JPS6289563A - Production of heat insulating piston - Google Patents

Production of heat insulating piston

Info

Publication number
JPS6289563A
JPS6289563A JP22820985A JP22820985A JPS6289563A JP S6289563 A JPS6289563 A JP S6289563A JP 22820985 A JP22820985 A JP 22820985A JP 22820985 A JP22820985 A JP 22820985A JP S6289563 A JPS6289563 A JP S6289563A
Authority
JP
Japan
Prior art keywords
piston
coating layer
ceramic
heat insulating
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22820985A
Other languages
Japanese (ja)
Other versions
JPH0620638B2 (en
Inventor
Noritaka Miyamoto
典孝 宮本
Joji Miyake
譲治 三宅
Takashi Tomota
隆司 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22820985A priority Critical patent/JPH0620638B2/en
Publication of JPS6289563A publication Critical patent/JPS6289563A/en
Publication of JPH0620638B2 publication Critical patent/JPH0620638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat resistance of a piston and to extend the life thereof by forming a piston injection hole part consisting of a ceramic sprayed layer contg. microcracks and underlying metal sprayed layer on a pattern surface and casting the piston with said part as a core. CONSTITUTION:Heat insulating ceramics is thermally sprayed to the pattern 3 copying the piston injection hole part 2 by using plastic or wax and immediately a refrigerant is sprayed to a coating layer 4a to generated the many microcracks on the coating layer 4a. An Ni or Co alloy is then thermally sprayed onto the ceramic coating layer 4a to form the underlying metal coating layer 6a and thereafter the melt of a piston base metal 10 is poured with the pattern 3 as the core to cast a heat insulating piston 1. The heat resistance of the piston is thereby improved and the life thereof is extended.

Description

【発明の詳細な説明】 (産業上の利用分野) 内燃機関用ピストンの製造において、ピストン噴孔部の
模型にセラミック等を溶射してできた中子を鋳型に鋳込
んで製造する断熱ピストンの製造方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) In the production of pistons for internal combustion engines, a heat-insulating piston is manufactured by casting a core made by thermally spraying ceramic or the like onto a model of the piston nozzle hole into a mold. Regarding the manufacturing method.

(従来の技術) 従来、燃焼室を形造るピストン噴孔部は高温にさらされ
るため、それに対応できる耐熱性と耐食性を要求する。
(Prior Art) Conventionally, piston nozzle holes that form the combustion chamber are exposed to high temperatures, so they are required to have heat resistance and corrosion resistance to cope with the high temperatures.

それ故、ピストン噴孔部にセラミックを溶射したシ、ま
たは燃焼室を型取ったセラミック焼結体を鋳込んだシす
る方法がある( Cumm1nic/ TACoM A
dvanced Adiabatic Engine 
by R。
Therefore, there is a method of spraying ceramic on the piston nozzle hole, or casting a ceramic sintered body shaped like the combustion chamber (Cumm1nic/TACoM A
Advanced Adiabatic Engine
by R.

Kamos 8AE Technical Paper
 5eries* 840428あるいは特開昭58−
87275号公報参照)。
Kamos 8AE Technical Paper
5eries* 840428 or Unexamined Japanese Patent Publication No. 1983-
(See Publication No. 87275).

上記公報の開示内容を参照すると、耐熱金属材料で構成
されたガスタービン等の部品において、その表面に設け
られた前記耐熱金属材料よシ高温耐食性に富む金属被覆
層上に微細な割れを有するセラミック被覆層が形成され
ている。
Referring to the disclosure content of the above-mentioned publication, in a gas turbine or other component made of a heat-resistant metal material, a ceramic material having minute cracks on a metal coating layer that is more resistant to high-temperature corrosion than the heat-resistant metal material provided on its surface. A covering layer is formed.

このセラミック被覆層は先ず酸素分圧10−3トール以
下に制御された雰囲気中で表面温度が該セラミックの再
結晶化温度以上で、しかも母材および被覆層の合金それ
ぞれの融点よシも低い温度であるように熱せられた前記
耐熱金属材料で被覆された母材上に、セラミック粒子を
溶射することによってそれを被覆し、次いでセラミック
被覆層の表面に冷媒を吹きつけた後急冷させ、セラミッ
ク被覆層に割れを生じさせている。
This ceramic coating layer is first formed in an atmosphere controlled to have an oxygen partial pressure of 10-3 Torr or less, at a temperature that is at least the recrystallization temperature of the ceramic and lower than the respective melting points of the base material and the alloy of the coating layer. Ceramic particles are coated by thermal spraying on the base material coated with the heat-resistant metal material heated as follows, and then the surface of the ceramic coating layer is sprayed with a coolant and then rapidly cooled to form a ceramic coating. This causes cracks in the layers.

このような形成過程によシ作られたセラミック被覆層を
有する部品は空孔等の少ない稠密な合金被覆層によシ母
材を高温腐食から保護するとともに、セラミックの低い
熱伝導率と高いふく対車によって部品の温度を低減する
上で有効である。
Parts with a ceramic coating layer made by this formation process have a dense alloy coating layer with few pores, which protects the base material from high-temperature corrosion, and also has the low thermal conductivity and high resistance of ceramics. It is effective in reducing the temperature of parts in vehicles.

(発明が解決しようとする問題点) しかしながら、上記製造方法によるセラミック溶射の被
覆層をピストンの噴孔部に使用すると、ピストン母材(
たとえばAn−8i系合金)と被覆層との熱膨張率の違
い、あるいはショットプラス)Kよる母材の表面あらさ
不足等により溶射直後や実機運転中にピストン母材と下
地金属間で亀裂や剥離が生じ孔、微小クラックを発生さ
せて熱応力を緩和したものにおいても、下地金属層にセ
ラミック層を形成した後、冷媒等によシ冷却してセラミ
ック層に微小クラックを発生させるので、第8図に示す
ように下地金属層とセラミック間で微小クラックを横切
る方向のクラック5aが入シセラミック層が剥離すると
いう問題点があった。
(Problems to be Solved by the Invention) However, when the coating layer of ceramic sprayed by the above manufacturing method is used for the nozzle hole of the piston, the piston base material (
For example, cracks or peeling may occur between the piston base material and base metal immediately after thermal spraying or during actual machine operation due to differences in thermal expansion coefficient between the An-8i alloy (An-8i alloy) and the coating layer, or insufficient surface roughness of the base metal due to shot plus (K). Even in the case where thermal stress is alleviated by generating holes and microcracks, the ceramic layer is formed on the underlying metal layer and then cooled with a refrigerant etc. to generate microcracks in the ceramic layer. As shown in the figure, there was a problem in that cracks 5a in the direction across the micro cracks were formed between the base metal layer and the ceramic, causing the ceramic layer to peel off.

また、これらの場合におけるセラミック溶射は、第9図
に示すように凹部形状のピストン噴孔部2内に行なうた
め、溶射中酸化された溶融粉末が跳返シ、これがピスト
ン母材10に付着して被覆層に酸化層11が形成され、
溶射層の密着性低下の原因となるとともに、被覆層を均
一の厚さKすることが難しく、ピストン噴孔部の形状を
精密に形成することができないという問題もある。
Furthermore, since ceramic spraying in these cases is carried out inside the recessed piston nozzle hole 2 as shown in FIG. An oxide layer 11 is formed on the coating layer,
This causes a decrease in the adhesion of the thermally sprayed layer, and there is also the problem that it is difficult to form the coating layer to a uniform thickness K, and the shape of the piston nozzle hole cannot be precisely formed.

このような問題点を解消するため、本発明の目的はピス
トン噴孔部の壁面を型取った模型表面にセラミック溶射
し、これを急冷してセラミック被覆層に微小クラックを
形成した後下地金属を溶射することによシ、セラミック
と下地金属の両層間の密着性を確実なものとし、熱膨張
によりセラミック層の亀裂・剥離の発生を防止して耐熱
性を高めた断熱ピストンの製造方法を提供することにあ
る。
In order to solve these problems, the purpose of the present invention is to spray ceramic onto the surface of a model made of the wall surface of the piston nozzle hole, rapidly cool it to form microcracks in the ceramic coating layer, and then coat the base metal. Provides a method for manufacturing an insulated piston that uses thermal spraying to ensure adhesion between the ceramic and base metal layers, prevents cracking and peeling of the ceramic layer due to thermal expansion, and improves heat resistance. It's about doing.

(問題点を解決するための手段) 上記目的を達成するため、本発明の断熱ピストンの製造
方法は、燃焼室を形成するピストン噴孔部の壁面を型取
りた模型表面に断熱用セラミックを溶射後、該模型を急
冷して前記断熱用セラミックの被覆層に微小クラックを
発生させ、次いでNi又はCo系合金等の下地金属を前
記被覆層に溶射して鋳型に入れる中子を形成し、該中子
を鋳込んで断熱ピストンを形成するようKしたことを特
徴としている。
(Means for Solving the Problems) In order to achieve the above object, the method for manufacturing a heat insulating piston of the present invention includes thermally spraying a heat insulating ceramic on the surface of a model formed by molding the wall surface of a piston nozzle hole forming a combustion chamber. After that, the model is rapidly cooled to generate microcracks in the heat-insulating ceramic coating layer, and a base metal such as Ni or Co-based alloy is sprayed onto the coating layer to form a core to be placed in the mold. It is characterized by the fact that the core is cast to form an insulated piston.

(作 用) セラミック等の溶射は、凹部形状であるピストン噴孔部
棲面へ直接するのでなく、ピストン噴孔部を型取った凸
形状の模型表面に行なうため、溶射工程が容易となシ、
凹部内溶射の際に起こる酸化された溶融粉末の跳返シで
酸化物を取シ込むこともなくて密着強度が安定し、かつ
完成後のピストン噴孔部の形状が正確なものを得ること
ができる。
(Function) Thermal spraying of ceramics, etc. is not done directly on the recessed surface of the piston nozzle hole, but rather on the surface of a convex model formed by molding the piston nozzle hole, which simplifies the thermal spraying process. ,
To obtain stable adhesion strength without introducing oxides due to splashing of oxidized molten powder that occurs during thermal spraying in a recess, and to obtain an accurate piston nozzle hole shape after completion. I can do it.

さらに、セラミック被覆層に微小クラックを形成した後
に下地金属を溶射することになるため、微小クラック形
成としての冷媒等の冷却による影響を下地金属の被覆層
は受けることがないからセラミックと下地金属の被覆層
間の密着強度部向上する。
Furthermore, since the base metal is thermally sprayed after forming microcracks in the ceramic coating layer, the base metal coating layer is not affected by cooling such as refrigerant that forms microcracks. Improves adhesion strength between coating layers.

このようなことからピストンの噴孔部に耐熱性を有し、
寸法精度の高いセラミックの被覆層を有する断熱ピスト
ンとなる。
Because of this, the nozzle hole of the piston has heat resistance,
This is a heat insulating piston with a ceramic coating layer with high dimensional accuracy.

(実施例) 本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described based on the drawings.

第1図は、第2図に示す断熱ピストン1を作成するため
の流れ図である。
FIG. 1 is a flowchart for producing the heat insulating piston 1 shown in FIG.

まず、プラスチック、ワックスなど所定温度以上で融解
焼却可能な物質によって、燃焼室を形成するピストン噴
孔部2の模型3を作成する(第3図参照)。
First, a model 3 of the piston nozzle hole 2 that forms the combustion chamber is created using a material such as plastic or wax that can be melted and incinerated at a predetermined temperature or higher (see FIG. 3).

次に、 この模型3にZrO2* AJ203+ Cr
2O3系の断熱性能の優れたセラミック4をプラズマ溶
射する。第4図は溶射によって模型表面3aにセラミッ
ク被覆層4aが形成された状態を示しておシ、この膜厚
は断熱効果を考慮するとCL5m以上であることが望ま
しい。
Next, we added ZrO2* AJ203+ Cr to this model 3.
A 2O3-based ceramic 4 with excellent heat insulation performance is plasma sprayed. FIG. 4 shows a state in which a ceramic coating layer 4a is formed on the model surface 3a by thermal spraying, and the thickness of this coating is preferably CL5m or more in consideration of the heat insulation effect.

また、溶射工程は模型3がくずれるような高温とならぬ
ように注意し、冷却を待って再び溶射する等の対策がな
される。
Further, during the thermal spraying process, care is taken to ensure that the temperature does not reach such a high temperature that the model 3 collapses, and measures are taken such as waiting for the model 3 to cool before spraying again.

セラミック4の溶射後、直ちに被覆層4a表面に冷媒を
吹舞付け、被覆層4aにその厚さ方向へ無数の微小クラ
ック5を発生させる(第5図参照)。
Immediately after the ceramic 4 is thermally sprayed, a coolant is sprayed onto the surface of the coating layer 4a to generate numerous microcracks 5 in the thickness direction of the coating layer 4a (see FIG. 5).

ここに使用する冷媒としては、空気又はAr。The refrigerant used here is air or Ar.

He、 N2などの不活性ガスを用いている。また、微
小クラック5の幅および間隔は讐被覆層4aの膜厚や冷
却条件により任意に調整できるようになっている。好ま
しい微小クラック5は、その幅および間隔を十分小さい
方が良いとされ、たとえばクラック5の幅は1〜50μ
、その間隔は[L1〜10w程度とする。微小クラック
5を発生させる手段としては冷却以外にシ田ットプラス
ト法による衝撃作用によシフランクを発生させてもよい
Inert gases such as He and N2 are used. Furthermore, the width and spacing of the microcracks 5 can be arbitrarily adjusted depending on the thickness of the coating layer 4a and the cooling conditions. Preferably, the width and spacing of the microcracks 5 should be sufficiently small; for example, the width of the cracks 5 is 1 to 50 μm.
, the interval is about [L1 to 10w]. As a means for generating the microcracks 5, in addition to cooling, a sifting surface may be generated by an impact effect using the Sita plast method.

次に、セラミック溶射の下地金属6として用イル材料は
、例えば、N1A)* N t CrAJ、 NtCr
AjY。
Next, the material used as the base metal 6 for ceramic spraying is, for example, N1A)*NtCrAJ, NtCr
AjY.

N1CoCrAjY、 CoCrAjY、 FeCrA
jY等でありて、これらの内いずれかをセラミック被覆
層4a上に溶射ガン7から溶射する。
N1CoCrAjY, CoCrAjY, FeCrA
jY, etc., and any one of these is sprayed from a thermal spray gun 7 onto the ceramic coating layer 4a.

この下地金属6の被覆層6aの膜厚はα1〜5■程度と
する。また、使用する金属粉末は溶射後表面あらさ几2
が大きくなるように可能な限シ粒径の大きなもの(10
〜100μ程度)とし、かつ溶射粒子の飛行速度もあま
シ速くない方が望ましく50〜500 m/ s程度が
最適である。
The thickness of the coating layer 6a of the base metal 6 is approximately α1 to 5cm. In addition, the metal powder used has a surface roughness of 2 after thermal spraying.
The particle size is as large as possible (10
~100μ), and the flight speed of the sprayed particles is preferably not too fast, and is optimally about 50 to 500 m/s.

以上によシ、模型3上に、微小クラック5を有するセラ
ミック被覆層4aとN t e Co系合金の下地金属
被覆層6aとの2種類の被覆層を形成した燃焼室となる
中子8をピストンを鋳造する鋳型9の底部に載置する。
Based on the above, a core 8 that will become a combustion chamber is formed on the model 3 with two types of coating layers: a ceramic coating layer 4a having micro-cracks 5 and a base metal coating layer 6a made of NteCo alloy. It is placed on the bottom of the mold 9 in which the piston is to be cast.

中子8を所定位置に配設した鋳型9内にピストン母材1
0を流し込み、溶射による被覆層で形成されたピストン
噴孔部2を備えた断熱ピストン1を鋳造する。
A piston base material 1 is placed in a mold 9 in which a core 8 is placed in a predetermined position.
A heat insulating piston 1 having a piston nozzle hole 2 formed of a coating layer formed by thermal spraying is cast.

この鋳造過程でプラスチック、ワックス等が被覆層4a
上に残存しておれば、その部分に熱を加えるなどして、
模型5の残部を除却する。
During this casting process, plastic, wax, etc. are deposited on the coating layer 4a.
If it remains on top, apply heat to that part, etc.
Discard the remainder of Model 5.

また、中子8t−鋳込んで鋳造するとき、中子8はあら
かじめ模型3部分を除去′シ九溶射による被覆層4aa
6aのみによる形状として使用してもよい。
In addition, when casting the core 8t, the model 3 part of the core 8 is removed in advance.
It may also be used as a shape based only on 6a.

こうして製造された断熱ピストン1を用いてエンジンの
実機試験を行なった。本実施例の測定結果によれば10
00時間以上の使用に対しても損傷を生ずることなく、
従来のピストンでは50時間程度でもわずかな損傷を伴
うことから考えて、格段の耐熱性と寿命の向上が認めら
れた。
An actual engine test was conducted using the thus manufactured heat insulating piston 1. According to the measurement results of this example, 10
It can be used for over 00 hours without any damage.
Considering that conventional pistons are subject to slight damage even after 50 hours, the new piston has significantly improved heat resistance and lifespan.

上記効果の理由として以下の点が挙げられる。The following points can be cited as reasons for the above effects.

■ 下地金属を溶射した時点で表面あらさRzが50〜
100μと大きいことから溶湯との機械的かみあいに優
り、発生する熱応力に耐えることができる。
■ Surface roughness Rz is 50~ at the time of thermal spraying the base metal.
Since it has a large diameter of 100μ, it has excellent mechanical engagement with the molten metal and can withstand the thermal stress that occurs.

■ 下地金属を溶射する際に、凹部内に溶射する場合と
異なシ、溶湯で鋳込んだ時点でもろい酸化物がピストン
母材と下地金属間に存在しない。
■ When spraying the base metal, unlike when spraying into the recess, there is no brittle oxide between the piston base material and the base metal when the molten metal is cast.

■ セラミックに形成した微小クラックにより、被覆層
への熱応力を緩和させ、下地金属とセラミックの被覆層
間にセラミックを剥離させる微小クラックに交わる横方
向のクラックの発生がない。
■ The micro-cracks formed in the ceramic relieve the thermal stress on the coating layer, and there is no occurrence of lateral cracks that intersect with the micro-cracks that would cause the ceramic to separate between the underlying metal and the ceramic coating layer.

(発明の効果) 以上説明したことから本発明はピストン噴孔部の壁面を
型取った模型にセラミック等を溶射して、被覆層に密着
強度を弱める酸化物を取シ込むことなく、模型さえ正確
な形状で作成しておけば、正確な燃焼室の形状を得るこ
とができ、耐熱性と寿命が向上する。
(Effects of the Invention) As explained above, the present invention is capable of spraying ceramics, etc. on a model of the wall surface of the piston nozzle hole, without injecting oxides that weaken the adhesion strength into the coating layer. If the combustion chamber is created with an accurate shape, it will be possible to obtain an accurate combustion chamber shape, improving heat resistance and service life.

また、セラミック被覆層に微小クラックを形成したので
、下地金属との膨張係数の相違に基づく熱応力を緩和し
て一層の耐熱性と寿命向上を図ることができる。
Furthermore, since microcracks are formed in the ceramic coating layer, it is possible to alleviate thermal stress due to the difference in coefficient of expansion with the base metal, thereby further improving heat resistance and service life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る断熱ピストンの製造工程を示す流
れ図、 第2図は本実施例の断熱ピストンの一部拡大断面図、 第3図〜第7図は、第1図の製造工程を説明するための
図、 第8図は従来例におけるセラミック層の剥離原因を説明
する図、 第9図は従来例において、ピストン噴孔部に溶射した場
合に溶融粉末の酸化物がピストン母材に付着する状態を
示す一部拡大断面図である。 1・・・断熱ピストン   2・・・ピストン噴孔部3
・・・模型       4・・・セラミック4a・・
・セラミック被覆層 5・・・微小クラック6・・・下
地金属     8・・・中子9・・・鋳型 牙1図 牙2図 4G・・・七′:7ミ・Iクキ皮1眉 5・・・・微小77ツク 牙5図         オ6図 牙7図 才8図
Fig. 1 is a flowchart showing the manufacturing process of the heat insulating piston according to the present invention, Fig. 2 is a partially enlarged sectional view of the heat insulating piston of the present embodiment, and Figs. 3 to 7 show the manufacturing process of Fig. 1. Figure 8 is a diagram for explaining the cause of peeling of the ceramic layer in the conventional example. Figure 9 is a diagram for explaining the cause of peeling of the ceramic layer in the conventional example. FIG. 3 is a partially enlarged sectional view showing a state of adhesion. 1... Heat insulation piston 2... Piston nozzle hole part 3
...Model 4...Ceramic 4a...
・Ceramic coating layer 5...Minute cracks 6...Base metal 8...Central core 9...Mold fang 1 figure fang 2 figure 4G...7': 7mi・I Kuki skin 1 eyebrow 5・...Minute 77 Tsuku Fang 5 Diagram O 6 Diagram Fang 7 Diagram 8 Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)燃焼室を形成するピストン噴孔部の壁面を型取っ
た模型表面に断熱用セラミックを溶射して後、該模型を
急冷して前記断熱用セラミックの被覆層に微小クラック
を発生させ、 次いでNi又はCo系合金等の下地金属を前記被覆層に
溶射して鋳型に入れる中子を形成し、該中子を鋳込んで
断熱ピストンを形成するようにした断熱ピストンの製造
方法。
(1) After thermally spraying a heat insulating ceramic on the surface of a model made of the wall surface of a piston nozzle hole forming a combustion chamber, the model is rapidly cooled to generate microcracks in the coating layer of the heat insulating ceramic; Next, a base metal such as Ni or Co-based alloy is thermally sprayed onto the coating layer to form a core to be placed in a mold, and the core is cast to form a heat insulating piston.
JP22820985A 1985-10-14 1985-10-14 Adiabatic piston manufacturing method Expired - Lifetime JPH0620638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22820985A JPH0620638B2 (en) 1985-10-14 1985-10-14 Adiabatic piston manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22820985A JPH0620638B2 (en) 1985-10-14 1985-10-14 Adiabatic piston manufacturing method

Publications (2)

Publication Number Publication Date
JPS6289563A true JPS6289563A (en) 1987-04-24
JPH0620638B2 JPH0620638B2 (en) 1994-03-23

Family

ID=16872898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22820985A Expired - Lifetime JPH0620638B2 (en) 1985-10-14 1985-10-14 Adiabatic piston manufacturing method

Country Status (1)

Country Link
JP (1) JPH0620638B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107868A (en) * 1988-07-30 1990-04-19 T & N Technol Ltd Method of coupling component in piston
JPH06198803A (en) * 1992-11-16 1994-07-19 Mitsubishi Electric Corp Metal decorative panel, production thereof and transfer painting sheet
US6142900A (en) * 1997-04-18 2000-11-07 Uni-Sunstar B.V. Sprocket with thin body and grooved teeth
JP2004509110A (en) * 2000-09-13 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing lithium salt of cyclohexenone oxime ether, product obtained using the process, use thereof, and corresponding plant protection agent
WO2006010450A1 (en) * 2004-07-26 2006-02-02 Bosch Rexroth Ag Piston rod comprising a covering layer consisting of a cobalt alloy
JP2008533349A (en) * 2005-02-15 2008-08-21 カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツング Protection layer against exhaust gas corrosion in the combustion chamber of an internal combustion engine
WO2015110379A1 (en) * 2014-01-24 2015-07-30 Volkswagen Aktiengesellschaft Piston for a piston machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107868A (en) * 1988-07-30 1990-04-19 T & N Technol Ltd Method of coupling component in piston
JPH06198803A (en) * 1992-11-16 1994-07-19 Mitsubishi Electric Corp Metal decorative panel, production thereof and transfer painting sheet
US6142900A (en) * 1997-04-18 2000-11-07 Uni-Sunstar B.V. Sprocket with thin body and grooved teeth
US6367300B1 (en) 1997-04-18 2002-04-09 Uni-Sunstar B.V. Sprocket with thin body and grooved teeth
JP2004509110A (en) * 2000-09-13 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト Process for producing lithium salt of cyclohexenone oxime ether, product obtained using the process, use thereof, and corresponding plant protection agent
JP4922538B2 (en) * 2000-09-13 2012-04-25 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing cyclohexenone oxime ether lithium salt, product obtained using said process, its use and corresponding plant protection agent
WO2006010450A1 (en) * 2004-07-26 2006-02-02 Bosch Rexroth Ag Piston rod comprising a covering layer consisting of a cobalt alloy
JP2008533349A (en) * 2005-02-15 2008-08-21 カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツング Protection layer against exhaust gas corrosion in the combustion chamber of an internal combustion engine
WO2015110379A1 (en) * 2014-01-24 2015-07-30 Volkswagen Aktiengesellschaft Piston for a piston machine
EP3608532A1 (en) * 2014-01-24 2020-02-12 Volkswagen AG Piston for an engine

Also Published As

Publication number Publication date
JPH0620638B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US6071363A (en) Single-cast, high-temperature, thin wall structures and methods of making the same
US6485590B1 (en) Method of forming a multilayer ceramic coating
US5810552A (en) Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
US7055574B2 (en) Method of producing metal article having internal passage coated with a ceramic coating
JPS63303674A (en) Manufacture of metallic structure member coated with ceramic
JPH0251978B2 (en)
JPS62173053A (en) Production of hollow casting
JPS6289563A (en) Production of heat insulating piston
US7028744B2 (en) Surface modification of castings
US20200141349A1 (en) Aluminum foam core piston with coaxial laser bonded aerogel/ceramic head
JPH06142822A (en) Production of casting mold for casting high melting active metal
US20070099013A1 (en) Methods and apparatus for manufacturing a component
US7144602B2 (en) Process for obtaining a flexible/adaptive thermal barrier
JPS6014901B2 (en) Piston manufacturing method
JPH09277018A (en) Cylinder head of internal combustion engine and production thereof
EP0191008B1 (en) Shell or tubular object and method to manufacture the same
JPH11124662A (en) Self-repairing heat-insulating film and its production
JPH0357818A (en) Heat insulating structure of subchamber
JPH03106553A (en) Manufacture of hollow member having heat insulating ceramic covering layer on inside surface
JPH0517305B2 (en)
JPS6289562A (en) Production of heat insulating piston
JPH0436062B2 (en)
JP2001079645A (en) Casting metallic mold and casting method, and formed product thereof
JPH09256902A (en) Piston for internal combustion engine and manufacture thereof
CA2208196C (en) Single-cast, high-temperature, thin wall structures and methods of making the same