JPH0620638B2 - Adiabatic piston manufacturing method - Google Patents

Adiabatic piston manufacturing method

Info

Publication number
JPH0620638B2
JPH0620638B2 JP22820985A JP22820985A JPH0620638B2 JP H0620638 B2 JPH0620638 B2 JP H0620638B2 JP 22820985 A JP22820985 A JP 22820985A JP 22820985 A JP22820985 A JP 22820985A JP H0620638 B2 JPH0620638 B2 JP H0620638B2
Authority
JP
Japan
Prior art keywords
ceramic
coating layer
piston
base metal
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22820985A
Other languages
Japanese (ja)
Other versions
JPS6289563A (en
Inventor
典孝 宮本
譲治 三宅
隆司 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22820985A priority Critical patent/JPH0620638B2/en
Publication of JPS6289563A publication Critical patent/JPS6289563A/en
Publication of JPH0620638B2 publication Critical patent/JPH0620638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 内燃機関用ピストンの製造において、ピストン噴孔部の
模型にセラミック等を溶射してできた中子を鋳型に鋳込
んで製造する断熱ピストンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) In manufacturing a piston for an internal combustion engine, a heat insulating piston manufactured by casting a core made by spraying ceramic or the like onto a model of a piston injection hole portion in a mold It relates to a manufacturing method.

(従来の技術) 従来、燃焼室を形造るピストン噴孔部は高温にさらされ
るため、それに対応できる耐熱性と耐食性を要求する。
(Prior Art) Conventionally, a piston injection hole forming a combustion chamber is exposed to a high temperature, and therefore heat resistance and corrosion resistance capable of coping therewith are required.

それ故、ピストン噴孔部にセラミックを溶射したり、ま
たは燃焼室を型取ったセラミック焼結体を鋳込んだりす
る方法がある(Cumminic /TACOM Advanced Adiabatic
Engine by R.Kamo, SAE Technical Paper Series,84042
8あるいは特開昭58−87273号公報参照)。
Therefore, there is a method of spraying ceramic to the piston injection hole portion or casting a ceramic sintered body in which the combustion chamber is shaped (Cumminic / TACOM Advanced Adiabatic
Engine by R. Kamo, SAE Technical Paper Series, 84042
8 or JP-A-58-87273).

上記公報の開示内容を参照すると、耐熱金属材料で構成
されたガスタービン等の部品において、その表面に設け
られた前記耐熱金属材料より高温耐食性に富む金属被覆
層上に微細な割れを有するセラミック被覆層が形成され
ている。
With reference to the disclosure of the above publication, in a component such as a gas turbine made of a refractory metal material, a ceramic coating having fine cracks on a metal coating layer provided on the surface thereof, which has a higher corrosion resistance at high temperature than the refractory metal material. Layers have been formed.

このセラミック被覆層は先ず酸素分圧10-3トール以下に
制御された雰囲気中で表面温度が該セラミックの再結晶
化温度以上で、しかも母材および被覆層の合金それぞれ
の融点よりも低い温度であるように熱せられた前記耐熱
金属材料で被覆された母材上に、セラミック粒子を溶射
することによってそれを被覆し、次いでセラミック被覆
層の表面に冷媒を吹きつけた後急冷させ、セラミック被
覆層に割れを生じさせている。
The ceramic coating layer is first heated at a temperature above the recrystallization temperature of the ceramic in an atmosphere controlled to an oxygen partial pressure of 10 -3 Torr or less and lower than the melting points of the base material and the alloy of the coating layer. On the base material coated with the refractory metal material that has been heated as described above, the ceramic particles are coated by spraying them, and then the surface of the ceramic coating layer is sprayed with a refrigerant and then rapidly cooled to form a ceramic coating layer. Is causing cracks.

このような形成過程により作られたセラミック被覆層を
有する部品は空孔等の少ない稠密な合金被覆層により母
材を高温腐食から保護するとともに、セラミックの低い
熱伝導率と高いふく射率によって部品の温度を低減する
上で有効である。
A component with a ceramic coating layer formed by such a forming process protects the base material from high temperature corrosion by a dense alloy coating layer with few pores, and at the same time, the low thermal conductivity and high emissivity of the ceramic make the component It is effective in reducing the temperature.

(発明が解決しようとする問題点) しかしながら、上記製造方法によるセラミック溶射の被
覆層をピストンの噴孔部に使用すると、ピストン母材
(たとえばAl−Si系合金)と被覆層との熱膨張率の
違い、あるいはショットプラストによる母材の表面あら
さ不足等により溶射直後や実機運転中にピストン母材と
下地金属間で亀裂や剥離が生じ孔、微小クラックを発生
させて熱応力を緩和したものにおいても、下地金属層に
セラミック層を形成した後、冷媒等により冷却してセラ
ミック層に微小クラックを発生させるので、第8図に示
すように下地金属層とセラミック間で微小クラックを横
切る方向のクラック5aが入りセラミック層が剥離する
という問題点があった。
(Problems to be Solved by the Invention) However, when the ceramic sprayed coating layer produced by the above-described manufacturing method is used in the injection hole portion of the piston, the coefficient of thermal expansion between the piston base material (for example, Al-Si alloy) and the coating layer is increased. Difference, or due to insufficient surface roughness of the base metal due to shotplast, cracks and peeling occur between the piston base metal and the base metal immediately after thermal spraying or during actual machine operation. Also, since a microcrack is generated in the ceramic layer by forming a ceramic layer on the base metal layer and then cooling it with a cooling medium or the like, as shown in FIG. 8, cracks in the direction crossing the microcracks between the base metal layer and the ceramic are generated. There is a problem in that 5a enters and the ceramic layer peels off.

また、これらの場合におけるセラミック溶射は、第9図
に示すように凹部形状のピストン噴孔部2内に行なうた
め、溶射中酸化された溶融粉末が跳返り、これがピスト
ン母材10に付着して被覆層に酸化層11が形成され、
溶射層の密着性低下の原因となるとともに、被覆層を均
一の厚さにすることが難しく、ピストン噴孔部の形状を
精密に形成することができないという問題もある。
Further, since ceramic spraying in these cases is carried out in the piston injection hole portion 2 having a concave shape as shown in FIG. 9, the molten powder oxidized during the spray jumps back and adheres to the piston base material 10. An oxide layer 11 is formed on the coating layer,
There is also a problem that it causes a decrease in the adhesiveness of the sprayed layer, and it is difficult to make the coating layer have a uniform thickness, and the shape of the piston injection hole cannot be precisely formed.

このような問題点を解消するため、本発明の目的はピス
トン噴孔部の壁面を型取った模型表面にセラミック溶射
し、これを急冷してセラミック被覆層に微小クラックを
形成した後下地金属を溶射することにより、セラミック
と下地金属の両層間の密着性を確実なものとし、熱膨張
によりセラミック層の亀裂・剥離の発生を防止して耐熱
性を高めた断熱ピストンの製造方法を提供することにあ
る。
In order to solve such a problem, the object of the present invention is to spray ceramics on the model surface of the wall surface of the piston injection hole part, and rapidly cool it to form microcracks in the ceramic coating layer and then to remove the underlying metal. To provide a method for manufacturing a heat-insulating piston that secures adhesion between both layers of ceramic and a base metal by spraying, and prevents cracks and peeling of the ceramic layer due to thermal expansion to improve heat resistance. It is in.

(問題点を解決するための手段) 上記目的を達成するため、本発明の断熱ピストンの製造
方法は、燃焼室を形成するピストン噴孔部の壁面を型取
った模型表面に断熱用セラミックを溶射後、該模型を急
冷して前記断熱用セラミックの被覆層に微小クラックを
発生させ、 次いでNi又はCo系合金等の下地金属を前記被覆層に溶
射して鋳型に入れる中子を形成し、該中子を鋳込んで断
熱ピストンを形成するようにしたことを特徴としてい
る。
(Means for Solving the Problems) In order to achieve the above object, the method for manufacturing an adiabatic piston of the present invention is a method for spraying an adiabatic ceramic on a model surface of a wall surface of a piston injection hole forming a combustion chamber. After that, the model is rapidly cooled to generate fine cracks in the coating layer of the heat insulating ceramic, and then a base metal such as Ni or Co alloy is sprayed on the coating layer to form a core to be put into a mold. The feature is that the core is cast to form a heat-insulating piston.

(作 用) セラミック等の溶射は、凹部形状であるピストン噴孔部
壁面へ直接するのでなく、ピストン噴孔部を型取った凸
形状の模型表面に行なうため、溶射工程が容易となり、
凹部内溶射の際に起こる酸化された溶融粉末の跳返りで
酸化物を取り込むこともなくて密着強度が安定し、かつ
完成後のピストン噴孔部の形状が正確なものを得ること
ができる。
(Operation) The spraying of ceramics etc. is performed not directly on the wall surface of the piston nozzle hole, which is a concave shape, but on the surface of a modeled convex piston hole, which facilitates the thermal spraying process.
It is possible to obtain the one in which the adhesion strength is stable and the shape of the piston injection hole portion after completion is accurate without taking in oxides due to the bounce of the oxidized molten powder that occurs during thermal spraying in the recess.

さらに、セラミック被覆層に微小クラックを形成した後
に下地金属を溶射することになるため、微小クラック形
成としての冷媒等の冷却による影響を下地金属の被覆層
は受けることがないからセラミックと下地金属の被覆層
間の密着強度が向上する。
Furthermore, since the base metal is sprayed after forming the microcracks in the ceramic coating layer, the coating layer of the base metal is not affected by the cooling of the refrigerant or the like as the formation of the microcracks. The adhesion strength between the coating layers is improved.

このようなことからピストンの噴孔部に耐熱性を有し、
寸法精度の高いセラミックの被覆層を有する断熱ピスト
ンとなる。
Because of this, the injection hole of the piston has heat resistance,
The heat-insulating piston has a ceramic coating layer with high dimensional accuracy.

(実施例) 本発明の実施例を図面に基づいて説明する。(Example) The Example of this invention is described based on drawing.

第1図は、第2図に示す断熱ピストン1を作成するため
の流れ図である。
FIG. 1 is a flow chart for making the adiabatic piston 1 shown in FIG.

まず、プラスチック、ワックスなど所定温度以上で融解
焼却可能な物質によって、燃焼室を形成するピストン噴
孔部2の模型3を作成する(第3図参照)。
First, a model 3 of the piston injection hole portion 2 that forms a combustion chamber is made of a substance such as plastic or wax that can be melted and incinerated at a predetermined temperature or higher (see FIG. 3).

次に、この模型3にZrO2,Al2O3,Cr2O3系の断熱性能の優
れたセラミック4をプラズマ溶射する。第4図は溶射に
よって模型表面3aにセラミック被覆層4aが形成され
た状態を示しており、この膜厚は断熱効果を考慮すると
0.5mm以上であることが望ましい。
Next, the model 3 is plasma sprayed with a ZrO 2 , Al 2 O 3 , and Cr 2 O 3 system ceramic 4 having excellent heat insulating properties. FIG. 4 shows a state in which the ceramic coating layer 4a is formed on the model surface 3a by thermal spraying, and this film thickness is preferably 0.5 mm or more in consideration of the heat insulating effect.

また、溶射工程は模型3がくずれるような高温とならぬ
ように注意し、冷却を待って再び溶射する等の対策がな
される。
In the thermal spraying process, care should be taken not to reach a high temperature such that the model 3 is broken, and measures are taken such as waiting for cooling and thermal spraying again.

セラミック4の溶射等、直ちに被覆層4a表面に冷媒を
吹き付け、被覆層4aにその厚さ方向へ無数の微小クラ
ック5を発生させる(第5図参照)。
Immediately after the thermal spraying of the ceramic 4 or the like, a refrigerant is blown to the surface of the coating layer 4a to generate numerous minute cracks 5 in the coating layer 4a in the thickness direction thereof (see FIG. 5).

ここに使用する冷媒としては、空気又はAr,He,N2などの
不活性ガスを用いている。また、微小クラック5の幅お
よび間隔は、被覆層4aの膜厚や冷却条件により任意に
調整できるようになっている。好ましい微小クラック5
は、その幅および間隔を十分小さい方が良いとされ、た
とえばクラック5の幅は1〜50μ、その間隔は0.1〜
10mm程度とする。微小クラック5を発生させる手段とし
ては冷却以外にショットプラスト法による衝撃作用によ
りクラックを発生させてもよい。
As the refrigerant used here, air or an inert gas such as Ar, He or N 2 is used. Further, the width and interval of the minute cracks 5 can be arbitrarily adjusted depending on the film thickness of the coating layer 4a and cooling conditions. Preferred micro crack 5
Is considered to be sufficiently small in width and interval. For example, the width of the crack 5 is 1 to 50 μ and the interval is 0.1 to 50 μm.
It is about 10 mm. As means for generating the minute cracks 5, cracks may be generated by an impact action by the shot plast method other than cooling.

次に、セラミック溶射の下地金属6として用いる材料
は、例えば、NiAl,NiCrAl,NiCrAlY,NiCoCrAlY,CoCrAlY,
FeCrAlY 等であって、これらの内いずれかをセラミック
被覆層4a上に溶射ガン7から溶射する。
Next, the material used as the base metal 6 for ceramic spraying is, for example, NiAl, NiCrAl, NiCrAlY, NiCoCrAlY, CoCrAlY,
FeCrAlY or the like, one of which is sprayed from the spray gun 7 on the ceramic coating layer 4a.

この下地金属6の被覆層6aの膜厚は0.1〜5mm程度
とする。また、使用する金属粉末は溶射後表面あらさR
zが大きくなるように可能な限り粒径の大きなもの(10
〜100μ程度)とし、かつ溶射粒子の飛行速度もあまり
速くない方が望ましく50〜300m/s程度が最適であ
る。
The coating layer 6a of the base metal 6 has a film thickness of about 0.1 to 5 mm. Also, the metal powder used has a surface roughness R after thermal spraying.
As large a particle size as possible (10
˜100 μ) and the flight speed of the spray particles is not so fast, and the optimum speed is about 50 to 300 m / s.

以上により、模型3上に、微小クラック5を有するセラ
ミック被覆層4aとNi,Co系合金の下地金属被覆層6a
との2種類の被覆層を形成した燃焼室となる中子8はピ
ストンを鋳造する鋳型9の底部に載置する。
As described above, the ceramic coating layer 4a having the minute cracks 5 and the Ni, Co-based alloy base metal coating layer 6a are formed on the model 3.
The core 8 serving as a combustion chamber in which two types of coating layers are formed is placed on the bottom of the mold 9 for casting the piston.

中子8は所定位置に配設した鋳型9内にピストン母材1
0を流し込み、溶射による被覆層で形成されたピストン
噴孔部2を備えた断熱ピストン1を鋳造する。
The core 8 is provided in a mold 9 arranged at a predetermined position, and the piston base material 1
0 is poured in to cast an adiabatic piston 1 having a piston injection hole portion 2 formed of a coating layer formed by thermal spraying.

この鋳造過程でプラスチック、ワックス等が被覆層4a
上に残存しておれば、その部分に熱を加えるなどして、
模型3の残部を除却する。
During this casting process, plastic, wax, etc. are covered with the coating layer 4a.
If it remains on the top, add heat to that part,
The rest of the model 3 is discarded.

また、中子8を鋳込んで鋳造するとき、中子8はあらか
じめ模型3部分を除去した溶射による被覆層4a,6a
のみによる形状として使用してもよい。
Further, when the core 8 is cast and cast, the core 8 is covered with the coating layers 4a and 6a by thermal spraying in which the model 3 portion is removed in advance.
You may use it as a shape only.

こうして製造された断熱ピストン1を用いてエンジンの
実機試験を行なった。本実施例の測定結果によれば1000
時間以上の使用に対しても損傷を生ずることなく、従来
のピストンでは50時間程度でもわずかな損傷を伴うこ
とから考えて、格段の耐熱性と寿命の向上が認められ
た。
Using the heat insulating piston 1 manufactured in this way, an actual engine test was conducted. According to the measurement result of this example, 1000
Considering that the conventional piston is not damaged even if it is used for more than an hour, and the conventional piston is slightly damaged even for about 50 hours, it is confirmed that the heat resistance and the life are remarkably improved.

上記効果の理由として以下の点が挙げられる。The reasons for the above effects are as follows.

下地金属を溶射した時点で表面あらさRzが50〜10
0μと大きいことから溶湯との機械的かみあいに優り、
発生する熱応力に耐えることができる。
When the base metal is sprayed, the surface roughness Rz is 50 to 10
Since it is as large as 0μ, it excels in mechanical meshing with molten metal,
It can withstand the thermal stresses that occur.

下地金属を溶射する際に、凹部内に溶射する場合と
異なり、溶湯で鋳込んだ時点でもろい酸化物がピストン
母材と下地金属間に存在しない。
When spraying the base metal, unlike the case where the base metal is sprayed into the recess, no brittle oxide exists between the piston base metal and the base metal at the time of casting with the molten metal.

セラミックに形成した微小クラックにより、被覆層
への熱応力を緩和させ、下地金属とセラミックの被覆層
間にセラミックを剥離させる微小クラックに交わる横方
向のクラックの発生がない。
The microcracks formed in the ceramic alleviate the thermal stress on the coating layer, and no lateral cracks intersect with the microcracks that separate the ceramic between the base metal and the ceramic coating layer.

(発明の効果) 以上説明したことから本発明はピストン噴孔部の壁面を
型取った模型にセラミック等を溶射して、被覆層に密着
強度を弱める酸化物を取り込むことなく、模型さえ正確
な形状で作成しておけば、正確な燃焼室の形状を得るこ
とができ、耐熱性と寿命が向上する。
(Effect of the Invention) From the above description, the present invention does not spray oxide such as ceramics on a model in which the wall surface of the piston injection hole is modeled, and reduces the adhesion strength to the coating layer. If the shape is created, the exact shape of the combustion chamber can be obtained, and the heat resistance and the life are improved.

また、セラミック被覆層に微小クラックを形成したの
で、下地金属との膨張係数の相違に基づく熱応力を緩和
して一層の耐熱性と寿命向上を図ることができる。
Further, since the micro-cracks are formed in the ceramic coating layer, it is possible to alleviate the thermal stress due to the difference in expansion coefficient from the underlying metal and further improve the heat resistance and the life.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る断熱ピストンの製造工程を示す流
れ図、 第2図は本実施例の断熱ピストンの一部拡大断面図、 第3図〜第7図は、第1図の製造工程を説明するための
図、 第8図は従来例におけるセラミック層の剥離原因を説明
する図、 第9図は従来例において、ピストン噴孔部に溶射した場
合に溶融粉末の酸化物がピストン母材に付着する状態を
示す一部拡大断面図である。 1……断熱ピストン、2……ピストン噴孔部 3……模型、4……セラミック 4a……セラミック被覆層、5……微小クラック 6……下地金属、8……中子 9……鋳型
FIG. 1 is a flow chart showing a manufacturing process of a heat insulating piston according to the present invention, FIG. 2 is a partially enlarged sectional view of a heat insulating piston of this embodiment, and FIGS. 3 to 7 show the manufacturing process of FIG. FIG. 8 is a diagram for explaining the cause of separation of the ceramic layer in the conventional example, and FIG. 9 is a diagram for explaining the cause of peeling of the ceramic layer in the conventional example, and FIG. It is a partially expanded sectional view which shows the state which adheres. 1 ... Adiabatic piston, 2 ... Piston injection hole part 3 ... Model, 4 ... Ceramic 4a ... Ceramic coating layer, 5 ... Micro crack 6 ... Base metal, 8 ... Core 9 ... Mold

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼室を形成するピストン噴孔部の壁面を
型取った模型表面に断熱用セラミックを溶射して後、該
模型を急冷して前記断熱用セラミックの被覆層に微小ク
ラックを発生させ、 次いでNi又はCo系合金等の下地金属を前記被覆層に溶
射して鋳型に入れる中子を形成し、該中子を鋳込んで断
熱ピストンを形成するようにした断熱ピストンの製造方
法。
1. A thermal cracking ceramic is sprayed on the surface of a model in which a wall surface of a piston injection hole forming a combustion chamber is modeled, and then the model is rapidly cooled to generate minute cracks in the coating layer of the thermal insulation ceramic. Then, a base metal such as Ni or Co alloy is sprayed on the coating layer to form a core to be put in a mold, and the core is cast to form a heat insulating piston.
JP22820985A 1985-10-14 1985-10-14 Adiabatic piston manufacturing method Expired - Lifetime JPH0620638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22820985A JPH0620638B2 (en) 1985-10-14 1985-10-14 Adiabatic piston manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22820985A JPH0620638B2 (en) 1985-10-14 1985-10-14 Adiabatic piston manufacturing method

Publications (2)

Publication Number Publication Date
JPS6289563A JPS6289563A (en) 1987-04-24
JPH0620638B2 true JPH0620638B2 (en) 1994-03-23

Family

ID=16872898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22820985A Expired - Lifetime JPH0620638B2 (en) 1985-10-14 1985-10-14 Adiabatic piston manufacturing method

Country Status (1)

Country Link
JP (1) JPH0620638B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8818214D0 (en) * 1988-07-30 1988-09-01 T & N Technology Ltd Pistons
JP2790587B2 (en) * 1992-11-16 1998-08-27 三菱電機株式会社 Metal decorative panel, manufacturing method thereof and transfer type coated sheet
JPH11132314A (en) 1997-04-18 1999-05-21 Uni Sunstar Bv Sprocket and manufacture thereof
DE10045131A1 (en) * 2000-09-13 2002-03-21 Basf Ag Process for the preparation of a cyclohexenone oxime ether lithium salt, products obtainable therewith, their use and corresponding crop protection agents
DE112005001756A5 (en) * 2004-07-26 2007-06-28 Bosch Rexroth Ag Piston rod with alloy
DE102005006671A1 (en) * 2005-02-15 2006-08-17 Ks Kolbenschmidt Gmbh Protective layer against hot gas combustion in the combustion chamber of an internal combustion engine
DE102014201337A1 (en) * 2014-01-24 2015-07-30 Volkswagen Aktiengesellschaft Piston for a piston engine

Also Published As

Publication number Publication date
JPS6289563A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
US6074706A (en) Adhesion of a ceramic layer deposited on an article by casting features in the article surface
US6485590B1 (en) Method of forming a multilayer ceramic coating
EP1065345B1 (en) Turbine engine component having enhanced heat transfer characteristics and method for forming same
US6071363A (en) Single-cast, high-temperature, thin wall structures and methods of making the same
JP2002336935A (en) Composite structural part between metallic material and non-metallic material
JP3434504B2 (en) Insulation method for metal substrate
US6361878B2 (en) Roughened bond coat and method for producing using a slurry
EP2108715A2 (en) Thermal barrier coating system and coating methods for gas turbine engine shroud
EP1939317A2 (en) Thermal barrier coating
EP2551041A2 (en) Rapid casting article manufacturing
US5621968A (en) Process for manufacturing a gas turbine blade
EP0750957A1 (en) Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
US7055574B2 (en) Method of producing metal article having internal passage coated with a ceramic coating
JPH0715141B2 (en) Heat resistant parts
JP2012132451A (en) Method for modifying substrate for forming passage hole in the substrate, and article relating thereto
JPS5887273A (en) Parts having ceramic coated layer and their production
JPS63303674A (en) Manufacture of metallic structure member coated with ceramic
US6087023A (en) Near net-shape VPS formed multilayered combustion system components and method of forming the same
JPH0620638B2 (en) Adiabatic piston manufacturing method
JPH07243018A (en) Surface modification method for heat insulating film
GB2222179A (en) Protective coatings
US7144602B2 (en) Process for obtaining a flexible/adaptive thermal barrier
JPH07292453A (en) Heat shielding coating method for preventing high temperature oxidation
US20220349312A1 (en) Hybrid Thermal Barrier Coating
JPH11124662A (en) Self-repairing heat-insulating film and its production