JPS6252423A - Method and apparatus for continuously measuring temperature of molten metal - Google Patents

Method and apparatus for continuously measuring temperature of molten metal

Info

Publication number
JPS6252423A
JPS6252423A JP60191739A JP19173985A JPS6252423A JP S6252423 A JPS6252423 A JP S6252423A JP 60191739 A JP60191739 A JP 60191739A JP 19173985 A JP19173985 A JP 19173985A JP S6252423 A JPS6252423 A JP S6252423A
Authority
JP
Japan
Prior art keywords
temperature
gas
molten metal
optical fiber
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60191739A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamamoto
俊行 山本
Takeshi Okada
剛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60191739A priority Critical patent/JPS6252423A/en
Publication of JPS6252423A publication Critical patent/JPS6252423A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres

Abstract

PURPOSE:To reduce measuring cost by reducing wear of the parts of a temp. measuring probe, by continuously measuring the temp. of a molten metal using a radiation thermometer having a non-consumption type temp. measuring probe. CONSTITUTION:The blow gas for a temp. measuring probe 10 is allowed to flow not only to cool an optical fiber 11 but also to prevent the penetration of molten steel from the leading end of a tuyere during blowing and the blow gas for a porous nozzle is passed to promote the stirring of molten steel. The radiation energy from the surface of molten steel is condensed by the condensing lens 22 of the temp. measuring probe 10 and guided to a radiation thermometer 2 through the optical fiber 11. The radiation energy guided to the radiation thermometer receives photoelectric conversion in said thermometer to be converted to electric energy corresponding to the quantity of light and said electric energy is subsequently converted to a temp. value. By this method, the contact of the temp. measuring probe with the molten metal is prevented and said probe can be cooled so as not to be melted by the radiant heat from the molten metal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、溶鋼など溶融金属の温度測定方法及び装置に
関する。更に詳細には、本発明は、非消耗型の測温プロ
ーブを持つ放射温度計を用いて溶融金属の温度を連続的
に測定する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for measuring the temperature of molten metal such as molten steel. More particularly, the present invention relates to a method and apparatus for continuously measuring the temperature of molten metal using a radiation thermometer having a non-consumable temperature probe.

従来の技術 転炉における吹錬中の溶鋼等のように非常に高温である
溶鋼の温度を測定する方法としては、従来、サブランス
先端に消耗型の熱電対を取り付けて測定する方法が一般
的に採用されている。
Conventional technology The conventional method for measuring the temperature of extremely high-temperature molten steel, such as molten steel during blowing in a converter, is to attach a consumable thermocouple to the tip of a sublance. It has been adopted.

転炉を利用した溶銑の吹錬の場合を挙げて詳細に説明す
ると、出鋼時の溶鋼成分(主にCSP、S)と溶鋼温度
を管理する事が主要な課題である。
To explain in detail the case of hot metal blowing using a converter, the main issue is to control the molten steel components (mainly CSP and S) and molten steel temperature at the time of tapping.

従来特に炭素と温度についてはサブランスを用い、吹錬
の中期時及び末期時に各一度、溶鋼中に測定測温プロー
ブを挿入し、測定する事が広く行なわれている。
Conventionally, carbon and temperature in particular have been measured by using a sub-lance and inserting a temperature measuring probe into the molten steel once each in the middle and final stages of blowing.

この測定測温プローブは、サブランス先端に熱電対を設
置したものだが、溶鋼に挿入すると数秒で溶解し、連続
使用はもとより再使用も不可能である。
This temperature measurement probe has a thermocouple installed at the tip of the sublance, but when inserted into molten steel, it melts within a few seconds and cannot be used continuously or reused.

従って、従来は、吹錬の中期及び末期というように時期
を選んで間欠的に測温を行っていた。しかし、この従来
技術による間欠的測定方法では高精度の溶鋼成分及び温
度の制御には不十分であり、又測定の度に測温プローブ
を消耗するので、ランニングコストが非常に高くなる等
の問題がある。
Therefore, in the past, temperatures were measured intermittently at selected times, such as during the middle and final stages of blowing. However, this intermittent measurement method using conventional technology is insufficient for highly accurate control of molten steel composition and temperature, and the temperature measurement probe is consumed each time it is measured, resulting in extremely high running costs. There is.

又、近年の上底吹複合吹錬が採用されるに従い、吹錬の
各段階における溶鋼温度を制御することが必要となり、
溶鋼温度を連続的に測定することが要望されている。
In addition, as top-bottom blowing combined blowing has been adopted in recent years, it has become necessary to control the molten steel temperature at each stage of blowing.
There is a demand for continuous measurement of molten steel temperature.

このような背景の下で、第6図のように、集光レンズを
先端部62に備えた光ファイバ61と、これら集光レン
ズ及び光ファイバを内蔵してこれら集光レンズおよび光
ファイバの周囲にガスを吹込む機構とを備えた測温プロ
ーブを製鋼炉63の湯留り部に相当する炉壁に設けられ
た羽口64に設置する方法が提案された。光ファイバ6
1で集光した溶鋼65の放射エネルギーを光ファイバ6
1に接続した放射温度計66で測定し温度に換算するも
のである。
Under such a background, as shown in FIG. 6, an optical fiber 61 equipped with a condensing lens at its tip 62, a built-in optical fiber 61 with a condensing lens and an optical fiber built in, and a structure surrounding the condensing lens and optical fiber are constructed. A method has been proposed in which a temperature measuring probe equipped with a mechanism for blowing gas into the steelmaking furnace 63 is installed in a tuyere 64 provided on the furnace wall corresponding to the sump portion of the steelmaking furnace 63. optical fiber 6
1, the radiant energy of the molten steel 65 is transferred to the optical fiber 6.
The temperature is measured with a radiation thermometer 66 connected to 1 and converted into temperature.

ところが、この方法では、吹込んだガスによる冷却のた
め、マツシュルーム状の凝固鋼67が羽口64付近に生
成してしまう。この凝固鋼67は吹錬中に成長し、吹錬
末期には羽口64の前面をほぼ全て覆うようになる。従
って、凝固鋼67の成長により、光ファイバ61の視野
が一部凝固鋼67で遮られ、溶鋼面が一部分しか見えな
くなって正確な温度測定ができなくなり、最後には測定
自体が不可能となる。
However, in this method, solidified steel 67 in the shape of a pine mushroom is generated near the tuyere 64 due to cooling by the blown gas. This solidified steel 67 grows during blowing and comes to cover almost the entire front surface of the tuyere 64 at the end of blowing. Therefore, due to the growth of the solidified steel 67, the field of view of the optical fiber 61 is partially obstructed by the solidified steel 67, and only a portion of the molten steel surface is visible, making accurate temperature measurement impossible, and eventually making measurement itself impossible. .

そこで、吹込みガス中に酸素を付加することによって通
常マツシュルーム状に堆積する凝固物の形成を防止し、
溶鋼の放射エネルギーを連続的に測定する方法が特開昭
60−129628号に提案された。
Therefore, by adding oxygen to the blown gas, we can prevent the formation of condensates that usually form in the form of pine mushrooms.
A method for continuously measuring the radiant energy of molten steel was proposed in JP-A-60-129628.

しかしながら、吹込みガス中への酸素の混合度によって
、吹込みガスと溶鋼との界面温度が大きく変化してしま
い、またガスの混合割合の微調製が難しいので、精度の
高い溶鋼温度測定を行なうことが困難であった。
However, the interface temperature between the injected gas and molten steel changes greatly depending on the mixing degree of oxygen in the injected gas, and it is difficult to fine-tune the gas mixture ratio, so it is necessary to measure the molten steel temperature with high precision. It was difficult.

さらに、界面温度の上昇を防止するために不活性ガスの
みを羽口から吹込む方法が特開昭60−61633号に
提案された。ところが、この方法では前にも述べた様に
ガス吹込みによる冷却効果によって羽口の前部にマツシ
ュルーム状の凝固物が形成し、その結果、光ファイバの
視野欠は等が発生して高精度の測定を行なうことができ
なかった。
Furthermore, in order to prevent an increase in interface temperature, a method of blowing only an inert gas through the tuyere was proposed in JP-A-60-61633. However, as mentioned earlier, with this method, a pine mushroom-like solidified substance is formed in the front part of the tuyere due to the cooling effect of gas injection, and as a result, the field of view of the optical fiber is lost, etc. could not be measured.

発明が解決しようとする問題点 本発明の目的は、上記従来の技術の問題点を解決し、溶
鋼温度を連続的に高精度に測定する方法及び装置を提供
することにあり、測定コストを低減し且つ測定精度を向
上せしめようとするものである。
Problems to be Solved by the Invention An object of the present invention is to solve the above-mentioned problems of the conventional technology and to provide a method and apparatus for continuously measuring molten steel temperature with high precision, thereby reducing measurement costs. The aim is to improve measurement accuracy.

問題点を解決するための手段 本発明者は、上記の従来の技術の問題を解決し、本発明
の目的を達成し得る方法および装置を開発すべく種々検
討した結果、中央に光ファイバを埋。
Means for Solving the Problems As a result of various studies to develop a method and apparatus capable of solving the above-mentioned problems of the conventional technology and achieving the object of the present invention, the inventor of the present invention discovered an optical fiber buried in the center. .

め込む溶融金属温度測定孔を備えた多孔ノズルを使用し
、周辺の多孔に吹込んだガスで溶融金属の攪拌を促進す
るとともに中央の温度測定孔から吹込んだガスで光フア
イバ先端の溶鋼面を保持し測温することが有効であるこ
とを見出した。
Using a multi-hole nozzle with a hole for measuring the temperature of molten metal, the gas injected into the surrounding holes promotes stirring of the molten metal, and the gas injected through the temperature measurement hole in the center measures the surface of the molten steel at the tip of the optical fiber. We found that it is effective to hold and measure temperature.

すなわち、本発明の溶融金属温度連続測定方法は、溶融
金属容器の湯留り部に相当する炉底又は炉壁に羽口を設
け、中央には光ファイバと該光ファイバの周囲にガスを
流す機構とを備えた測温プローブを有し且つ周辺には多
数の細孔を有する多孔ノズルを前記羽口内に設置し、前
記測温プローブおよび前記多数の細孔にガスを吹込み、
前記多数の細孔に吹込んだガスにより溶融金属の攪拌を
促進し、前記測温プローブに吹込んだガスにより前記測
温プローブ先端の溶融金属面を保持し、前記光ファイバ
と接続する放射温度計により溶融金属温度を連続的に測
定することを特徴とする。
That is, the continuous molten metal temperature measuring method of the present invention includes providing a tuyere on the bottom or wall of the furnace corresponding to the sump of the molten metal container, and flowing an optical fiber in the center and a gas around the optical fiber. A porous nozzle having a temperature measuring probe equipped with a mechanism and having a large number of pores around the tuyere is installed in the tuyere, and gas is blown into the temperature measuring probe and the large number of pores,
The gas blown into the many pores promotes stirring of the molten metal, the gas blown into the temperature probe holds the molten metal surface at the tip of the temperature probe, and the radiant temperature is connected to the optical fiber. It is characterized by continuously measuring the molten metal temperature using a meter.

また、上記の測定方法を実施するために、本発明の溶融
金属温度連続測定装置は、中央に光ファイバと該光ファ
イバの周囲にガスを流す機構とを備えた測温プローブを
有し且つ周辺に多数の細孔を有し、溶融金属容器の湯留
り部に相当する炉底又は炉壁に設けられた羽口内に設置
されるようになされた多孔ノズルと、該多孔ノズルの前
記測温プローブおよび前記多数の細孔にそれぞれガスを
゛吹込む第1および第2のガス吹込み装置と、前記光フ
ァイバに接続し、溶融金属からの放射エネルギーを前記
光ファイバを介して集光し、前記溶融金属の温度に換算
する放射温度計とを有することを特徴とする。
In addition, in order to carry out the above measurement method, the molten metal temperature continuous measuring device of the present invention has a temperature measuring probe equipped with an optical fiber in the center and a mechanism for flowing gas around the optical fiber, and A porous nozzle having a large number of pores and installed in a tuyere provided in a furnace bottom or a furnace wall corresponding to a sump of a molten metal container, and the temperature measurement of the porous nozzle. first and second gas blowing devices that blow gas into the probe and the plurality of pores, respectively; connected to the optical fiber, and condensing radiant energy from the molten metal through the optical fiber; It is characterized by comprising a radiation thermometer that converts the temperature of the molten metal.

なお、本発明の好ましい態様においては、多孔ノズルに
吹込むガスが不活性ガスであり、放射温度計が測温プロ
ーブの前方に位置する溶融金属の温度低下を測温プロー
ブに吹込んだガスの流量の関数として補正する。
In a preferred embodiment of the present invention, the gas blown into the porous nozzle is an inert gas, and the radiation thermometer detects the temperature drop of the molten metal located in front of the temperature measuring probe by measuring the temperature of the gas blown into the temperature measuring probe. Correct as a function of flow rate.

]J 以上のような構成とすることによって、多孔ノズル周辺
に配した細孔から吹込まれたガスは羽口近傍の溶融金属
の攪拌を促進する。すなわち、溶融金属の攪拌が盛んに
なることにより、吹込みガスで冷却されていない溶融金
属が羽口近傍に供給されることになる。測温プローブ先
端での熱バランスを考えると、溶融金属の攪拌により羽
口先端に供給される熱量Q1と、測温プローブから吹込
まれるガスが溶融金属の温度近くまで加熱されるときに
ガスによって奪われる熱量Q2との大小関係でマツシュ
ルーム状の凝固物の生成条件が決定され、 Ql  >Q2 のときには凝固物は生成せず、逆に、 Ql くQ2 の場合に凝固物が生成すると言うことができる。
]J With the above configuration, the gas blown through the pores arranged around the porous nozzle promotes stirring of the molten metal near the tuyere. That is, as the molten metal is actively stirred, the molten metal that has not been cooled by the blown gas is supplied to the vicinity of the tuyere. Considering the heat balance at the tip of the temperature measuring probe, the amount of heat Q1 supplied to the tip of the tuyere by stirring the molten metal, and the amount of heat Q1 supplied to the tip of the tuyere by stirring the molten metal, and The conditions for the formation of a matsumroom-like solidified substance are determined by the magnitude relationship with the amount of heat taken away Q2, and it can be said that a solidified substance will not be formed when Ql > Q2, and conversely, a solidified substance will be formed when Ql < Q2. can.

従って、多孔ノズル周辺の細孔から吹込むガス量を制御
することによって、羽口近傍における凝固物の生成を防
止することができる。
Therefore, by controlling the amount of gas blown through the pores around the porous nozzle, it is possible to prevent the formation of solidified matter in the vicinity of the tuyere.

特に、多孔ノズルを用いると吹込みガスによる冷却効果
が広い面積にわたって分散されるため、羽口近傍での局
部的な溶融金属の冷却の影響が少なく、また多数の孔か
ら吹込まれるガスによる攪拌効果が大きいので、効率的
に羽口近傍での凝固物の生成を防止することが可能とな
る。
In particular, when a multi-hole nozzle is used, the cooling effect of the blown gas is dispersed over a wide area, so there is less localized cooling effect on the molten metal near the tuyere, and the gas blown through the many holes causes agitation. Since the effect is large, it becomes possible to efficiently prevent the formation of coagulum near the tuyere.

さらに、本発明では吹込みガス中に酸素を添加しないの
で、測温プローブ先端でのガスと溶融金属との界面にお
いて発熱反応はなく、ガスによる冷却だけが存在する。
Furthermore, in the present invention, since oxygen is not added to the blown gas, there is no exothermic reaction at the interface between the gas and the molten metal at the tip of the temperature measuring probe, and only cooling by the gas exists.

従って、この冷却効果を定量的に把握することが可能と
なり、羽口の形状が定まれば、測温プローブ先端から吹
込むガス量に応じて冷却効果の大きさが決定される。そ
こで、ガス吹込みによる羽口近傍の溶融金属の温度低下
量を測温プローブに吹込んだガス量の関数とじて求め、
測定温度を補正することができる。
Therefore, it is possible to quantitatively understand this cooling effect, and once the shape of the tuyere is determined, the magnitude of the cooling effect is determined according to the amount of gas blown in from the tip of the temperature measuring probe. Therefore, we calculated the amount of temperature decrease in the molten metal near the tuyere due to gas injection as a function of the amount of gas injected into the temperature probe.
The measured temperature can be corrected.

また、測温手段は、溶融金属表面よりの放射エネルギー
を測定する放射温度計が用いられる。
Further, as the temperature measuring means, a radiation thermometer that measures radiant energy from the surface of the molten metal is used.

ファイバ先端部に設けた集光レンズにより得られた光束
は、溶融金属中の成分(C,PSS、Si等)が酸化す
る際に発するスペクトル等(これは基本的には線スペク
トルである)の測定ノイズとなる各種スペクトルを含む
。従って、溶融金属からの熱放射エネルギーのみが観測
される波長帯域のエネルギーのみを選択的に透過させる
フィルタを温度計本体に設けるのが好ましい。このよう
に波長帯域を選ぶことで溶融金属からの放射エネルギー
のみが測定でき、溶融金属の温度測定は非常に精密なも
のとなる。
The light beam obtained by the condensing lens provided at the tip of the fiber has a spectrum (which is basically a line spectrum) emitted when components in the molten metal (C, PSS, Si, etc.) oxidize. Contains various spectra that cause measurement noise. Therefore, it is preferable to provide the thermometer body with a filter that selectively transmits only the energy in the wavelength band in which only the thermal radiation energy from the molten metal is observed. By selecting the wavelength band in this way, only the radiant energy from the molten metal can be measured, making the temperature measurement of the molten metal extremely precise.

本発明で使用する放射温度計は、測定対象となる温度域
の発光スペクトルの波長域に対応する狭帯酸形温度計が
好ましい。
The radiation thermometer used in the present invention is preferably a narrow band acid thermometer that corresponds to the wavelength range of the emission spectrum of the temperature range to be measured.

更に、羽口からは測温プローブおよびその周囲の多孔ノ
ズルを通じて羽口先端が詰まらない様十分な流量のガス
を吹込み、測温プローブが溶融金属に接触するのを防止
し、或いは溶融金属からの放射熱で溶解しないように冷
却し、更に溶融金属の流入を防止する。
Furthermore, a sufficient flow rate of gas is blown from the tuyere through the temperature measuring probe and the porous nozzle surrounding it to prevent the temperature measuring probe from coming into contact with the molten metal, or to prevent the temperature measuring probe from coming into contact with the molten metal. The radiant heat of the metal cools the metal so that it does not melt, and further prevents the inflow of molten metal.

かくして、本発明による溶融金属温度測定方法及び装置
では、極めて正確に溶融金属温度の測定を実施すること
ができる。
Thus, with the molten metal temperature measuring method and apparatus according to the present invention, molten metal temperature can be measured very accurately.

実施例 以下、添付の図面を参照して本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明の1実施例に係る溶融金属温度連続測
定装置の構成図である。多孔ノズル1が製鋼炉の炉壁の
耐火レンガ3に設けられた羽口4内に設置され、その多
孔ノズルlと羽口壁4との一間隙には、耐火性充填物5
が充填されている。そして、多孔ノズル1の後部には、
金属バイブロが気密状態に結合され、その金属バイブロ
は、耐火レンガ3を覆う鉄皮7に設けられた貫通穴を通
って外部に延びており、金属バイブロと耐火レンガ3と
の間隙には、別の耐火性充填物8が充填されている。
FIG. 1 is a configuration diagram of a continuous molten metal temperature measuring device according to an embodiment of the present invention. A porous nozzle 1 is installed in a tuyere 4 provided in a refractory brick 3 on the furnace wall of a steelmaking furnace, and a refractory filler 5 is placed in a gap between the porous nozzle l and the tuyere wall 4.
is filled. And, at the rear of the multi-hole nozzle 1,
A metal vibro is connected in an airtight state, and the metal vibro extends to the outside through a through hole provided in an iron skin 7 covering the firebricks 3. It is filled with a refractory filling 8 of.

更に、多孔ノズル1の中央には、測温孔15が貫通して
おり、その測温孔15には、光ファイバ11を内蔵する
プローブ10が挿入されている。そして、そのプローブ
10に内蔵された光ファイバ11の炉外側には放射温度
計2が接続されている。さらに、そのプローブ10と、
金属バイブロとには、測温プローブ用ガス吹込みダクト
12および多孔ノズル用ガス吹込みダクト13をそれぞ
れ介して、ガス流量を所望の値に設定することができる
測温プローブ用ガス吹込み装置(図示していない)およ
び多孔ノズル用ガス吹込み装置(図示していない)が接
続されている。
Further, a temperature measuring hole 15 passes through the center of the multi-hole nozzle 1, and a probe 10 containing an optical fiber 11 is inserted into the temperature measuring hole 15. A radiation thermometer 2 is connected to the outside of the furnace of the optical fiber 11 built into the probe 10. Furthermore, the probe 10,
The metal vibro is equipped with a temperature measuring probe gas blowing device (which can set the gas flow rate to a desired value through the temperature measuring probe gas blowing duct 12 and the porous nozzle gas blowing duct 13, respectively). (not shown) and a gas blowing device for a multi-hole nozzle (not shown) are connected.

製鋼炉の炉壁と同様に、多孔ノズル1は、例えば本実施
例ではMg0−C質の耐火レンガ14から構成されてお
り、上記したプローブ10が挿入されている測温孔15
は、図示の実施例にあっては、耐火レンガ14の中心線
上に設けられた直径7 mmの貫通孔であり、また、プ
ローブ10は、2重管構造になされている。なお、多孔
ノズル1は、内径7 mm及び2mmのステンレスの細
管を、ノズル耐火物焼成前に耐火物内に多数理め込み、
成形・焼成して作る方法や、ノズルを短冊形に切断しそ
の表面に機械加工で溝をきったのち再度セメント等で材
料をはりあわせることにより製作される。前者の場合、
測温孔、ガス吹き込み細孔とも円筒であるが、後者の場
合、ガス吹き込み細孔は三角形をした筒状となるが、ど
ちらの場合も本使用目的に適合している。
Similar to the furnace wall of a steelmaking furnace, the porous nozzle 1 is made of, for example, an Mg0-C refractory brick 14 in this embodiment, and has a temperature measuring hole 15 into which the above-described probe 10 is inserted.
In the illustrated embodiment, is a through hole with a diameter of 7 mm provided on the center line of the refractory brick 14, and the probe 10 has a double tube structure. The porous nozzle 1 is made by inserting a large number of stainless steel thin tubes with inner diameters of 7 mm and 2 mm into the refractory before firing the nozzle refractory.
It can be manufactured by molding and firing, or by cutting the nozzle into strips, machining grooves on their surfaces, and then gluing them together with cement or other materials. In the former case,
Both the temperature measurement hole and the gas blowing hole are cylindrical, and in the latter case, the gas blowing hole is triangular and cylindrical, but either case is suitable for the purpose of use.

第2図は、プローブlOの炉内側の先端付近における断
面図である。2重管の内、内管21は内径2mm、外径
3[[1I11のステンレスシース管からなり、その内
部に集光レンズ22とそれに接続された光ファイバ11
を収容している。なお、本実施例では、光フアイバ先端
に集光レンズを付けたものを使用しているが、集光レン
ズは必ずしも必要でない。一方、外管23は内径5++
+m、外径5mmのステンレスシース管からなり、内管
21と外管23の間は中空で、この間隔を固定部材24
により保持している。また、内管21および外管23か
らなる2重管の炉内側の先端は、耐火レンガ14の炉壁
よりも若干炉外側へ後退している。さらに、内管21と
外管23の間の中空部は炉外側端部でダクト12に接続
しており、測温プローブ用ガス吹込み装置によりダクト
12を介してガスを流通し、測温プローブ先端方向に吹
出すように構成されている。
FIG. 2 is a cross-sectional view near the tip inside the furnace of the probe IO. The inner tube 21 of the double tube is made of a stainless steel sheath tube with an inner diameter of 2 mm and an outer diameter of 3 [[1I11], and a condensing lens 22 and an optical fiber 11 connected thereto.
It accommodates. In this embodiment, an optical fiber with a condensing lens attached to the tip is used, but the condensing lens is not necessarily required. On the other hand, the outer tube 23 has an inner diameter of 5++
It is made of a stainless steel sheathed tube with an outer diameter of 5 mm, and the space between the inner tube 21 and the outer tube 23 is hollow, and this gap is maintained by the fixing member 24.
It is maintained by Further, the tip of the double tube consisting of the inner tube 21 and the outer tube 23 on the inside of the furnace is slightly set back to the outside of the furnace than the furnace wall of the refractory bricks 14. Furthermore, the hollow part between the inner tube 21 and the outer tube 23 is connected to the duct 12 at the outer end of the furnace, and gas is circulated through the duct 12 by a gas blowing device for the temperature measuring probe. It is configured to blow out in the direction of the tip.

第3図は第1図のA−A’方向から見た多孔ノズル1の
正面図である。中央に上記の測温孔15が設けられてお
り、その周囲に1辺10mmの網目状にそれぞれ大きさ
2ml1]の正方形状細孔31が多数設けられている。
FIG. 3 is a front view of the multi-hole nozzle 1 seen from the direction AA' in FIG. The above-mentioned temperature measuring hole 15 is provided in the center, and a large number of square pores 31 each having a size of 2 ml1 are provided in a mesh shape of 10 mm on a side around the temperature measuring hole 15.

多数の細孔31はそれぞれ耐火レンガ14内を通り、炉
外側端部でダクト13に接続しており、多孔ノズル用ガ
ス吹込み装置によってダクト13を介してガスを流通し
、炉内に吹出すように構成されている。
A large number of pores 31 each pass through the refractory brick 14 and are connected to the duct 13 at the outer end of the furnace, and a gas blowing device for a multi-hole nozzle allows gas to flow through the duct 13 and is blown into the furnace. It is configured as follows.

本実施例において、吹込みガスは、直径100mmの多
孔ノズルを使用した場合、測温プローブ用として流量2
50β/minのAr、多孔ノズル用として流量600
 ji! /minのArを用いた。
In this example, when a porous nozzle with a diameter of 100 mm is used, the blowing gas has a flow rate of 2 for the temperature measurement probe.
50β/min Ar, flow rate 600 for multi-hole nozzle
ji! /min Ar was used.

このようにして、測温プローブ用吹込みガスを流すこと
により、光ファイバ11を冷却すると同時に、吹錬中に
羽口先端から溶鋼が侵入するのを防止し、多孔ノズル用
吹込みガスを流すことにより、溶鋼の攪拌を促進する。
In this way, by flowing the blowing gas for the temperature measuring probe, the optical fiber 11 is cooled, and at the same time, molten steel is prevented from entering from the tip of the tuyere during blowing, and the blowing gas for the porous nozzle is allowed to flow. This promotes stirring of molten steel.

さて、溶鋼面からの放射エネルギーは測温プローブの集
光レンズ22で集光され、光ファイバ11を介して放射
温度計2に導かれる。
Now, the radiant energy from the molten steel surface is collected by the condensing lens 22 of the temperature measuring probe and guided to the radiation thermometer 2 via the optical fiber 11.

放射温度計2としては溶鋼からの熱放射のみが観測され
るような波長域を使用し、放射エネルギーを測定するの
が望ましいので、ここでは吹込みガスによる吸収がない
0.9μmに主波長を設定した。
It is desirable to use the radiation thermometer 2 in a wavelength range in which only thermal radiation from molten steel is observed and measure the radiant energy, so here we set the dominant wavelength to 0.9 μm, where there is no absorption by the blown gas. Set.

放射温度計に導かれた放射エネルギーはそこで光電変換
され、光量に応じた電気エネルギーに変換された後、温
度値に換算される。
The radiant energy guided to the radiation thermometer is photoelectrically converted there, converting it into electrical energy according to the amount of light, and then converting it into a temperature value.

測温プローブ用として流量250β/minのAr、多
孔ノズル用として流量6001 /minのArを供給
する条件下において、本実施例に基づく温度測定方法に
より吹錬中の溶鋼温度を測定した一例を第4図に破線で
示す。第4図にはあわせて浸漬型温度計にて測定した溶
鋼温度も白丸で示しである。この第4図を見ると、両者
の測定値は常にほぼ対応しているものの、両側定値間に
はある偏差が存在し、本実施例による測定値が従来の浸
漬型温度計による測定値より低くなっていることがわか
る。これは、測温プローブから吹込むガス流量により、
羽口先端の溶鋼界面が冷却されているためと考えられる
An example in which the temperature of molten steel during blowing was measured by the temperature measurement method based on this example under the conditions of supplying Ar at a flow rate of 250 β/min for the temperature measuring probe and Ar at a flow rate of 6001 β/min for the porous nozzle will be described below. It is shown by the broken line in Figure 4. In FIG. 4, the molten steel temperature measured with an immersion thermometer is also indicated by a white circle. Looking at this figure 4, although the measured values of the two always almost correspond, there is a certain deviation between the fixed values on both sides, and the measured value of this example is lower than the measured value of the conventional immersion type thermometer. You can see that it is happening. This is due to the gas flow rate blown from the temperature probe.
This is thought to be due to the cooling of the molten steel interface at the tip of the tuyere.

一般に、羽口先端におけるガスと溶鋼との熱バランスは
次式により表わされる。
Generally, the heat balance between gas and molten steel at the tip of the tuyere is expressed by the following equation.

WCp八TへΣ(ΔH+ −Qq −)    ・・〔
1〕ま ただし、 W :羽口前の気泡に接し熱交換に有効な溶
鋼の質量 C1:溶鋼の比熱 ΔT:気泡表面の溶鋼の温度変化 ΔHi :羽口前の反応により生成する成分lのエンタ
ルピー Q gas  :ガスが熱交換により気泡内で受けるエ
ネルギ一 本実施例のように吹込みガスとして不活性ガスを用いる
と、 ΔH1=0 である。また、質IWは羽口の径および吹込みガス流量
の関数と考えられる。実際に、本実施例の羽口を用い、
多孔ノズル用ガスの流量60011 /minで、測温
プローブ用ガスの流量を変化させ、ガス吹込みによる溶
鋼の温度低下量を測定したところ、第5図のような結果
を得た。そこで、溶鋼の温度低下量を測温プローブ用ガ
スの流量の関数として測定温度を補正することが可能と
なる。
To WCp8T Σ(ΔH+ −Qq −) ... [
1] However, W: Mass of molten steel in contact with the bubbles in front of the tuyere and effective for heat exchange C1: Specific heat of molten steel ΔT: Temperature change of molten steel on the surface of the bubbles ΔHi: Enthalpy of component 1 generated by the reaction before the tuyere Q gas: Energy received by gas within the bubble due to heat exchange When an inert gas is used as the blown gas as in the embodiment, ΔH1=0. The quality IW is also considered to be a function of the diameter of the tuyere and the flow rate of the blown gas. Actually, using the tuyere of this example,
The flow rate of the gas for the temperature measuring probe was varied at a flow rate of 60011/min for the gas for the porous nozzle, and the amount of temperature reduction in the molten steel due to gas injection was measured, and the results shown in FIG. 5 were obtained. Therefore, it becomes possible to correct the measured temperature by using the amount of temperature decrease of the molten steel as a function of the flow rate of the temperature measuring probe gas.

本実施例における測温プローブ用人rガスの流量250
1 /minに対応する温度低下量を補正量として予め
放射温度計に設定し、溶鋼温度を測定した結果を第4図
に一点鎖線で示す。補正後の測定値は浸漬型温度計の測
定値と極めてよく一致しており、本発明の方法及び装置
による溶鋼温度の測定が十分な精度を達成していること
がわかる。
Flow rate of human r gas for temperature measurement probe in this example: 250
The temperature reduction amount corresponding to 1/min was set in advance in the radiation thermometer as a correction amount, and the molten steel temperature was measured. The results are shown in FIG. 4 by a dashed line. The measured values after correction agree extremely well with the measured values of the immersion thermometer, and it can be seen that the measurement of molten steel temperature by the method and apparatus of the present invention achieves sufficient accuracy.

なお、本実施例では網目状に細孔を配した多孔ノズルを
用いたが、細孔の配置は必ずしも網目状である必要はな
く、同心円状の配置や全く不規則な配置等でもよい。
In this example, a porous nozzle with pores arranged in a mesh pattern was used, but the arrangement of the pores does not necessarily have to be in a mesh pattern, and may be arranged concentrically or completely irregularly.

また、本実施例では溶鋼が凝固しにくいように、ガス吹
込み羽口としてMgOC系の耐火レンガを使用したがこ
れに限定されるものではない。
Further, in this embodiment, MgOC-based refractory bricks were used as the gas injection tuyeres so that the molten steel would be difficult to solidify, but the present invention is not limited to this.

発明の効果 以上詳細に説明したように本発明によれば、従来の測温
方法のようにその部品を消耗することもなく、また精度
の高い温度測定を連続して行なうことができる。
Effects of the Invention As described in detail above, according to the present invention, there is no need to wear out the parts unlike in conventional temperature measuring methods, and highly accurate temperature measurements can be carried out continuously.

従って、本発明の溶融金属温度連続測定方法及び装置は
極めて有用なものである。
Therefore, the method and apparatus for continuously measuring molten metal temperature of the present invention are extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例に係る温度測定装置の構成図
、 第2図は第1図の測温プローブの炉内側の先端付近にお
ける断面図、 第3図は第1図のA−A’方向から見た多孔ノズル1の
正面図、 第4図は本発明による溶鋼温度の測定結果を浸漬型温度
計にて測定した結果と比較して示したグラフ、 第5図は測温プローブ用ガス流量と溶鋼の温度低下の関
係を示すグラフ、 第6図は従来の測温方法を示す概略図である。 〔主な参照番号〕 1・・多孔ノズル    2.66・・放射温度計3.
14・・耐火レンガ  4.64・・羽口5.8・・耐
火性充填物 6・・金属パイプ7・・鉄皮      
 10・・測温プローブ11、61・・光ファイバ
FIG. 1 is a configuration diagram of a temperature measuring device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the temperature measuring probe in FIG. 1 near the tip inside the furnace, and FIG. A front view of the multi-hole nozzle 1 seen from the A' direction, FIG. 4 is a graph comparing the molten steel temperature measurement results according to the present invention with the results measured with an immersion thermometer, and FIG. 5 is a temperature measurement probe. Figure 6 is a graph showing the relationship between the gas flow rate and the temperature drop of molten steel, and is a schematic diagram showing a conventional temperature measurement method. [Main reference numbers] 1. Porous nozzle 2.66. Radiation thermometer 3.
14. Firebrick 4.64. Tuyere 5.8. Fireproof filling 6. Metal pipe 7. Iron shell
10...Temperature probe 11, 61...Optical fiber

Claims (6)

【特許請求の範囲】[Claims] (1)溶融金属容器の湯留り部に相当する炉底又は炉壁
に羽口を設け、中央には光ファイバと該光ファイバの周
囲にガスを流す機構とを備えた測温プローブを有し且つ
周辺には多数の細孔を有する多孔ノズルを前記羽口内に
設置し、前記測温プローブおよび前記多数の細孔にガス
を吹込み、前記多数の細孔に吹込んだガスにより溶融金
属の攪拌を促進し、前記測温プローブに吹込んだガスに
より前記測温プローブ先端の溶融金属面を保持し、前記
光ファイバと接続する放射温度計により溶融金属温度を
連続的に測定することを特徴とする溶融金属温度連続測
定方法。
(1) A tuyere is provided on the furnace bottom or furnace wall, which corresponds to the sump of the molten metal container, and a temperature measuring probe equipped with an optical fiber and a mechanism for flowing gas around the optical fiber is installed in the center. A porous nozzle having a large number of pores around the tuyere is installed in the tuyere, and gas is blown into the temperature measuring probe and the pores, and the gas blown into the pores causes the molten metal to melt. The molten metal surface at the tip of the temperature measurement probe is held by a gas blown into the temperature measurement probe, and the molten metal temperature is continuously measured by a radiation thermometer connected to the optical fiber. Features a continuous measurement method for molten metal temperature.
(2)前記ガスが不活性ガスであることを特徴とする特
許請求の範囲第1項に記載の測定方法。
(2) The measuring method according to claim 1, wherein the gas is an inert gas.
(3)前記測温プローブの前方に位置する溶融金属の温
度低下を前記測温プローブに吹込んだガスの流量の関数
として補正することを特徴とする特許請求の範囲第1項
あるいは第2項に記載の測定方法。
(3) The temperature drop of the molten metal located in front of the temperature measuring probe is corrected as a function of the flow rate of gas blown into the temperature measuring probe. Measurement method described in.
(4)中央に光ファイバと該光ファイバの周囲にガスを
流す機構とを備えた測温プローブを有し且つ周辺に多数
の細孔を有し溶融金属容器の湯留り部に相当する炉底又
は炉壁に設けられた羽口内に設置されるようになされた
多孔ノズルと、 該多孔ノズルの前記測温プローブおよび前記多数の細孔
にそれぞれガスを吹込む第1および第2のガス吹込み装
置と、 前記光ファイバに接続し、溶融金属からの放射エネルギ
ーを前記光ファイバを介して集光し、前記溶融金属の温
度に換算する放射温度計と を有することを特徴とする溶融金属温度連続測定装置。
(4) A furnace that has a temperature measuring probe equipped with an optical fiber in the center and a mechanism for flowing gas around the optical fiber, and has many pores around the periphery and corresponds to the sump of the molten metal container. a multi-hole nozzle installed in a tuyere provided in the bottom or the furnace wall; and first and second gas blowers that blow gas into the temperature measuring probe and the plurality of pores of the multi-hole nozzle, respectively. and a radiation thermometer connected to the optical fiber to collect radiation energy from the molten metal via the optical fiber and convert it into the temperature of the molten metal. Continuous measurement device.
(5)前記ガスが不活性ガスであることを特徴とする特
許請求の範囲第4項に記載の測定装置。
(5) The measuring device according to claim 4, wherein the gas is an inert gas.
(6)前記放射温度計が、前記測温プローブの前方に位
置する溶融金属の温度低下を前記測温プローブに吹込ん
だガスの流量の関数として補正することを特徴とする特
許請求の範囲第4項あるいは第5項に記載の測定装置。
(6) The radiation thermometer corrects the temperature drop of the molten metal located in front of the temperature measurement probe as a function of the flow rate of gas blown into the temperature measurement probe. The measuring device according to item 4 or 5.
JP60191739A 1985-08-30 1985-08-30 Method and apparatus for continuously measuring temperature of molten metal Pending JPS6252423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60191739A JPS6252423A (en) 1985-08-30 1985-08-30 Method and apparatus for continuously measuring temperature of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60191739A JPS6252423A (en) 1985-08-30 1985-08-30 Method and apparatus for continuously measuring temperature of molten metal

Publications (1)

Publication Number Publication Date
JPS6252423A true JPS6252423A (en) 1987-03-07

Family

ID=16279692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60191739A Pending JPS6252423A (en) 1985-08-30 1985-08-30 Method and apparatus for continuously measuring temperature of molten metal

Country Status (1)

Country Link
JP (1) JPS6252423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085464A (en) * 1994-06-17 1996-01-12 Nkk Corp Temperature measuring device using optical fiber for high temperature liquid
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085464A (en) * 1994-06-17 1996-01-12 Nkk Corp Temperature measuring device using optical fiber for high temperature liquid
US9726545B2 (en) 2013-04-30 2017-08-08 Heraeus Electro-Nite International N.V. Method and apparatus for measuring the temperature of a molten metal
EP2940441A1 (en) 2014-04-30 2015-11-04 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
US10378824B2 (en) 2014-04-30 2019-08-13 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal

Similar Documents

Publication Publication Date Title
KR101742901B1 (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
US5585914A (en) Apparatus and method for measuring a temperature of a high temperature liquid contained in a furnace
JPS6252423A (en) Method and apparatus for continuously measuring temperature of molten metal
US3747408A (en) Temperature measurement
JP3166483B2 (en) Optical fiber temperature measuring device
JPS60129628A (en) Continuous measurement of molten steel temperature
JP5014555B2 (en) In-furnace observation method of molten iron refining furnace
US20040105153A1 (en) Device for reception and transmission of electromagnetic waves emitted by a material sample
JPH01314928A (en) Temperature measuring method and apparatus for melting steel
JPS62226025A (en) Measuring method for fire point temperature of steel making furnace
JP3175510B2 (en) Temperature measuring device for high temperature liquid using optical fiber
JPS6191529A (en) Temperature measuring apparatus for molten metal
JP2803542B2 (en) Converter operation method
JP2803534B2 (en) Converter blowing control method
JPH0238932A (en) Continuous temperature measuring method for molten metal
JPS63230815A (en) Tuyere for refining
JPH0815040A (en) Temperature measuring device with optical fiber for high temperature liquid
JPH0431004B2 (en)
JPH11281485A (en) Continuous temperature measuring method for molten steel
JPH0631683B2 (en) Position measurement method for molten metal lining surface
JPH06273072A (en) Tuyere
JPS58117814A (en) Controlling method for temperature of molten steel
JPH03197612A (en) Method for refining molten metal
JP2005315777A (en) Spark radiation measurement method and apparatus therefor
JPS62228426A (en) Tuyere for refining