JPS6290524A - Method and apparatus for analyzing converter exhaust gas - Google Patents

Method and apparatus for analyzing converter exhaust gas

Info

Publication number
JPS6290524A
JPS6290524A JP22986485A JP22986485A JPS6290524A JP S6290524 A JPS6290524 A JP S6290524A JP 22986485 A JP22986485 A JP 22986485A JP 22986485 A JP22986485 A JP 22986485A JP S6290524 A JPS6290524 A JP S6290524A
Authority
JP
Japan
Prior art keywords
light
flue
exhaust gas
light intensity
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22986485A
Other languages
Japanese (ja)
Inventor
Norio Hirayama
平山 憲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22986485A priority Critical patent/JPS6290524A/en
Publication of JPS6290524A publication Critical patent/JPS6290524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To always estimate the refining process of a converter with high accuracy, by measuring the intensities of the emission spectrum component of converter exhaust gas and correcting the spectral intensities for attenuation in the light path and further for the temperature condition in the flue. CONSTITUTION:The emitted light of converter exhaust gas is guided to a reflective mirror chamber 4 and the reflected light is guided to a spectrometer 6 to measure the luminous intensities of a spectrum component with each wavelength. Ar-gas is introduced into the chamber 4 from an Ar-gas pressure feeding device 5 to hold the pressure thereof to a predetermined value and the temp. 41 and pressure 42 of said gas are inputted to an attenuation ratio correcting device 7 to calculate the attenuation rate of a light path and the value corresponding to the intensity of component light is calculated. Said value is corrected on the basis of an infrared intensity calculated value corresponding the condition of temp. or the like in the space 21 of the flue to calculate the temp. corrected luminous intensity of an emission spectrum component. Therefore, the component concns. of the exhaust gas and dust in the flue are simultaneously and continuously analyzed and the refining process of a converter can be estimated with extremely high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、転炉排ガスの分析方法および分析装置に関
する。詳しくは、転炉排ガスおよびダストの成分濃度を
同時にかつ連続的に分析し、転炉精錬過程を精密に推定
する方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method and apparatus for analyzing converter exhaust gas. Specifically, the present invention relates to a method and apparatus for simultaneously and continuously analyzing component concentrations of converter exhaust gas and dust to accurately estimate the converter refining process.

(従来の技術) 高炉から得られた銑鉄は、転炉で精錬される。(Conventional technology) Pig iron obtained from the blast furnace is refined in a converter.

この精錬過程においては、脱炭、脱珪、脱燐等の量また
は速度に応じてメインランスの高さ、送酸速度、副原料
投入量、底吹きガス流量、同圧力等を制御しなければな
らない。従ってこれらの脱炭、脱珪、脱燐等の量または
速度を正確に推定する必要がある。
In this refining process, it is necessary to control the height of the main lance, the oxygen supply rate, the amount of auxiliary material input, the flow rate of bottom blowing gas, the pressure, etc. according to the amount or speed of decarburization, desiliconization, dephosphorization, etc. It won't happen. Therefore, it is necessary to accurately estimate the amount or rate of decarburization, desiliconization, dephosphorization, etc.

脱炭、脱珪、脱燐等の量または速度を推定するため従来
は、排ガス煙道の最高部に質量分析計等を設置して排ガ
スの成分濃度を計測していた。即ち排ガスの成分濃度の
計測値に基づいて精錬過程を推定し、メインランスの高
さ、送酸速度、副原料投入量、底吹きガス流量、同圧力
等の操業パラメータを制御してきた。
In order to estimate the amount or rate of decarburization, desiliconization, dephosphorization, etc., conventionally, a mass spectrometer or the like was installed at the highest part of the exhaust gas flue to measure the component concentration of the exhaust gas. That is, the refining process has been estimated based on measured values of the component concentrations of exhaust gas, and operational parameters such as the height of the main lance, oxygen supply rate, amount of auxiliary raw materials input, bottom blowing gas flow rate, and pressure have been controlled.

(発明が解決しようとする問題点) 質量分析針等による排ガス成分濃度の分析はガス体に限
られる為、サンプリング装置にはフィルタが必要である
。1000℃を越す環境に設置され、しかも温度や湿度
が大幅に変化し、またダストも多い。従ってこのような
分析計のメインランスは容易でなく、装置の破壊や目詰
りを起こす事が多い。
(Problems to be Solved by the Invention) Since analysis of the concentration of exhaust gas components using a mass spectrometer needle or the like is limited to gas bodies, a filter is required in the sampling device. It is installed in an environment with temperatures exceeding 1,000 degrees Celsius, where the temperature and humidity change significantly and there is a lot of dust. Therefore, the main lance of such an analyzer is not easy to install, and often causes destruction or clogging of the device.

また従来はガス体のみから得られる情報に基づいて転炉
吹錬の推定モデルを作り精錬過程を推定していたが、精
密な推定には排ガスのみの成分分析では不十分である。
Furthermore, in the past, an estimation model of converter blowing was created based on information obtained only from the gas body and the refining process was estimated, but component analysis of exhaust gas alone is insufficient for accurate estimation.

即ち、精錬過程を正確に把握するためには、CO,C0
2,02、N2、H2等のガス体成分のみならず、銑鉄
に含まれる珪素、燐、硫黄等の酸化の程度や、滓化能力
を知る必要がある。にもかかわらず、従来の方法は、ガ
ス体、ダスト、温度等の条件のうちガス体から得られる
情報のみしか用いていなかった。つまり精錬過程を正確
に知るためには、スラグ成分、例えばFeO,5i02
、P2O5、Mn01CaO等の生成の程度を知る必要
があり、このためには、ダストの成分分析が不可欠であ
る。ガス体のみの分析にたよる従来の方法では、スラグ
生成状態を計測できないので、推定モデルを作成してス
ラグ成分を推定するしかなく、推定誤差がおこることは
避けがたい。例えば高燐鋼から極低燐銅をふくむ多様な
精錬の要求のすべてに対して高い推定精度を維持するこ
とは不可能であった。
That is, in order to accurately understand the refining process, CO, CO
It is necessary to know not only the gaseous components such as 2,02, N2, and H2, but also the degree of oxidation of silicon, phosphorus, sulfur, etc. contained in pig iron, and the ability to form slag. Nevertheless, conventional methods only use information obtained from the gas body among conditions such as gas body, dust, and temperature. In other words, in order to accurately understand the refining process, it is necessary to
, P2O5, Mn01CaO, etc., must be known, and for this purpose analysis of the dust components is essential. Conventional methods that rely on analyzing only gas bodies cannot measure the state of slag formation, so the only way to do this is to create an estimation model and estimate the slag components, which inevitably leads to estimation errors. For example, it has been impossible to maintain high estimation accuracy for all of the various refining requirements, including from high phosphorus steel to ultra-low phosphorus copper.

したがって、本発明の目的は、これらの従来技術の問題
点を解消する転炉排ガスの分析方法及び装置を提供する
ことである。
Therefore, an object of the present invention is to provide a method and apparatus for analyzing converter exhaust gas that solves the problems of these conventional techniques.

とくに排ガス中のガス体とダストを同時にかつ連続的に
分析し、常に高精度で精錬過程の脱炭や珪素、マンガン
、燐等の酸化を推定することを可能にする転炉排ガスの
分析方法および装置を提供することを目的とする。
In particular, a converter exhaust gas analysis method that simultaneously and continuously analyzes gas bodies and dust in the exhaust gas and makes it possible to constantly and highly accurately estimate decarburization during the refining process and oxidation of silicon, manganese, phosphorus, etc. The purpose is to provide equipment.

(問題点を解決するための手段および作用)本発明者は
、これらの目的を達成するため研究を重ねた結果、各元
素がそれぞれ特有の発光スペクトルを有することを利用
する分光分析を用いれば、排ガスおよびダストの成分を
同時にかつ連続的に分析でき、転炉における精錬過程を
精密に推定できることに想到した。すなわち、各元素は
、励起状態において特有の波長の紫外線、可視光、赤外
線を発する。したがって、排ガスおよびダストの発光ス
ペクトルを構成する各成分光の強度を測定すれば、各成
分元素の濃度を算定することができる。この際、排ガス
煙道内の発光を分光器にみちびく光路による光の減衰率
が変化する場合や、煙道内の温度等の発光強度に影響を
与える条件が変化する場合には、これらの効果について
スペクトル成分光強度測定値を補正する必要がある。
(Means and effects for solving the problems) As a result of repeated research to achieve these objectives, the present inventor found that by using spectroscopic analysis that takes advantage of the fact that each element has its own unique emission spectrum, We have come up with the idea that the components of exhaust gas and dust can be analyzed simultaneously and continuously, and the refining process in the converter can be accurately estimated. That is, each element emits ultraviolet light, visible light, and infrared light of specific wavelengths in an excited state. Therefore, by measuring the intensity of each component light constituting the emission spectrum of exhaust gas and dust, the concentration of each component element can be calculated. In this case, if the attenuation rate of light due to the optical path that leads the emitted light in the exhaust gas flue to the spectrometer changes, or if conditions that affect the luminous intensity such as temperature in the flue change, these effects should be considered. It is necessary to correct the spectral component light intensity measurements.

したがって、本発明に従う転炉排ガスの分析方法は、 転炉排ガス煙道内の発光を該煙道から所定の光路に導き
、 該光路を通過した通過光をスペクトルに分解して該通過
光のスペクトル成分光強度を各波長について測定し、 該光路による光の減衰に関し通過光スペクトル成分光強
度の測定値を補正して排ガス煙道内における発光スペク
トル成分光強度に対応する値を各波長について算出し、 算出された煙道的発光スペクトル成分光強度に対応する
値のうち赤外光強度算出値に基づき、算出された煙道的
発光スペクトル成分光強度に対応する値を該煙道内の温
度等の条件について補正して温度補正発光スペクトル成
分光強度を算出し、算出された温度補正発光スペクトル
成分光強度に基づき該煙道内の排ガス及びダストの成分
濃度を継続的に算出するものである。
Therefore, the method for analyzing converter flue gas according to the present invention includes guiding the emitted light in the converter flue gas flue from the flue to a predetermined optical path, decomposing the transmitted light that has passed through the optical path into spectra, and calculating the spectral components of the transmitted light. Measure the light intensity for each wavelength, correct the measured value of the transmitted light spectral component light intensity with respect to the attenuation of light due to the optical path, and calculate a value corresponding to the emission spectral component light intensity in the exhaust gas flue for each wavelength. Based on the infrared light intensity calculation value among the values corresponding to the flue-like emission spectrum component light intensity, the value corresponding to the calculated flue-like emission spectrum component light intensity is calculated based on the conditions such as the temperature inside the flue. The temperature-corrected emission spectrum component light intensity is calculated by correcting the temperature-corrected emission spectrum component light intensity, and the component concentration of exhaust gas and dust in the flue is continuously calculated based on the calculated temperature-corrected emission spectrum component light intensity.

煙道内の発光を導く光路がたとえば光ファイバよりなり
、光の減衰率が一定の場合には、通過光スペクトル成分
光強度と煙道的発光スペクトル成分光強度の関係は不変
であると考えられるから、通過光スペクトル成分光強度
の測定値を煙道的発光スペクトル成分光強度に対応する
値として用いることが可能である。
If the optical path that guides the light emission in the flue is made of, for example, an optical fiber and the attenuation rate of light is constant, the relationship between the light intensity of the transmitted light spectral component and the light intensity of the flue-like emission spectrum component is considered to be unchanged. It is possible to use the measured value of the transmitted light spectral component light intensity as a value corresponding to the flue-like emission spectral component light intensity.

このような場合においては、本発明の転炉排ガスの分析
方法を、 転炉排ガス煙道内の発光を該煙道から所定の光路に導き
、 該光路を通過した通過光をスペクトルに分解して該通過
光のスペクトル成分光強度を各波長について測定し、 通過光スペクトル成分光強度測定値のうち赤外光強度測
定値に基づき、測定された通過光スペクトル成分光強度
を該煙道内の温度等の条件について補正して温度補正発
光スペクトル成分光強度を算出し、 算出された温度補正発光スペクトル成分光強度に基づき
該煙道内の排ガス及びダストの成分濃度を継続的に算出
するものとする事ができる。
In such a case, the method for analyzing converter flue gas of the present invention includes guiding the luminescence in the converter flue gas flue from the flue to a predetermined optical path, and decomposing the transmitted light that has passed through the optical path into spectra. The spectral component light intensity of the passing light is measured for each wavelength, and based on the infrared light intensity measurement value of the passing light spectral component light intensity measurement value, the measured passing light spectral component light intensity is calculated based on the temperature etc. in the flue. The temperature-corrected emission spectrum component light intensity can be calculated by correcting the conditions, and the component concentration of exhaust gas and dust in the flue can be continuously calculated based on the calculated temperature-corrected emission spectrum component light intensity. .

また本発明に従う転炉排ガスの分析装置は、転炉排ガス
煙道壁内面に入光部を有し該煙道内の発光を煙道外に導
く光路と、 該光路に接続され、外光路を通過した通過光をスペクト
ルに分解し、通過光スペクトル成分光強度を各波長につ
いて測定するスペクトル成分光強度測定手段と、 該光路による通過光の減衰率を決定し、決定された該減
衰率に基づき通過光スペクトル成分光強度を補正し煙道
的発光スペクトル成分光強度に対応する値を各波長につ
いて算出する光路減衰補正手段と、 該光路減衰補正手段により算出された発光スペクトル成
分光強度に対応する値の内、赤外光強度に対応する値に
基づき、算出された煙道的発光スペクトル成分光強度に
対応する値を該煙道内の温度等の条件について補正して
温度補正発光スペクトル成分光強度を算出する温度補正
手段と、温度補正発光スペクトル成分光強度と転炉排ガ
ス及びダストの成分濃度の間の関係を記憶する記憶手段
と、 温度補正手段により算出された温度補正発光スペクトル
成分光強度と、該記憶手段に記憶された温度補正発光ス
ペクトル成分光強度と転炉排ガス及びダストの成分濃度
の間の関係とから、転炉排ガス及びダストの成分濃度を
継続的に算出する成分濃度算出手段と、 を備えるものである。
The analyzer for converter flue gas according to the present invention also includes an optical path that has a light entrance part on the inner surface of the converter flue gas flue wall and guides light emitted from the flue to the outside of the flue, and a light path that is connected to the light path and passes through the external light path. A spectral component light intensity measuring means for decomposing the passing light into spectra and measuring the intensity of the spectral components of the passing light for each wavelength; an optical path attenuation correction means for correcting the spectral component light intensity and calculating a value corresponding to the flue-like emission spectral component light intensity for each wavelength; and a value corresponding to the emission spectral component light intensity calculated by the optical path attenuation correction means. Based on the values corresponding to the inner and infrared light intensities, the value corresponding to the calculated flue-like emission spectrum component light intensity is corrected for conditions such as the temperature in the flue to calculate the temperature-corrected emission spectrum component light intensity. storage means for storing the relationship between the temperature-corrected emission spectrum component light intensity and the component concentration of the converter exhaust gas and dust; the temperature-corrected emission spectrum component light intensity calculated by the temperature correction means; component concentration calculation means for continuously calculating the component concentration of the converter exhaust gas and dust from the relationship between the temperature-corrected emission spectrum component light intensity and the component concentration of the converter exhaust gas and dust stored in the storage means; It is something to be prepared for.

また該光路が光ファイバ等よりなり通過光減衰率が不変
であるばあいには、上に述べたのと同じ理由により、本
発明の転炉排ガスの分析装置は、転炉排ガス煙道壁内面
に入光部を有し該煙道内の発光を煙道外に導く光路と、 該光路に接続され、外光路を通過した通過光をスペクト
ルに分解し、通過光スペクトル成分光強度を各波長につ
いて測定するスペクトル成分光強度測定手段と、 測定された通過光スペクトル成分光強度の内、赤外光強
度測定値に基づき、測定された通過光スペクトル成分光
強度を該煙道内の温度等の条件について補正して温度補
正発光スペクトル成分光強度を算出する温度補正手段と
、 温度補正発光スペクトル成分光強度と転炉排ガス及びダ
ストの成分濃度の間の関係を記憶する記憶手段と、 温度補正手段により算出された温度補正発光スペクトル
成分光強度と、該記憶手段に記憶された温度補正発光ス
ペクトル成分光強度と転炉排ガス及びダストの成分濃度
の間の関係とから、転炉排ガス及びダストの成分濃度を
継続的に算出する成分濃度算出手段と、 を備えるものとすることができる。
In addition, if the optical path is an optical fiber or the like and the passing light attenuation rate remains unchanged, for the same reason as stated above, the converter flue gas analyzer of the present invention can be used on the inside surface of the converter flue gas flue wall. An optical path that has a light entrance part and guides the emitted light inside the flue to the outside of the flue, and a light path connected to the optical path that separates the transmitted light that has passed through the external optical path into spectra, and measures the light intensity of the transmitted light spectral components for each wavelength. and a spectral component light intensity measuring means for correcting the measured transmitted light spectral component light intensity for conditions such as temperature in the flue based on the infrared light intensity measurement value of the measured transmitted light spectral component light intensity. temperature correction means for calculating the temperature-corrected emission spectrum component light intensity; storage means for storing the relationship between the temperature-corrected emission spectrum component light intensity and the component concentration of the converter exhaust gas and dust; Continuing the component concentrations of converter exhaust gas and dust from the temperature-corrected emission spectrum component light intensity and the relationship between the temperature-corrected emission spectrum component light intensity and the component concentration of converter exhaust gas and dust stored in the storage means. and component concentration calculation means for calculating the component concentration according to the method.

つぎに本発明の実施例について添付図面を参照しながら
説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.

(実施例) 第1図は本発明の排ガス煙道内の発光をみちびく光路を
導光管とした場合の一実施例装置のブロック図である。
(Embodiment) FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention in which a light guide tube is used as an optical path that leads to light emission in an exhaust gas flue.

精錬中に転炉1から発生した排ガスおよびダストは煙道
2内にみちびかれる。煙道内の排ガスおよびダストは5
00℃から1700℃の高温状態にありその成分濃度に
特有のスペクトルで発光する。即ち、各元素はそれぞれ
特有の発光スペクトルを有するものであり、たとえば、
紫外線域において炭素は193.09nm、 229.
69nm、珪素は180.73r+n+、 288゜1
6nm、鉄は、271.44nm、 229.82nm
、 396.93r+n、288.37nm、288.
08等の波長の線スペクトルを有している。排ガスおよ
びダストの成分分析に必要な燐、マンガン等についても
同様であるが、各元素とその特有の波長の関係は広く知
られている通りである。またその発光強度は、煙道内空
間21の排ガスおよびダストの温度等の発光条件に依存
するものである。
Exhaust gas and dust generated from the converter 1 during refining are led into the flue 2. Exhaust gas and dust in the flue are 5
It is in a high temperature state of 00°C to 1700°C and emits light with a spectrum specific to its component concentration. That is, each element has its own unique emission spectrum, for example,
In the ultraviolet range, carbon is 193.09 nm, 229.
69nm, silicon is 180.73r+n+, 288°1
6nm, iron is 271.44nm, 229.82nm
, 396.93r+n, 288.37nm, 288.
It has a line spectrum of wavelengths such as 0.08. The same applies to phosphorus, manganese, etc., which are necessary for component analysis of exhaust gas and dust, and the relationship between each element and its specific wavelength is widely known. Further, the emission intensity depends on the emission conditions such as the temperature of the exhaust gas and dust in the flue interior space 21.

この発光は、煙道2に取付けられた導光管3を経て、反
射鏡チャンバ4に導かれる。この際、A「ガス圧送器5
から圧送された^rガスは、煙道3内の排ガスおよびダ
ストが浸入するのを妨げ、導光管3や反射鏡チャンバ4
をパージする。反射鏡チャンバ4で反射された光は分光
器6に導かれ、たとえばプリズムによりスペクトルに分
解されて赤外線、可視光、紫外線にわたる各波長のスペ
クトル成分光強度が測定される。
This emitted light is guided to a reflector chamber 4 through a light guide tube 3 attached to a flue 2. At this time, A "gas pressure feeder 5
The gas pumped out from the flue 3 prevents exhaust gas and dust from entering the flue 3 and prevents the light guide 3 and the reflector chamber 4 from entering.
purge. The light reflected by the reflector chamber 4 is guided to a spectrometer 6, where it is separated into spectra by a prism, for example, and the intensity of the spectral components of each wavelength across infrared, visible, and ultraviolet wavelengths is measured.

第2図は、第1図の装置の光路部分の断面図である。同
図を参照しながら、該光路の構造について詳しく説明す
る。
FIG. 2 is a sectional view of the optical path portion of the device of FIG. 1. The structure of the optical path will be explained in detail with reference to the same figure.

導光管3の入光部を構成する導光管プローブ31は、こ
れを囲繞する水冷管32に挿入され、これを介して煙道
壁22に取付けられている。導光管プローブ31の内面
はアルミニウム鏡面仕上げとし、煙道内空間21から入
射した光を矢印の方向にみちびく。
A light guide tube probe 31 constituting a light entrance portion of the light guide tube 3 is inserted into a water-cooled tube 32 surrounding it, and is attached to the flue wall 22 via this. The inner surface of the light guide probe 31 is finished with an aluminum mirror finish, and guides the light incident from the flue interior space 21 in the direction of the arrow.

一方、水冷管32は、たがいに連通ずる円環状の二層の
内外水路32A、32Bより構成され、内水路32Aの
入水口32Gから導入された冷却水は内外水路32A、
32Bを経て出水口32Dから排水される。この結果、
高温の煙道内空間21に突出した導光管プローブ31は
、冷却水により常に冷却される。煙道内空間21の排ガ
ス温度は吹錬中は500℃から1700℃にも達するの
で導光管プローブ31を熱的破壊から守るためには水冷
管32が必要である。水冷管32の煙道内空間21に突
出する外面部分はクロムメンキ等の硬質金属メッキをす
る事が好ましい。煙道内空間2Iを流れる排ガス中の高
温ダストによる摩耗やダスト付着による破壊を防くため
である。
On the other hand, the water cooling pipe 32 is composed of annular two-layer inner and outer waterways 32A and 32B that communicate with each other, and the cooling water introduced from the water inlet 32G of the inner and outer waterways 32A,
The water is drained from the water outlet 32D via the water outlet 32B. As a result,
The light guide probe 31 protruding into the high-temperature flue interior space 21 is constantly cooled by cooling water. Since the temperature of the exhaust gas in the flue interior space 21 reaches from 500° C. to 1700° C. during blowing, the water-cooled tube 32 is necessary to protect the light guide tube probe 31 from thermal destruction. It is preferable that the outer surface portion of the water-cooled pipe 32 protruding into the flue interior space 21 be plated with a hard metal such as chrome plating. This is to prevent wear caused by high-temperature dust in the exhaust gas flowing through the flue interior space 2I and damage caused by dust adhesion.

導光管プローブ31に接続された反射鏡チャンバ4内に
はアルミニウム鏡面仕上げした反射鏡43が設置され、
矢印の方向に導光管プローブ31内を進行してきた光を
反射する。反射された光は接続部44内を分光器6にむ
け矢印の方向に進行する。反射鏡チャンバ4および接続
部44の内面もアルミニウム鏡面仕上げすることが好ま
しい。
A reflecting mirror 43 with an aluminum mirror finish is installed in the reflecting mirror chamber 4 connected to the light guide tube probe 31.
The light traveling inside the light guide tube probe 31 in the direction of the arrow is reflected. The reflected light travels within the connecting portion 44 toward the spectroscope 6 in the direction of the arrow. It is preferable that the inner surfaces of the reflector chamber 4 and the connecting portion 44 are also finished with an aluminum mirror finish.

このように煙道内空間21からの光は反射鏡チャンバ4
において反射される構成となっており、煙道内空間21
の輻射熱が直接、分光器6に入ることが防止される。
In this way, the light from the flue interior space 21 is transmitted to the reflector chamber 4.
It is configured so that it is reflected in the flue interior space 21.
This prevents the radiant heat from directly entering the spectrometer 6.

反射鏡チャンバ4には圧力調整弁52を介してArガス
が圧送される。静ガス圧送器5からのArガスにより反
射鏡43が冷却されるとともに、反射鏡チャンバ4を通
過した静ガスは導光管プローブ3Iに供給される。静ガ
スは、連通管53を介して接続部44にも直接みちびか
れ、接続部44、反射鏡チャンバ4、導光管プローブ3
1内をパージする。Arガス圧送管53には流量計51
および圧力計42が設けられ、反射鏡チャンバ4に送ら
れるArガスの流量および圧力を測定する。これらの測
定値に基づき圧力調整弁52を調整し、反射鏡チャンバ
4や導光管プローブ31内のArガス圧力を所定の範囲
に保持することができる。また、反射鏡チャンバ4には
温度計41が設けられ、その測定温度は圧力計42の測
定値とともに減衰率補正器7に送られ、煙道内空間21
から分光器6に至る光路の減衰率の算出にもちいられる
Ar gas is pumped into the reflector chamber 4 via a pressure regulating valve 52 . The reflecting mirror 43 is cooled by the Ar gas from the static gas pump 5, and the static gas that has passed through the reflecting mirror chamber 4 is supplied to the light guide probe 3I. The static gas is also directly led to the connection part 44 via the communication pipe 53, and connects the connection part 44, the reflector chamber 4, and the light guide tube probe 3.
Purge inside 1. A flow meter 51 is installed in the Ar gas pressure feed pipe 53.
A pressure gauge 42 is provided to measure the flow rate and pressure of Ar gas sent to the reflector chamber 4. The pressure regulating valve 52 is adjusted based on these measured values, and the Ar gas pressure in the reflector chamber 4 and the light guide probe 31 can be maintained within a predetermined range. Further, a thermometer 41 is provided in the reflector chamber 4, and the measured temperature is sent to the attenuation rate corrector 7 together with the measured value of the pressure gauge 42, and the temperature is sent to the attenuation rate corrector 7.
It is used to calculate the attenuation rate of the optical path from the to the spectrometer 6.

第1図に示されているように、減衰率補正器7は、分光
器6および温度計41、圧力計42に接続されている。
As shown in FIG. 1, the attenuation rate corrector 7 is connected to the spectrometer 6, a thermometer 41, and a pressure gauge 42.

減衰率補正器7は、温度計41および圧力計42の出力
に基づき分光器6に至る光路内のArガスによる光の減
衰率を算出し、その逆数を分光器6から出力されるスペ
クトル成分光強度測定値に乗じて、煙道内空間21にお
ける発光スペクトル成分光強度に対応する値を各波長に
ついて算出し、その結果を温度補正器8に出力する。
The attenuation rate corrector 7 calculates the attenuation rate of light due to Ar gas in the optical path leading to the spectrometer 6 based on the outputs of the thermometer 41 and the pressure gauge 42, and calculates the reciprocal of the attenuation rate of the light by Ar gas in the optical path leading to the spectrometer 6. By multiplying the measured intensity value, a value corresponding to the light intensity of the emission spectrum component in the flue interior space 21 is calculated for each wavelength, and the result is output to the temperature corrector 8.

なお、該光路内のArガス圧力および温度と光の減衰率
の関係は予め実験的に確定して減衰率補正器7内に設け
られたメモリに記憶させておくのが好ましい。これによ
り該光路内のArガス圧力が変動しても常に正確な減衰
率を求めることができる。
Note that it is preferable that the relationship between the Ar gas pressure and temperature in the optical path and the attenuation rate of light be determined experimentally in advance and stored in a memory provided in the attenuation rate corrector 7. Thereby, even if the Ar gas pressure within the optical path fluctuates, an accurate attenuation rate can always be determined.

ところで光の減衰率はその波長に依存するものである。Incidentally, the attenuation rate of light depends on its wavelength.

第3図は、減衰率補正器7の出力の一例を示したもので
ある。図において発光スペクトル成分光強度に対応する
値は、横軸のn+1単位でしめされた各成分光の波長の
関数として与えられている。即ち、分光器6は前記光路
を通過した光のスペクトル成分光強度を、赤外線、可視
光、紫外線に亘る各成分光の波長の関数として出力する
ものであり、減衰率補正器7はこれらの値にそれぞれ減
衰率の逆数を乗じて各波長毎に発光スペクトル成分光強
度に対応する値を求めて出力するのである。
FIG. 3 shows an example of the output of the attenuation rate corrector 7. In the figure, the values corresponding to the light emission spectral component light intensities are given as a function of the wavelength of each component light represented by n+1 units on the horizontal axis. That is, the spectroscope 6 outputs the spectral component light intensity of the light that has passed through the optical path as a function of the wavelength of each component light ranging from infrared, visible light, and ultraviolet light, and the attenuation rate corrector 7 outputs the intensity of the spectral components of the light that has passed through the optical path. is multiplied by the reciprocal of the attenuation rate, respectively, to obtain and output a value corresponding to the light intensity of the emission spectrum component for each wavelength.

温度補正器8はメモリ82および演算器83を備えてお
り、減衰率補正器7の”出力を煙道内空間21の温度等
の発光条件に関して補正する。
The temperature corrector 8 includes a memory 82 and an arithmetic unit 83, and corrects the output of the attenuation rate corrector 7 with respect to light emission conditions such as the temperature of the flue interior space 21.

煙道内空間21におりる排ガスおよびダストの発光強度
は同一成分濃度であっち該空間の温度等の条件により変
わってくる。ところで煙道内空間21の温度等の発光条
件は該空間内の発光スペクトル中の赤外線強度に反映す
る。メモリ82は、予め実験的に求められた煙道内空間
21内の例えば1000na+の赤外線強度と他波長域
の発光強度の間の関係を記憶するものである。演算器8
1はメモIJ82の記憶する該関係に基づき減衰率補正
器7の出力を煙道内空間21の温度等の条件に関し補正
し、各波長についての温度補正発光スペクトル成分光強
度を成分濃度算出器9に出力する。
The emission intensity of the exhaust gas and dust entering the flue interior space 21 varies depending on conditions such as the temperature of the space, even though the concentration of the components is the same. Incidentally, the light emission conditions such as the temperature of the flue interior space 21 are reflected in the intensity of infrared rays in the emission spectrum within the space. The memory 82 stores the relationship between the infrared intensity of, for example, 1000 na+ in the flue interior space 21 and the emission intensity of other wavelength ranges, which has been determined experimentally in advance. Arithmetic unit 8
1 corrects the output of the attenuation rate corrector 7 with respect to conditions such as the temperature of the flue interior space 21 based on the relationship stored in the memo IJ82, and sends the temperature-corrected emission spectrum component light intensity for each wavelength to the component concentration calculator 9. Output.

成分濃度算出器9のメモリ92は各元素等についてその
発光スペクトルに特有の波長を記憶するとともに、それ
らの波長のスペクトル成分光強度と各元素の濃度の間の
関係を記憶する。即ち、各元素は、それぞれに特有の線
スペクトルを有するものであるが、メモリ92はこれら
の線スペクトルを構成する波長と各元素の関係を記憶し
ている。
The memory 92 of the component concentration calculator 9 stores wavelengths specific to the emission spectrum of each element, and also stores the relationship between the spectral component light intensity of those wavelengths and the concentration of each element. That is, each element has its own unique line spectrum, and the memory 92 stores the relationship between each element and the wavelengths that make up these line spectra.

たとえば、紫外線域において炭素は193.09nn+
、 229.69nm、珪素は180.73r+m、 
288.16nm、鉄は、271゜44nm、229.
82nm、 396.93nm、288.37nm、2
88.08等の波長の線スペクトルを有している。排ガ
スおよびダストの成分分析に必要な燐、マンガン等につ
いても同様であるが、各元素とその特有の波長の関係は
広く知られている通りである。
For example, in the ultraviolet range, carbon is 193.09nn+
, 229.69nm, silicon is 180.73r+m,
288.16nm, iron is 271°44nm, 229.
82nm, 396.93nm, 288.37nm, 2
It has a line spectrum with a wavelength of 88.08, etc. The same applies to phosphorus, manganese, etc., which are necessary for component analysis of exhaust gas and dust, and the relationship between each element and its specific wavelength is widely known.

また、温度等の発光条件が一定の値にある煙道内空間2
1における排ガスおよびダストの成分元素等の濃度と発
光スペクトル成分光強度のあいだの関係は、予め実験的
に定められ、メモリ92に記憶される。温度補正器8は
、減衰率補正器7の出力する煙道内空間21での発光ス
ペクトル成分光強度に対応する値をこの一定の発光条件
における発光スペクトル成分光強度に対応する値に補正
するのである。
In addition, the flue interior space 2 where the light emission conditions such as temperature are constant values.
The relationship between the concentration of the constituent elements of the exhaust gas and dust and the light intensity of the emission spectrum components in Example 1 is experimentally determined in advance and stored in the memory 92. The temperature corrector 8 corrects the value corresponding to the light emission spectrum component light intensity in the flue interior space 21 outputted by the attenuation rate corrector 7 to a value corresponding to the light emission spectrum component light intensity under this constant light emission condition. .

演算器91は、温度補正器8の出力する各波長について
の温度補正発光スペクトル成分光強度と、メモリ92に
記憶された成分元素と特有の波長の関係およびスペクト
ル成分光強度と元素濃度等との関係に基づき、排ガスお
よびダストの成分濃度を算出して、成分濃度9Aとして
出力する。
The arithmetic unit 91 calculates the temperature-corrected emission spectrum component light intensity for each wavelength output by the temperature corrector 8, the relationship between the component elements and specific wavelengths stored in the memory 92, and the spectral component light intensity and element concentration. Based on the relationship, the component concentrations of exhaust gas and dust are calculated and output as component concentration 9A.

次に第4図および第5図を参照しながら煙道内の発光を
導く光路を光ファイバとした場合の実施例について説明
する。尚、第4図にブロック図を示した装置は、光路を
構成する光ファイバ30および減衰率補正器7以外は第
1図の装置と同様に構成されているので、これらの部分
についてのみ説明し、他の部分の説明を省略する。
Next, with reference to FIGS. 4 and 5, an embodiment will be described in which an optical fiber is used as the optical path for guiding the light emitted in the flue. The device whose block diagram is shown in FIG. 4 has the same structure as the device shown in FIG. 1 except for the optical fiber 30 and the attenuation rate corrector 7 that constitute the optical path, so only these parts will be explained. , description of other parts will be omitted.

第5図は第4図の装置の光路部分の断面図であっる。光
ファイバ30は、中空円筒状のケーシング31に収納さ
れ、第2図に示されたものと同様に構成された水冷管に
挿入され、煙道2の壁面に装着される。ケーシング33
の前面には集光レンズ34が設けられ、煙道2内の発光
を光ファイバ30に導きいれる。また、Arガス圧送器
5から圧送された計ガスは、光ファイバ30を囲繞して
光ファイバ30とケーシング33の間を延在するArガ
ス圧送管53内を進行して光ファイバ30を冷却し、さ
らに集光レンズ34内面および光ファイバ30前面をパ
ージする。
FIG. 5 is a sectional view of the optical path portion of the device of FIG. 4. The optical fiber 30 is housed in a hollow cylindrical casing 31, inserted into a water-cooled tube configured similarly to that shown in FIG. 2, and attached to the wall surface of the flue 2. casing 33
A condensing lens 34 is provided in front of the flue 2 to guide the light emitted from the flue 2 into the optical fiber 30. In addition, the meter gas fed from the Ar gas pressure feeder 5 travels through the Ar gas pressure feed pipe 53 that surrounds the optical fiber 30 and extends between the optical fiber 30 and the casing 33 to cool the optical fiber 30. Furthermore, the inner surface of the condenser lens 34 and the front surface of the optical fiber 30 are purged.

この結果、冷却管の作用と相俟って光ファイバ30の再
結晶が効果的に防止される。尚、圧送器5は^rガスの
代わりに他の不活性ガス、例えば窒素ガスを用いてもよ
い。
As a result, together with the action of the cooling pipe, recrystallization of the optical fiber 30 is effectively prevented. Note that the pressure feeder 5 may use other inert gas, such as nitrogen gas, instead of ^r gas.

光ファイバ30は紫外線をほとんど透過させないので、
分光器6には、赤外光および可視光のみが到達する。分
光器6はこれらの光をスペクトルに分解し、スペクトル
成分光強度を測定して減衰率補正器7に出力する。
Since the optical fiber 30 hardly transmits ultraviolet rays,
Only infrared light and visible light reach the spectrometer 6. The spectrometer 6 decomposes these lights into spectra, measures the spectral component light intensity, and outputs it to the attenuation rate corrector 7.

第4図の装置においては、光路に光ファイバ30を用い
た結果、該光路による光の減衰率は各波長についてほぼ
一定に保たれる。従って、減衰率補正器7のメモリ7I
は実験的に決定されたこの一定の減衰率を各波長につい
て記憶するものである。
In the apparatus shown in FIG. 4, as a result of using the optical fiber 30 in the optical path, the attenuation rate of light through the optical path is kept approximately constant for each wavelength. Therefore, the memory 7I of the attenuation rate corrector 7
stores this experimentally determined constant attenuation factor for each wavelength.

演算器72は、メモリ71の記憶する各波長についての
減衰率の逆数を分光器6の出力するスペクトル成分光強
度測定値に乗じて煙道2内の発光スペクトル成分光強度
に対応する値を算出し、これを温度補正器8に出力する
The calculator 72 multiplies the measured value of the spectral component light intensity output from the spectrometer 6 by the reciprocal of the attenuation rate for each wavelength stored in the memory 71 to calculate a value corresponding to the light emission spectral component light intensity in the flue 2. and outputs this to the temperature compensator 8.

上述のように光ファイバ30を用いた第4図の実施例で
は、可視光から赤外線に亘る波長域のみしか測定されな
い。従って、成分濃度算出器9は、これらの波長域の発
光スペクトル成分光強度のみに基づいて排ガスおよびダ
ストの成分濃度を算出することになる。しかしながら、
光ファイバ30のい減衰率は一定に保たれるので、減衰
率補正器7の構成が第1.2図の装置に比べて単純化で
きる利点がある。さらに場合によっては、減衰率補正器
7を省略し、分光器6の測定値を煙道2内の発光スペク
トル成分光強度に対応する値として用いることができる
。なお、可視光及び赤外’IS iJ域の元素のスペク
トル測定は、例えば下記の波長が良い。
In the embodiment shown in FIG. 4 using the optical fiber 30 as described above, only the wavelength range from visible light to infrared light is measured. Therefore, the component concentration calculator 9 calculates the component concentrations of exhaust gas and dust based only on the emission spectrum component light intensities in these wavelength ranges. however,
Since the attenuation factor of the optical fiber 30 is kept constant, there is an advantage that the structure of the attenuation factor corrector 7 can be simplified compared to the device shown in FIG. 1.2. Furthermore, in some cases, the attenuation rate corrector 7 may be omitted and the measured value of the spectrometer 6 may be used as the value corresponding to the light intensity of the emission spectrum component within the flue 2. Note that, for example, the following wavelengths are suitable for spectrum measurement of elements in the visible light and infrared 'IS iJ regions.

C: 965.849.909.489.906.14
8 (r+n+)St: 794.349 、 T93
.220.791.838 (nw)Mn: 874.
093.870.376  (nm)P : 255.
49、255;33、253.40.959.354 
(nm)Fe: 396.93、438.36、440
.4B、868.86  (nm)Ca: 854.2
1、866、22、714.815 (++m)(効果
) 本発明によれば、以上のように煙道2内の排ガスおよび
ダストを同時にしかも連続的に分析することができ、極
めて高い精度で転炉のtiH!t!過程を推定すること
が可能になる。とくに減衰率補正器7や温度補正器8に
より発光スペクトル成分光強度の測定値を補正している
ので、その精度はさらに向上される。
C: 965.849.909.489.906.14
8 (r+n+)St: 794.349, T93
.. 220.791.838 (nw)Mn: 874.
093.870.376 (nm) P: 255.
49, 255; 33, 253.40.959.354
(nm) Fe: 396.93, 438.36, 440
.. 4B, 868.86 (nm) Ca: 854.2
1,866,22,714.815 (++m) (Effect) According to the present invention, as described above, the exhaust gas and dust in the flue 2 can be analyzed simultaneously and continuously, and can be analyzed with extremely high precision. Furnace tiH! T! It becomes possible to estimate the process. In particular, since the measured values of the light intensity of the emission spectrum components are corrected by the attenuation rate corrector 7 and the temperature corrector 8, the accuracy is further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、光路として導光管を用いた本発明の一実施例
のブロック図、 第2図は、第1図の装置の光路部分の断面図、第3図は
、第1図の装置の減衰率補正器の出力の一例を示すグラ
フ、 第4図は、光路として光ファイバをもちいた一実施例の
ブロック図、 第5図は、第4図の装置の光路部分の断面図である。 尚、図において、同一符号は同一または対応部分を示す
。 l :転炉    2 :煙道 21:煙道内空間 22:煙道壁 3 :導光管   30:光ファイバ 4 :反射鏡チャンバ 4I:温度計   42=圧力針 5 :^rガス圧送器
FIG. 1 is a block diagram of an embodiment of the present invention using a light guide tube as an optical path, FIG. 2 is a sectional view of the optical path portion of the device shown in FIG. 1, and FIG. 3 is a block diagram of the device shown in FIG. 1. FIG. 4 is a block diagram of an embodiment using an optical fiber as the optical path; FIG. 5 is a cross-sectional view of the optical path portion of the device shown in FIG. 4. . In the figures, the same reference numerals indicate the same or corresponding parts. l: Converter 2: Flue 21: Space inside the flue 22: Flue wall 3: Light guide tube 30: Optical fiber 4: Reflector chamber 4I: Thermometer 42 = Pressure needle 5: ^r Gas pumper

Claims (18)

【特許請求の範囲】[Claims] (1)転炉排ガス煙道内の発光を該煙道から所定の光路
に導き、 該光路を通過した通過光をスペクトルに分解して該通過
光のスペクトル成分光強度を各波長について測定し、 該光路による光の減衰に関し通過光スペクトル成分光強
度の測定値を補正して排ガス煙道内における発光スペク
トル成分光強度に対応する値を各波長について算出し、 算出された煙道内発光スペクトル成分光強度に対応する
値のうち赤外光強度算出値に基づき、算出された煙道内
発光スペクトル成分光強度に対応する値を該煙道内の温
度等の条件について補正して温度補正発光スペクトル成
分光強度を算出し、算出された温度補正発光スペクトル
成分光強度に基づき該煙道内の排ガス及びダストの成分
濃度を継続的に算出する、 転炉排ガスの分析方法。
(1) Guide the emitted light in the converter exhaust gas flue from the flue to a predetermined optical path, decompose the transmitted light that passed through the optical path into spectra, and measure the spectral component light intensity of the transmitted light for each wavelength; The measured value of the transmitted light spectral component light intensity is corrected with respect to the attenuation of light due to the optical path, and a value corresponding to the emission spectral component light intensity in the exhaust gas flue is calculated for each wavelength, and the calculated value of the emission spectral component light intensity in the flue is Based on the calculated value of the infrared light intensity among the corresponding values, the value corresponding to the calculated luminescence spectrum component light intensity in the flue is corrected for conditions such as the temperature in the flue to calculate the temperature-corrected luminescence spectrum component light intensity. and continuously calculating component concentrations of exhaust gas and dust in the flue based on the calculated temperature-corrected emission spectrum component light intensity.
(2)該光路は、内面を鏡面にした管状体と、該管状体
内に圧送される不活性ガスを含む特許請求の範囲第1項
記載の転炉排ガスの分析方法。
(2) The method for analyzing converter exhaust gas according to claim 1, wherein the optical path includes a tubular body whose inner surface is mirror-finished, and an inert gas pumped into the tubular body.
(3)該光路による光の減衰に関する通過光スペクトル
成分光強度の補正は、該不活性ガスの圧力および温度の
測定値に基づき行われる特許請求の範囲第2項記載の転
炉排ガスの分析方法。
(3) The converter exhaust gas analysis method according to claim 2, wherein the correction of the transmitted light spectral component light intensity regarding the attenuation of light by the optical path is performed based on the measured values of the pressure and temperature of the inert gas. .
(4)発光スペクトル成分光補正強度と排ガスおよびダ
ストとの関係を予め実験的に決定し、この実験的に決定
された関係および発光スペクトル成分光補正強度の基づ
き煙道内の排ガス及びダストの成分濃度を継続的に算出
する特許請求の範囲第1項記載の転炉排ガスの分析方法
(4) The relationship between the emission spectrum component light correction intensity and the exhaust gas and dust is determined experimentally in advance, and the component concentration of the exhaust gas and dust in the flue is based on this experimentally determined relationship and the emission spectrum component light correction intensity. 1. A converter exhaust gas analysis method according to claim 1, which continuously calculates .
(5)転炉排ガス煙道内の発光を該煙道から所定の光路
に導き、 該光路を通過した通過光をスペクトルに分解して該通過
光のスペクトル成分光強度を各波長について測定し、 通過光スペクトル成分光強度測定値のうち赤外光強度測
定値に基づき、測定された通過光スペクトル成分光強度
を該煙道内の温度等の条件について補正して温度補正発
光スペクトル成分光強度を算出し、 算出された温度補正発光スペクトル成分光強度に基づき
該煙道内の排ガス及びダストの成分濃度を継続的に算出
する、 転炉排ガスの分析方法。
(5) Guide the emitted light in the converter exhaust gas flue from the flue to a predetermined optical path, decompose the passing light that has passed through the optical path into spectra, measure the spectral component light intensity of the passed light for each wavelength, and pass through the flue. Based on the infrared light intensity measurement value of the light spectral component light intensity measurement value, the measured transmitted light spectral component light intensity is corrected for conditions such as the temperature in the flue to calculate the temperature-corrected emission spectral component light intensity. , A method for analyzing converter exhaust gas, which continuously calculates component concentrations of exhaust gas and dust in the flue based on the calculated temperature-corrected emission spectrum component light intensity.
(6)該光路は、光ファイバより構成される特許請求の
範囲第5項記載の転炉排ガスの分析方法。
(6) The converter exhaust gas analysis method according to claim 5, wherein the optical path is comprised of an optical fiber.
(7)該光路を構成する光ファイバによる通過光の減衰
率を予め実験的に決定し、該減衰率の逆数を通過光スペ
クトル成分光強度測定値に乗ずることにより該測定値を
補正して用いる特許請求の範囲第6項記載の転炉排ガス
の分析方法。
(7) Experimentally determine in advance the attenuation rate of the passing light through the optical fibers constituting the optical path, and correct the measured value by multiplying the measured value of the light intensity of the transmitted light spectral component by the reciprocal of the attenuation rate. A method for analyzing converter exhaust gas according to claim 6.
(8)転炉排ガス煙道壁内面に入光部を有し該煙道内の
発光を煙道外に導く光路と、 該光路に接続され、外光路を通過した通過光をスペクト
ルに分解し、通過光スペクトル成分光強度を各波長につ
いて測定するスペクトル成分光強度測定手段と、 該光路による通過光の減衰率を決定し、決定された該減
衰率に基づき通過光スペクトル成分光強度を補正し煙道
内発光スペクトル成分光強度に対応する値を算出する光
路減衰補正手段と、 該光路減衰補正手段により算出された発光スペクトル成
分光強度に対応する値の内、赤外光強度に対応する値に
基づき、算出された煙道内発光スペクトル成分光強度に
対応する値を該煙道内の温度等の条件について補正して
温度補正発光スペクトル成分光強度を算出する温度補正
手段と、温度補正発光スペクトル成分光強度と転炉排ガ
ス及びダストの成分濃度の間の関係を記憶する記憶手段
と、 温度補正手段により算出された温度補正発光スペクトル
成分光強度と、該記憶手段に記憶された温度補正発光ス
ペクトル成分光強度と転炉排ガス及びダストの成分濃度
の間の関係とから、転炉排ガス及びダストの成分濃度を
継続的に算出する成分濃度算出手段と、 を備える転炉排ガスの分析装置。
(8) An optical path that has a light input part on the inner surface of the converter flue gas flue wall and guides the light emitted from the flue to the outside of the flue, and a light path connected to the optical path that decomposes the passing light that has passed through the external optical path into a spectrum and passes it. A spectral component light intensity measuring means for measuring the light spectral component light intensity for each wavelength; and a spectral component light intensity measuring means for determining the attenuation rate of the passing light through the optical path, correcting the passing light spectral component light intensity based on the determined attenuation rate, and correcting the passing light spectral component light intensity within the flue. an optical path attenuation correction means for calculating a value corresponding to the emission spectrum component light intensity; and a value corresponding to the infrared light intensity among the values corresponding to the emission spectrum component light intensity calculated by the optical path attenuation correction means, temperature correction means for calculating a temperature-corrected emission spectrum component light intensity by correcting a value corresponding to the calculated emission spectrum component light intensity in the flue with respect to conditions such as temperature within the flue; A storage means for storing the relationship between component concentrations of converter exhaust gas and dust; a temperature-corrected emission spectrum component light intensity calculated by the temperature correction means; and a temperature-corrected emission spectrum component light intensity stored in the storage means. A converter exhaust gas analyzer comprising: component concentration calculation means for continuously calculating component concentrations of converter exhaust gas and dust from the relationship between the component concentrations of converter exhaust gas and dust.
(9)該光路は、内面を鏡面とした導光管と、該導光管
を通過した光の進路方向を変える反射鏡を有する反射鏡
チャンバと、を備える特許請求の範囲第8項記載の転炉
排ガスの分析装置。
(9) The optical path includes a light guide tube whose inner surface is mirror-finished, and a reflector chamber having a reflector that changes the course direction of the light that has passed through the light guide tube. Analyzer for converter exhaust gas.
(10)該導光管と該反射鏡チャンバに、不活性ガスを
圧送する不活性ガス圧送手段を備える特許請求の範囲第
9項記載の転炉排ガスの分析装置。
(10) The analyzer for converter exhaust gas according to claim 9, comprising an inert gas pumping means for pumping an inert gas to the light guide tube and the reflecting mirror chamber.
(11)該光路減衰補正手段は、該光路内に圧送された
不活性ガスの圧力および温度を測定する圧力計および温
度計と、該光路内の不活性ガス圧力および温度と該光路
による光の減衰率との間の関係を記憶する減衰率記憶手
段と、該圧力計及び温度計により測定された不活性ガス
圧力及び温度と該減衰率記憶手段に記憶された関係に基
づき該光路による光の減衰率を算出する手段を備える特
許請求の範囲第10項記載の転炉排ガスの分析装置。
(11) The optical path attenuation correction means includes a pressure gauge and a thermometer that measure the pressure and temperature of the inert gas pumped into the optical path, and a pressure gauge and a thermometer that measure the pressure and temperature of the inert gas in the optical path, and a an attenuation rate storage means for storing a relationship between the attenuation rate and the attenuation rate; 11. The analyzer for converter exhaust gas according to claim 10, comprising means for calculating an attenuation rate.
(12)該導光管の入光部は、これを囲繞する水冷管を
備える特許請求の範囲第11項記載の転炉排ガスの分析
装置。
(12) The converter exhaust gas analyzer according to claim 11, wherein the light entrance section of the light guide tube includes a water-cooled tube surrounding the light entrance section.
(13)該導光管及び反射鏡チャンバの内面と反射鏡は
、アルミニウム鏡面仕上げされて成る特許請求の範囲第
9項記載の転炉排ガスの分析装置。
(13) The analyzer for converter exhaust gas according to claim 9, wherein the light guide tube and the inner surface of the reflecting mirror chamber and the reflecting mirror are mirror-finished with aluminum.
(14)転炉排ガス煙道壁内面に入光部を有し該煙道内
の発光を煙道外に導く光路と、 該光路に接続され、外光路を通過した通過光をスペクト
ルに分解し、通過光スペクトル成分光強度を各波長につ
いて測定するスペクトル成分光強度測定手段と、 測定された通過光スペクトル成分光強度の内、赤外光強
度測定値に基づき、測定された通過光スペクトル成分光
強度を該煙道内の温度等の条件について補正して温度補
正発光スペクトル成分光強度を算出する温度補正手段と
、 温度補正発光スペクトル成分光強度と転炉排ガス及びダ
ストの成分濃度の間の関係を記憶する記憶手段と、 温度補正手段により算出された温度補正発光スペクトル
成分光強度と、該記憶手段に記憶された温度補正発光ス
ペクトル成分光強度と転炉排ガス及びダストの成分濃度
の間の関係とから、転炉排ガス及びダストの成分濃度を
継続的に算出する成分濃度算出手段と、 を備える転炉排ガスの分析装置。
(14) An optical path that has a light input part on the inner surface of the converter flue gas flue wall and guides the light emitted from the flue to the outside of the flue; A spectral component light intensity measuring means for measuring the light spectral component light intensity for each wavelength; temperature correction means for calculating temperature-corrected emission spectrum component light intensity by correcting conditions such as temperature in the flue; and storing a relationship between temperature-corrected emission spectrum component light intensity and component concentration of converter exhaust gas and dust. From the storage means, the temperature-corrected emission spectrum component light intensity calculated by the temperature correction means, and the relationship between the temperature-corrected emission spectrum component light intensity and the component concentration of converter exhaust gas and dust stored in the storage means, A converter exhaust gas analyzer comprising: component concentration calculation means for continuously calculating component concentrations of converter exhaust gas and dust;
(15)該光路は光ファイバにより構成される特許請求
の範囲第14項記載の転炉排ガスの分析装置。
(15) The analyzer for converter exhaust gas according to claim 14, wherein the optical path is constituted by an optical fiber.
(16)該光路への入光部に、煙道内の発光を光ファイ
バに集光するレンズを備える特許請求の範囲第15項記
載の転炉排ガスの分析装置。
(16) The analyzer for converter exhaust gas according to claim 15, wherein the light entering portion of the optical path is provided with a lens that focuses the light emitted from the flue onto an optical fiber.
(17)該光ファイバおよびレンズをパージする不活性
ガスを圧送する不活性ガス圧送手段を備える特許請求の
範囲第16項記載の転炉排ガスの分析装置。
(17) The analyzer for converter exhaust gas according to claim 16, comprising an inert gas pumping means for pumping an inert gas for purging the optical fiber and lens.
(18)該光路を構成する光ファイバによる通過光の減
衰率を予め実験的に決定し、該減衰率の逆数を通過光ス
ペクトル成分光強度測定値に乗ずることにより該測定値
を補正する減衰率補正手段を備える特許請求の範囲第1
4項記載の転炉排ガスの分析装置。
(18) An attenuation rate in which the attenuation rate of the light passing through the optical fibers constituting the optical path is determined experimentally in advance, and the measured value is corrected by multiplying the measured value of the light intensity of the transmitted light spectral component by the reciprocal of the attenuation rate. Claim 1 comprising correction means
Converter exhaust gas analyzer according to item 4.
JP22986485A 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas Pending JPS6290524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22986485A JPS6290524A (en) 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22986485A JPS6290524A (en) 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas

Publications (1)

Publication Number Publication Date
JPS6290524A true JPS6290524A (en) 1987-04-25

Family

ID=16898892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22986485A Pending JPS6290524A (en) 1985-10-17 1985-10-17 Method and apparatus for analyzing converter exhaust gas

Country Status (1)

Country Link
JP (1) JPS6290524A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843311A (en) * 1994-07-29 1996-02-16 Shimadzu Corp Icp emission spectrophotometer and light sampling device
JP2003004631A (en) * 2001-06-18 2003-01-08 Kawasaki Kiko Co Ltd Component-measuring apparatus
JP2013040825A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Analysis method and analyzer
JP2013134232A (en) * 2011-12-27 2013-07-08 Horiba Ltd Gas analyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843311A (en) * 1994-07-29 1996-02-16 Shimadzu Corp Icp emission spectrophotometer and light sampling device
JP2003004631A (en) * 2001-06-18 2003-01-08 Kawasaki Kiko Co Ltd Component-measuring apparatus
JP2013040825A (en) * 2011-08-12 2013-02-28 Jfe Steel Corp Analysis method and analyzer
JP2013134232A (en) * 2011-12-27 2013-07-08 Horiba Ltd Gas analyzer

Similar Documents

Publication Publication Date Title
US4288062A (en) Apparatus for control and monitoring of the carbon potential of an atmosphere in a heat-processing furnace
US7787123B2 (en) Two line gas spectroscopy calibration
US3746513A (en) Chemiluminescent process
JP2009216385A (en) Gas analyzer and wavelength sweeping control method of laser in gas analyzer
Halstead et al. The kinetics of elementary reactions involving the oxides of sulphur III. The chemiluminescent reaction between sulphur monoxide and ozone
US20090101822A1 (en) System and method for sensing fuel moisturization
US4730925A (en) Method of spectroscopically determining the composition of molten iron
WO1989002072A1 (en) Method and apparatus for optically measuring concentration of material
Vehring et al. Optical determination of the temperature of transparent microparticles
US5739038A (en) Spectrometer gas analyzer system
JPS6290524A (en) Method and apparatus for analyzing converter exhaust gas
CN106537123A (en) Method for analyzing nitrogen in metal samples, device for analyzing nitrogen in metal samples, method for adjusting nitrogen concentration in molten steel, and steel production method
JP2001509596A (en) Method for calibration of spectroscopic sensors
Davies et al. Reactions of oxygen atoms with hydrogen cyanide, cyanogen chloride and cyanogen bromide
Vranckx et al. Kinetics of O (1D)+ H 2 O and O (1D)+ H 2: absolute rate coefficients and O (3P) yields between 227 and 453 K
US3829696A (en) Atmospheric no monitor
Nelson Jr et al. A mechanistic study of the reaction of HO2 radical with ozone
JP5086971B2 (en) Dust concentration measuring device in gas, dust concentration calibration method of dust concentration measuring device, dust concentration measuring method in gas
US5644401A (en) Method for direct chemical analysis of molten metal using spectrometer
Burns et al. Diode laser atomic fluorescence temperature measurements in low-pressure flames
JPH0324438A (en) Method of detecting deterioration of engine oil
US10288561B1 (en) Gas analyzer
US20060145584A1 (en) Method and apparatus for determining the bulb temperature of high pressure discharge lamps
JPS60129628A (en) Continuous measurement of molten steel temperature
JP3304700B2 (en) Method and apparatus for direct analysis of molten metal