管11と中間管14の間、及び中間管14
と最外管15は中空で、それらの間隔を固定部材16に
より保持している。容管の炉外側端部よりダクト17及
び18を介して吹込みガスを流通し、測温部先端方向に
吹出すように構成されている。
FIG. 2 is a schematic cross-sectional view of a temperature measuring section with a triple tube structure. Among the triple tubes, the innermost tube 11 accommodates a condensing lens 12 and an optical fiber 13 connected thereto, and
The tip inside the furnace is slightly set back to the outside of the furnace compared to the other tubes. Between the innermost pipe 11 and the middle pipe 14, and between the middle pipe 14
and the outermost tube 15 are hollow, and the space between them is maintained by a fixing member 16. The blowing gas is configured to flow from the outer end of the container tube through ducts 17 and 18 and blow out toward the tip of the temperature measuring section.

本実施例では、中間管14内に、先端に直径2mm程度
のマイクロレンズを集光レンズ12として組み込んだ直
径1mmの単芯ファイバー(コアー径100μ、クラッ
ド径150μ程度)のものが組み込まれている。ファイ
バーは羽目の大きさが許せば必ずしも単芯のものである
必要はないが、吹錬中に溶鋼が羽口内に侵入し集光レン
ズを破損する可能性を考えれば、ファイバーはできるだ
け細い方が炉外へ溶鋼が流出する危険を回避できるので
望ましい。
In this embodiment, a single core fiber with a diameter of 1 mm (core diameter of 100 μm, cladding diameter of approximately 150 μm) is incorporated in the intermediate tube 14, and a microlens with a diameter of approximately 2 mm is incorporated at the tip as the condensing lens 12. . The fiber does not necessarily have to be single-core if the grain size allows, but considering the possibility that molten steel will enter the tuyere during blowing and damage the condensing lens, it is recommended that the fiber be as thin as possible. This is desirable because it avoids the risk of molten steel flowing out of the furnace.

このように、ファイバーの周囲に2層にガスを流す事で
、ファイバーを冷却すると同時に、吹錬中に羽目先端か
ら溶鋼が侵入するのを防止する。
In this way, by flowing gas around the fiber in two layers, the fiber is cooled and, at the same time, it is possible to prevent molten steel from entering from the tips of the blades during blowing.

また、羽目から吹き込むガスのガス組成を調整し、不活
性ガス(アルゴン)中に若干O1!ガスを混ぜたものを
、上記3重管を介して吹込み、通常羽目先端でマンシュ
ルーム状に堆積する凝固物の形成を防止すると同時に、
吹込みガスによる溶鋼の冷却や、或いは逆に、吹込みガ
ス中の酸素と溶鋼成分(C,Fe等)との反応による発
熱を防止しでいる。
In addition, we adjusted the gas composition of the gas blown into the lining, and added a little O1 to the inert gas (argon). A mixture of gases is injected through the triple tube to prevent the formation of coagulates that normally accumulate in a manshroom shape at the tips of the siding.
This prevents cooling of the molten steel by the blown gas, or conversely, heat generation due to the reaction between oxygen in the blown gas and molten steel components (C, Fe, etc.).

第3図に、吹込みガス量と本発明の方法による溶鋼温度
測定値との関係を示す。
FIG. 3 shows the relationship between the amount of blown gas and the molten steel temperature measured by the method of the present invention.

又、第4図に、吹込みガス組成を変化させた場合の本発
明の方法に、よる測温誤差の程度を示す。
Further, FIG. 4 shows the degree of temperature measurement error caused by the method of the present invention when the composition of the blown gas is changed.

第3図及び第4図より前述した様な吹込みガス流量やガ
ス組成に関し適切な範囲が存在する事がわかる。
It can be seen from FIGS. 3 and 4 that there is an appropriate range for the blown gas flow rate and gas composition as described above.

即ち、第3図G;おいて吹込みガス流量が(・)点を越
えると吹込みガスに、より溶鋼が冷却され、正確な測定
が期待できない。他方、羽目を冷却し、溶鋼の炉外への
溶出を防止するには一定以上の吹込みガス量が必要であ
り、実際の測定の際にはia1点近傍の吹込みガス量が
必要である。 。
That is, if the blown gas flow rate exceeds the (.) point in FIG. 3G, the molten steel will be further cooled by the blown gas, and accurate measurement cannot be expected. On the other hand, a certain amount of blown gas is required to cool the siding and prevent molten steel from leaching out of the furnace, and for actual measurements, a blown gas amount near the ia1 point is required. . .

また、第4図に今いて、吹込みガス中の酸素モル濃度が
fb1点以下では溶鋼成分と酸素の反応熱が不十分で、
吹込みガスによるf6鋼の冷却を打ち消すことができず
、(C)、点以上では、逆に反応熱により測定部の溶鋼
温度測定値させる。従って、山)〜。
Also, as shown in Figure 4, if the oxygen molar concentration in the blown gas is below the fb1 point, the heat of reaction between the molten steel components and oxygen is insufficient;
The cooling of the F6 steel by the blown gas cannot be canceled out, and at points (C) and above, the temperature of the molten steel measured at the measuring section is caused by the heat of reaction. Therefore, Mt.) ~.

IcIの間の酸素モル濃度、即ち酸素分圧の吹込みガス
が好ましい。
A blowing gas with an oxygen molar concentration, ie an oxygen partial pressure, between IcI is preferred.

単色温度計としては溶鋼成分であるc、p、s、Fe等
の酸化反応に際し発する発光スペクトルを0 避け、溶鋼からの熱放射のみが観測されるような波長域
を使用し、放射エネルギーを測定するのが望ましいので
、ここでは酸化反応の発光スペクトルの影響や吹込みガ
スによる吸収がない0.9μmに主波長を設定した。
As a monochromatic thermometer, it avoids the emission spectrum emitted during the oxidation reaction of molten steel components such as c, p, s, and Fe, and measures the radiant energy by using a wavelength range where only thermal radiation from molten steel is observed. Therefore, the dominant wavelength was set to 0.9 μm, which is free from the influence of the emission spectrum of the oxidation reaction and absorption by the blown gas.

本実施例では、狭帯域単色温度計(例えば半価中5.’
5nmのもの)を使用している。受感波長を狭くしてい
るのは、前述した酸化反応の発光スペクトルをさけるだ
けでなく、放射エネルギーに対する出力特性が下記の(
1)式で記述できるようになり、使用温度範囲の3点で
較正し、A、BXCの3つの係数を決定すれば、実用精
度の範囲内で値の決定が可能な為である。
In this example, a narrow band monochromatic thermometer (e.g. 5.'
5 nm) is used. The reason why the sensitive wavelength is narrowed is not only to avoid the emission spectrum of the oxidation reaction mentioned above, but also to achieve the following output characteristics with respect to radiant energy:
This is because the value can be determined within the range of practical accuracy by calibrating at three points in the operating temperature range and determining the three coefficients A and BXC.

尚、温度計としては単色放射温度計のみでなく、前記条
件をみたすなら2色温度針なども使用可能である。
As the thermometer, not only a monochromatic radiation thermometer but also a two-color temperature needle can be used as long as the above conditions are met.

1 本発明の温度測定方法にて転炉吹錬中の/8鋼温度を測
定した一例を第5図に示す。第5図にはあわせて浸漬型
温度計にて測定した/8鋼温度も示しである。
1 An example of measuring the temperature of /8 steel during converter blowing using the temperature measuring method of the present invention is shown in FIG. FIG. 5 also shows the /8 steel temperature measured with an immersion type thermometer.

図中、実線による曲線は本発明の方法による連続した温
度測定値を示し、白丸は従来の浸漬型温度針による測定
値を示す。
In the figure, the solid curve shows the continuous temperature measurements by the method of the present invention, and the white circles show the measurements by the conventional immersion type temperature needle.

両者はよく一致しており本発明の方法による?g&Vi
温度の測定が十分な精度を達成している事がわかる。
The two are in good agreement, and is it due to the method of the present invention? g&Vi
It can be seen that the temperature measurement has achieved sufficient accuracy.

発訓Iバ九果 以上詳述の如く、本発明による溶鋼温度測定方法は、従
来の測温方法のようにその部品を消耗することもなく、
適切な設定を行えば、極めて正確な測定結果を連続して
提供することを実現している。
Lesson I: As detailed above, the method for measuring molten steel temperature according to the present invention does not wear out the parts unlike the conventional temperature measuring method.
With proper settings, it is possible to continuously provide highly accurate measurement results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、測温用羽目を転炉底部へ取り付けた状況を示
す概略図である。 第2図は、測温部の構造の概略を示す図である。 第3図は、吹込みガス流量が測定温度に及ぼす影響を示
したグラフである。 第4図は、吹込みガスの酸素濃度が測定温度に及ぼす影
響を示したグラフである。 第5図は、本発明による温度測定方法による測温結果を
浸漬型温度針に庫測定した結果と比較して示したグラフ
である。 (主な参照番号) 1:測温部、 2:炉体、 3:羽目、 4:光ファイバー、 5:単色温度計、 11:最内管、 12:集光レンズ、 13:光ファイバー、14:中間管、 15:最外管、 16:“固定部材、 17.18:ダクト、 3 2 第5図 0 io Zυ
FIG. 1 is a schematic diagram showing a situation in which temperature measuring panels are attached to the bottom of the converter. FIG. 2 is a diagram schematically showing the structure of the temperature measuring section. FIG. 3 is a graph showing the influence of the blowing gas flow rate on the measured temperature. FIG. 4 is a graph showing the influence of the oxygen concentration of the blown gas on the measured temperature. FIG. 5 is a graph showing a comparison between the temperature measurement results obtained by the temperature measurement method according to the present invention and the temperature measurement results obtained using a dipping type temperature needle. (Main reference numbers) 1: Temperature measuring part, 2: Furnace body, 3: Panel, 4: Optical fiber, 5: Monochromatic thermometer, 11: Innermost tube, 12: Condensing lens, 13: Optical fiber, 14: Intermediate Pipe, 15: Outermost pipe, 16: Fixing member, 17.18: Duct, 3 2 Fig. 5 0 io Zυ

Claims (1)

【特許請求の範囲】 (13製鋼炉の温習り部に相当する炉壁に羽目を設け、
集光レンズを先端部に備えた光ファイバーと、該しン〆
及び該ファイバーを内臓して該レンズ及び該ファイバー
の周囲にガスを噴出する機構とを備えた。測温部を該羽
口内に設置し、該ファイバー4接続する放射温麿計によ
り溶鋼温度を連続的に測定することを特徴とする溶鋼温
度連続測定方法。 (役特許請求の範囲第1項の溶鋼温度連続測定方法にお
いて、溶鋼成分の酸化反応により生ずる発光スペク斗ル
を避けた波長帯域で温度測定することを特徴とする溶鋼
温度連続測定方法。 (9)特許請求の範囲第1項又は第2項記載の溶鋼温度
連続測定方法において、上記放射温度針は、測定対象と
なる温度域の溶鋼の発光スペクトルの波長域に対応する
狭帯酸形温度計であることを特徴とする溶鋼温度連続測
定方法。 (4)特許請求の範囲第1項乃至第3項のいずれかに記
載の溶鋼温度連続測定方法において、上記羽口から吹き
込むガスの酸素分圧を、吹込みガスが溶鋼を冷却も加熱
もしないように調整する事を特徴とする溶鋼温度連続測
定方法。 ・
[Claims] (13) Provided with a siding on the furnace wall corresponding to the warming section of the steelmaking furnace,
It was equipped with an optical fiber equipped with a condensing lens at its tip, a condenser and a mechanism incorporating the fiber and ejecting gas around the lens and the fiber. A method for continuously measuring molten steel temperature, characterized in that a temperature measuring section is installed in the tuyere, and the molten steel temperature is continuously measured by a radiation thermometer connected to the fiber 4. (In the method for continuously measuring molten steel temperature according to claim 1, the method is characterized in that the temperature is measured in a wavelength band that avoids the emission spectrum caused by the oxidation reaction of molten steel components. (9 ) In the molten steel temperature continuous measurement method according to claim 1 or 2, the radiation temperature needle is a narrow band acid thermometer corresponding to the wavelength range of the emission spectrum of the molten steel in the temperature range to be measured. A method for continuously measuring temperature of molten steel, characterized in that: (4) In the method for continuously measuring temperature of molten steel according to any one of claims 1 to 3, the oxygen partial pressure of the gas blown from the tuyeres is A method for continuously measuring the temperature of molten steel, which is characterized by adjusting the blown gas so that it neither cools nor heats the molten steel.・
JP58237294A 1983-12-16 1983-12-16 Continuous measurement of molten steel temperature Pending JPS60129628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237294A JPS60129628A (en) 1983-12-16 1983-12-16 Continuous measurement of molten steel temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237294A JPS60129628A (en) 1983-12-16 1983-12-16 Continuous measurement of molten steel temperature

Publications (1)

Publication Number Publication Date
JPS60129628A true JPS60129628A (en) 1985-07-10

Family

ID=17013235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237294A Pending JPS60129628A (en) 1983-12-16 1983-12-16 Continuous measurement of molten steel temperature

Country Status (1)

Country Link
JP (1) JPS60129628A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203716A (en) * 1987-02-19 1988-08-23 Sumitomo Metal Ind Ltd Method for controlling refining of molten iron
JPH07151608A (en) * 1993-10-05 1995-06-16 Nkk Corp Temperature measuring instrument using optical fiber
US5585914A (en) * 1993-10-05 1996-12-17 Nkk Corporation Apparatus and method for measuring a temperature of a high temperature liquid contained in a furnace
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
WO2001096617A1 (en) * 2000-06-12 2001-12-20 Nippon Steel Corporation Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
JP2022029570A (en) * 2020-08-05 2022-02-18 Jfeスチール株式会社 Method for measuring molten steel temperature under reduced pressure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203716A (en) * 1987-02-19 1988-08-23 Sumitomo Metal Ind Ltd Method for controlling refining of molten iron
JPH07151608A (en) * 1993-10-05 1995-06-16 Nkk Corp Temperature measuring instrument using optical fiber
US5585914A (en) * 1993-10-05 1996-12-17 Nkk Corporation Apparatus and method for measuring a temperature of a high temperature liquid contained in a furnace
US6004031A (en) * 1993-11-30 1999-12-21 Nkk Corporation Temperature measuring device
US6227702B1 (en) 1993-11-30 2001-05-08 Nkk Corporation Method and apparatus for measuring a temperature of a molten metal
WO2001096617A1 (en) * 2000-06-12 2001-12-20 Nippon Steel Corporation Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
AU757791B2 (en) * 2000-06-12 2003-03-06 Nippon Steel Corporation Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
EP1291444A1 (en) * 2000-06-12 2003-03-12 Nippon Steel Corporation Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
EP1291444A4 (en) * 2000-06-12 2004-03-17 Nippon Steel Corp Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
JP5014555B2 (en) * 2000-06-12 2012-08-29 新日本製鐵株式会社 In-furnace observation method of molten iron refining furnace
JP2022029570A (en) * 2020-08-05 2022-02-18 Jfeスチール株式会社 Method for measuring molten steel temperature under reduced pressure

Similar Documents

Publication Publication Date Title
US5585914A (en) Apparatus and method for measuring a temperature of a high temperature liquid contained in a furnace
CN101535507A (en) System for optically analyzing a molten metal bath
EA029772B1 (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
JPS60129628A (en) Continuous measurement of molten steel temperature
JPH11326061A (en) Temperature measuring method and device for molten bath in furnace
JPS62226025A (en) Measuring method for fire point temperature of steel making furnace
JPS6252423A (en) Method and apparatus for continuously measuring temperature of molten metal
JP3166483B2 (en) Optical fiber temperature measuring device
US20040105153A1 (en) Device for reception and transmission of electromagnetic waves emitted by a material sample
JP5014555B2 (en) In-furnace observation method of molten iron refining furnace
JPH07174524A (en) Method and equipment for measuring variation of abrasion length of tuyere
JP3175510B2 (en) Temperature measuring device for high temperature liquid using optical fiber
JPH01314928A (en) Temperature measuring method and apparatus for melting steel
JPS62175648A (en) Measuring method for temperature and density of gas
JPH04348236A (en) Temperature detector for molten metal
JP3214234B2 (en) Temperature measuring device for high temperature liquid using optical fiber
JPH0631683B2 (en) Position measurement method for molten metal lining surface
JPS62132135A (en) Continuous measurement of molten metal temperature
JP2023127474A (en) Operation method for refining furnace
JPS63230815A (en) Tuyere for refining
JP2005315777A (en) Spark radiation measurement method and apparatus therefor
JPS6290524A (en) Method and apparatus for analyzing converter exhaust gas
JP4788089B2 (en) Molten metal component measuring device
JPH0815040A (en) Temperature measuring device with optical fiber for high temperature liquid
JP3334528B2 (en) Method and apparatus for measuring temperature of molten metal