JPS6288277A - Electrode-end section sealing process for fuel cell - Google Patents

Electrode-end section sealing process for fuel cell

Info

Publication number
JPS6288277A
JPS6288277A JP60228336A JP22833685A JPS6288277A JP S6288277 A JPS6288277 A JP S6288277A JP 60228336 A JP60228336 A JP 60228336A JP 22833685 A JP22833685 A JP 22833685A JP S6288277 A JPS6288277 A JP S6288277A
Authority
JP
Japan
Prior art keywords
electrode
fluororesin
sealing
base material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60228336A
Other languages
Japanese (ja)
Inventor
Yoshihiro Oka
嘉弘 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60228336A priority Critical patent/JPS6288277A/en
Publication of JPS6288277A publication Critical patent/JPS6288277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the sealing performance with strong fusing force by performing preliminary processing for dispersion adhering fluororesin onto the sealing face of an electrode member then applying fluororesin film onto the sealing face and thermally pressing. CONSTITUTION:In a preliminary process, fluororesin dispersion is applied onto a sealing face at the end of a gas dispersion electrode member 4 then dried and burnt under the temperature near 350 deg.C to remove surfactant contained in the dispersion thus to adhere the fluororesin onto the surface of the electrode member 4 while dispersing. Then an electrode catalyst layer 5 is bonded onto the surface of the electrode member 4 at the matrix side and a fluororesin film 8 is applied onto the sealing face thereafter proper surface pressure and heating temperature are applied to thermally fuse the film 8 to the electrode member thus to complete the sealing process.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、リン酸型燃料電池を対象とした燃料電池の
電極端部シール処理方法に関する。
The present invention relates to a fuel cell electrode end sealing method for a phosphoric acid fuel cell.

【従来技術とその問題点】[Prior art and its problems]

まず第4図にこの発明の実施対象となるリプ付電極方式
によるリン酸型燃料電池の単位電池の構成を示す0図に
おいて、1は電解質を含浸保持したマトリックス層であ
り、該マトリックスlを挟んでその両側には燃料′wi
極2および酸化剤電i3が配備されこれらで単位電池を
構成している。ここで前記の各電極2,3はガス透過性
を有する多孔質のガス拡散電極基材4と、該′gL8i
基材4のマトリックスji!11との対向面側に成層さ
れた電極触媒WJ5とかなり、かつ電極基材4における
電攪触媒N5と反対側の面には多数状の溝としてなる反
応ガス給排通路6が形成されている。なお燃料電極2と
酸化剤電極3とでは前記した反応ガス給排通路6が互い
に直交するように設定されている。 またかかる単位電池の多数個を符号7で示すセパレート
板を介して積層することによりセルスタックを構成して
いる。 かかる構成で燃料電極2.酸化剤電極3にはそれぞれ反
応ガス給排路6を通じて燃料ガス、酸化剤ガス(空気)
を外部から供給することにより、各反応ガスが電極基材
4の中を拡散して電極触媒層5に供給され、ここで行わ
れる電気化学的反応により発電することは周知の通りで
ある。 ところでこのような構成の燃料電池では、燃料it電極
、酸化剤′t8ii3の電極端部、特に反応ガス給排路
5と並行な両端部から外方へガス漏れが生じると燃料ガ
スと酸化剤ガスとが直接反応する恐れがあるために、こ
のガス漏れを防止するように各電極の端部でガス漏れ防
止の処理を施す必要がある。 一方、前述した各電極の端部からの反応ガス漏出防止を
図る手段として、第5図に示すように電極触媒層5を担
持した電極基材4の端部にポリテトラフルオロエチレン
(以下PTFEと称する)あるいはテトラフルオロエチ
レン−パーフロロアルキルビニルエーテル供重合体(以
下PFAと称する)のいずれか一方ないしは両方のふっ
素樹脂フィルム8を被覆した上で、該フィルム8を電極
基材4へ熱圧着させて核部のシールを行う方法が従来よ
り知られている。 しかして前記した従来のふっ素樹脂フィルム熱圧着によ
るシール処理方法では、燃料電池の運転テストの結果か
らフィルム自身が健全であるにもかかわらずフィルムが
ti基材の表面から剥離して反応ガス漏洩が多々生じる
現象の発生することが明らかになった。この点について
本発明者が究明したところによればその原因は次記の点
にあることが判明した。すなわち前記ふっ素樹脂フィル
ムは熱圧着操作によりPTFEないしPFAが電極基材
に熱融着されるが、この場合に前述のように電極基材自
身は多孔質であることから、ふっ素樹脂フィルムの熱圧
着工程で加熱溶融されたPTFE、PFAが多孔質の電
極基材の内部に吸収されてしまう分が多く、また電極基
材は表面が凹凸な粗面を呈しているためにミクロ的には
フィルムと電極基材の面とが充分に面接着せず、両者の
間で充分な融着力が得られない、しかもこれに燃料電池
の運転、停止に伴うヒートサイクルが加わることとより
、ふっ素樹脂フィルムが電極基材の表面から容易に剥離
してガス漏れを生じるに至るようになる。
First, Fig. 4 shows the structure of a unit cell of a phosphoric acid fuel cell using a lip-equipped electrode system, which is the subject of the present invention. And on both sides there is fuel'wi
The electrode 2 and the oxidizer electrode i3 are provided and constitute a unit cell. Here, each of the electrodes 2 and 3 has a porous gas diffusion electrode base material 4 having gas permeability, and the 'gL8i
Matrix ji of base material 4! Reactant gas supply/discharge passages 6 in the form of multiple grooves are formed on the surface of the electrode base material 4 opposite to the electro-stirring catalyst N5, and on the surface opposite to the electro-stirring catalyst N5. . Note that the reactant gas supply and discharge passages 6 of the fuel electrode 2 and the oxidizer electrode 3 are set to be orthogonal to each other. Further, a cell stack is constructed by stacking a large number of such unit batteries with separate plates 7 interposed therebetween. With this configuration, the fuel electrode 2. Fuel gas and oxidant gas (air) are supplied to the oxidizer electrode 3 through the reaction gas supply and exhaust passages 6, respectively.
It is well known that by supplying from the outside, each reaction gas is diffused in the electrode base material 4 and supplied to the electrode catalyst layer 5, and power is generated by the electrochemical reaction carried out here. By the way, in a fuel cell with such a configuration, if gas leaks outward from the fuel it electrode and the electrode end of the oxidizer 't8ii3, especially from both ends parallel to the reaction gas supply/discharge path 5, the fuel gas and the oxidizer gas are separated. Since there is a possibility of a direct reaction between the two electrodes, it is necessary to perform gas leakage prevention treatment at the end of each electrode to prevent this gas leakage. On the other hand, as a means to prevent leakage of reaction gas from the ends of each electrode, as shown in FIG. After covering with a fluororesin film 8 of either one or both of (hereinafter referred to as PFA) or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (hereinafter referred to as PFA), the film 8 is thermocompression bonded to the electrode base material 4. Methods of sealing the core have been known for some time. However, in the conventional sealing method using thermocompression bonding of a fluororesin film as described above, the results of fuel cell operation tests show that the film peels off from the surface of the Ti base material and reactant gas leaks even though the film itself is sound. It became clear that a phenomenon that occurs frequently occurs. The inventor of the present invention investigated this point and found that the cause lies in the following points. That is, the PTFE or PFA of the fluororesin film is thermally fused to the electrode base material by a thermocompression bonding operation. Many of the PTFE and PFA heated and melted during the process are absorbed into the porous electrode base material, and because the electrode base material has a rough surface, it does not look like a film microscopically. The surface of the electrode base material is not sufficiently bonded to the surface of the electrode base material, and sufficient fusing force cannot be obtained between the two.Additionally, the heat cycle that accompanies the operation and shutdown of the fuel cell is added to the fluororesin film. It easily peels off from the surface of the base material, leading to gas leakage.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、先
記したふっ素樹脂フィルムの熱圧着によるシール方法を
対象に、ふっ素樹脂フィルムと電極基材との間で強力な
熱融着性並びに高いシール性が得られるようにした電極
端部のシール処理方法を提供することを目的とする。
This invention has been made in consideration of the above points, and is aimed at the above-mentioned sealing method of fluororesin film by thermocompression bonding, which provides strong thermal fusion properties and high sealing between the fluororesin film and the electrode base material. An object of the present invention is to provide a method for sealing the end of an electrode in such a manner that the properties of the electrode end can be improved.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は前段の予備処理
工程として電極基材のシール面にふっ素樹脂を分散付着
させ、その後の工程で前記シール面上にふっ素樹脂フィ
ルムを被覆させて熱圧着することにより、前段工程で添
加したふっ素樹脂により電極基材の表面を平坦緻密化し
てふっ素樹脂フィルムの熱圧着時にフィルムの樹脂が電
極基材の内部に吸収されるのを防止するとともにフィル
ムと電極基材面とが充分に面接着し合うようにし、この
結果としてふっ素樹脂フィルムと電極基材との間を確実
に熱融着して高い気密性と長寿命のシール構造が得られ
るようにしたものである。
In order to achieve the above object, this invention disperses and adheres a fluororesin to the sealing surface of an electrode base material as a preliminary treatment step, and in a subsequent step coats the sealing surface with a fluororesin film and bonds it by thermocompression. By doing so, the fluororesin added in the previous step flattens and densifies the surface of the electrode base material and prevents the resin of the film from being absorbed into the electrode base material during thermocompression bonding of the fluororesin film. This ensures sufficient surface adhesion between the material surfaces and, as a result, secure heat fusion bonding between the fluororesin film and the electrode base material, resulting in a seal structure with high airtightness and long life. It is.

【発明の実施例】 第1図はこの発明の実施例による電極端部のシール処理
方法の工程図を、第2図は第1図の処理方法で形成され
た電極のシール構造を示すものであり、第5図と同一部
材には同じ符号が付しである0次に第1図によりこの発
明によるシール処理方法を工程を追って順に説明する。 すなわちまず多孔質のガス拡散電極基材4に対して、前
段の予備工程で電極基材4における端部のシール面にふ
っ素樹脂のディスバージシンを塗布し、乾燥した後にこ
れを加熱炉内でふっ素樹脂の溶融温度以上の350℃前
後で焼成してディスバージョンに含まれている界面活性
剤等を除去し、ふっ素樹脂を電極基材4の表面に分散付
着させる。なお符号9は加熱炉のヒータを示す、このふ
っ素樹脂の溶融付着により多孔質電極基材4のシール面
は、その多孔質凹凸面に符号10で示すふっ素樹脂が充
填された形で平坦徹密面化する0次にこの電極基材4の
マトリックス側の面に電極触媒層5を成層結着した後に
、従来方法と同様に前記のシール面上にふっ素樹脂フィ
ルム8を被覆し、符号11で示す圧着治具で上下より挟
持した上で適当な面圧と加熱温度を加えてフィルム8を
電極基材4に加熱融着させてシール処理を行う。 また前記の予備処理工程におけるふっ素樹脂の付着重量
については、その付着重量を様々に変えて行った実験結
果から、ふっ素樹脂の付着量が少なすぎると電極基材の
表面に平坦緻密なシール面が得られず、また樹脂量が多
すぎと電極基材の表面に付着したふっ素樹脂による凹凸
が生じ、フィルムの圧着操作の際にフィルムにピンホー
ルを発生させる原因となることが明らかとなり、そして
その樹脂付着量が10mg/ d 〜100mg/ c
riの範囲で良好な結果の得られることが判明した。 すなわち本発明者は、予備処理工程におけるふっ素樹脂
付着量とシール面に熱圧着されたふっ素樹脂フィルムの
融着力との関係に付いて調べるために次記の試験を行っ
た。まず電極基材と同じ材料で作った所定寸法の多孔質
板に対してふっ素樹脂の重量%を様々に変えたディスバ
ージョンを塗布し、乾燥、焼成の後にふっ素樹脂フィル
ムを熱圧着したものを試料とし、次に前記の各試料に付
いて室温と200℃との間でヒートサイクルを10回繰
り返してその融着、剥離の状態を調べる剥離試験を行っ
た。この剥離試験の結果を第3図に示す。 図中の横軸は予備処理工程で電極基材に添加したふっ素
樹脂の付着! (mg/cd)を、縦軸はふっ素樹脂フ
ィルムの融着率を示す。ここで融着率は次式により求め
た。 融着率−(1−剥離枚数/試料枚数)X100%第3図
からも明らかなように、予備処理工程でふっ素樹脂を1
i極基材のシール面に適正量分散付着した上で、ふっ素
樹脂フィルムを熱圧着させることにより、フィルムと@
、電極基材の間で融着力。 ソール性が高く、かつヒートサイクルにも影響されない
長寿命のシール構造を得ることが確認できた。
Embodiments of the Invention FIG. 1 is a process diagram of a method for sealing an electrode end according to an embodiment of the present invention, and FIG. 2 shows a sealing structure of an electrode formed by the treatment method shown in FIG. The seal processing method according to the present invention will be explained step by step with reference to FIG. 1, in which the same members as in FIG. 5 are given the same reference numerals. That is, first, the porous gas diffusion electrode base material 4 is coated with a fluororesin disverdicin on the sealing surface of the end of the electrode base material 4 in the preliminary step of the previous stage, and after drying, this is applied in a heating furnace. The dispersion is baked at around 350° C., which is higher than the melting temperature of the fluororesin, to remove surfactants and the like contained in the dispersion, and the fluororesin is dispersed and adhered to the surface of the electrode base material 4. Reference numeral 9 indicates a heater of the heating furnace. By melting and adhering this fluororesin, the sealing surface of the porous electrode base material 4 is flat and tightly filled with the fluororesin indicated by 10 on the porous uneven surface. Next, after layering and bonding the electrode catalyst layer 5 on the matrix-side surface of the electrode base material 4, a fluororesin film 8 is coated on the sealing surface in the same manner as in the conventional method. The film 8 is sandwiched from above and below using the pressure bonding jig shown, and then an appropriate surface pressure and heating temperature are applied to thermally fuse the film 8 to the electrode base material 4 for sealing treatment. Regarding the weight of the fluororesin deposited in the pretreatment process mentioned above, the results of experiments conducted by varying the weight of the deposit show that if the amount of fluororesin deposited is too small, a flat and dense sealing surface will form on the surface of the electrode base material. It has become clear that if the amount of resin is too large, the fluororesin adhering to the surface of the electrode base material will cause unevenness, which will cause pinholes to occur in the film during the film crimping operation. Resin adhesion amount is 10mg/d ~ 100mg/c
It has been found that good results can be obtained within a range of ri. That is, the present inventor conducted the following test in order to investigate the relationship between the amount of fluororesin deposited in the pretreatment step and the fusion strength of the fluororesin film thermocompression bonded to the sealing surface. First, dispersion with various weight percentages of fluororesin was applied to a porous plate of a predetermined size made from the same material as the electrode base material, and after drying and baking, a fluororesin film was bonded by thermocompression. Next, each sample was subjected to a peel test in which heat cycles were repeated 10 times between room temperature and 200° C. to examine the state of fusion and peeling. The results of this peel test are shown in FIG. The horizontal axis in the figure is the adhesion of fluororesin added to the electrode base material in the pretreatment process! (mg/cd), and the vertical axis indicates the fusion rate of the fluororesin film. Here, the fusion rate was determined by the following formula. Fusion rate - (1 - number of peeled sheets/number of sample sheets) x 100% As is clear from Figure 3, 1
The film and @
, the fusion force between the electrode substrates. It was confirmed that a long-life seal structure with high sole properties and unaffected by heat cycles could be obtained.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、前段の予備処理工
程として電極基材のシール面にふっ素樹脂を分散付着さ
せ、その後の工程で前記シール面上にふっ素樹脂フィル
ムを被覆させて熱圧着することにより、ふっ素樹脂フィ
ルムと電極基材との間で強力な融着力と高いシール性に
加えて耐久性のある信鎖性に優れた電極端部のシール構
造を得ることができた。
As described above, according to the present invention, a fluororesin is dispersed and adhered to the sealing surface of the electrode base material as a preliminary treatment step, and a fluororesin film is coated on the sealing surface in the subsequent step and bonded by thermocompression. As a result, it was possible to obtain a sealing structure at the end of the electrode that has strong fusion force and high sealing performance between the fluororesin film and the electrode base material, as well as excellent durability and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるシール処理方法の工程図、第2
図は第1図の処理方法により得られた電極のシール構造
図、第3図は第1図の処理方法を実施する際の適正なふ
っ素樹脂付着量を決定するために行った剥離試験結果の
図表、第4図はこの発明の実施対象であるリン酸型燃料
電池の単位電池の構成斜視図、第5図は従来におけるふ
っ素樹脂フィルl、の熱圧着法による電極のシール構造
図である0問において、 1:マトリックス層、2;燃料電極、3:酸化剤電極、
4:電極基材、5:電極触媒層、6:反応ガスの給排路
、8:ふっ素樹脂フィルム、10:予備処理工程で付着
したふっ素樹脂。 第1図 第3図 す 第5!!I
FIG. 1 is a process diagram of the sealing method according to the present invention, and FIG.
The figure is a diagram of the seal structure of the electrode obtained by the treatment method shown in Figure 1, and Figure 3 shows the results of a peel test conducted to determine the appropriate amount of fluororesin deposited when implementing the treatment method shown in Figure 1. FIG. 4 is a perspective view of the structure of a unit cell of a phosphoric acid fuel cell, which is the subject of the present invention, and FIG. 5 is a diagram of the sealing structure of the electrode by thermocompression bonding of a conventional fluororesin film. In the question, 1: matrix layer, 2: fuel electrode, 3: oxidizer electrode,
4: Electrode base material, 5: Electrode catalyst layer, 6: Reaction gas supply/discharge path, 8: Fluororesin film, 10: Fluororesin attached in the pretreatment process. Figure 1 Figure 3 Figure 5! ! I

Claims (1)

【特許請求の範囲】 1)電解質を保持したマトリックス層を挟んでその両側
に対向するガス透過性の多孔質ガス拡散電極としてなる
燃料電極および酸化剤電極に対し、前記各電極の端縁部
にふっ素樹脂フィルムを被覆し、該フィルムを電極基材
へ熱圧着させてシールする電極端部シール処理方法にお
いて、前段の予備処理工程として電極基材のシール面に
ふっ素樹脂を分散付着させ、その後の工程で前記シール
面上にふっ素樹脂フィルムを被覆させて熱圧着するよう
にしたことを特徴とする燃料電池の電極端部シール処理
方法。 2)特許請求の範囲第1項記載のシール処理方法におい
て、予備処理工程が電極基材のシール面にふっ素樹脂デ
ィスバージョンを塗布し、次いでふっ素樹脂の溶融温度
以上の温度で焼成してふっ素樹脂を電極基材に分散付着
させるものであることを特徴とする燃料電池の電極端部
シール処理方法。 3)特許請求の範囲第1項記載のシール処理方法におい
て、予備処理工程で電極基材に付着させるふっ素樹脂の
付着重量を10〜100mg/cm^2に選定したこと
を特徴とする燃料電池の電極端部シール処理方法。
[Claims] 1) For a fuel electrode and an oxidizer electrode, which serve as gas-permeable porous gas diffusion electrodes, facing on both sides with a matrix layer holding an electrolyte in between, at the edge of each electrode, In an electrode end sealing method in which a fluororesin film is coated and the film is thermocompression bonded to an electrode base material for sealing, the fluororesin is dispersed and adhered to the sealing surface of the electrode base material as a preliminary treatment step, and the subsequent A method for sealing an electrode end of a fuel cell, characterized in that, in the step, a fluororesin film is coated on the sealing surface and bonded by thermocompression. 2) In the seal treatment method according to claim 1, the pretreatment step is to apply a fluororesin dispersion to the sealing surface of the electrode base material, and then to bake the fluororesin at a temperature higher than the melting temperature of the fluororesin. 1. A method for sealing an electrode end of a fuel cell, characterized in that the electrode end sealing method comprises dispersing and adhering to an electrode base material. 3) In the seal treatment method according to claim 1, the weight of the fluororesin deposited on the electrode base material in the pretreatment step is selected to be 10 to 100 mg/cm^2. Electrode end seal processing method.
JP60228336A 1985-10-14 1985-10-14 Electrode-end section sealing process for fuel cell Pending JPS6288277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228336A JPS6288277A (en) 1985-10-14 1985-10-14 Electrode-end section sealing process for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228336A JPS6288277A (en) 1985-10-14 1985-10-14 Electrode-end section sealing process for fuel cell

Publications (1)

Publication Number Publication Date
JPS6288277A true JPS6288277A (en) 1987-04-22

Family

ID=16874859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228336A Pending JPS6288277A (en) 1985-10-14 1985-10-14 Electrode-end section sealing process for fuel cell

Country Status (1)

Country Link
JP (1) JPS6288277A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205164A (en) * 1983-05-09 1984-11-20 Toshiba Corp Gas diffusing porous electrode and manufacture thereof
JPS59207563A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205164A (en) * 1983-05-09 1984-11-20 Toshiba Corp Gas diffusing porous electrode and manufacture thereof
JPS59207563A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Fuel cell

Similar Documents

Publication Publication Date Title
JPH08148169A (en) Sealing method for solid polymeric fuel cell
WO2003047018A1 (en) Method for manufacturing electrode for fuel cell
JPH0794172A (en) Electrochemical battery, its anode, and anode coating method
JPH05174845A (en) Macromolecular electrolyte type fuel cell and its manufacture
CN109659581B (en) Method for manufacturing single cell of fuel cell
JP5862485B2 (en) Method for forming gas diffusion layer for fuel cell
JPH0349184B2 (en)
JPH09180740A (en) Solid high-molecular fuel cell and manufacture and device thereof
JPS6288277A (en) Electrode-end section sealing process for fuel cell
JP7257851B2 (en) Elastic cell frame for fuel cell, manufacturing method thereof, and unit cell using same
JPH08185875A (en) Sealing method for solid high molecular fuel cell
KR101304883B1 (en) Hot press apparatus for manufacturing membrane-electrode assembly and method for manufacturing membrane-electrode assembly using the same
US6328862B1 (en) Ozone generating electrolysis cell and method of fabricating the same
JPS5844672A (en) Matrix-type fuel cell
CA2340046A1 (en) Pem fuel cell with improved long-term performance, method for operating a pem fuel cell and pem fuel cell storage battery
JP2637565B2 (en) Method and apparatus for joining electrolyte membrane and electrode
JPS6380485A (en) Sealed laminated cell
JPH08185874A (en) Sealing method for solid high molecular fuel cell
JPH06203851A (en) Method and device for bonding solid polyelectrolyte film to electrode
JPH03184271A (en) Manifold seal device of fuel cell
JP5112581B2 (en) Method for manufacturing electrolyte membrane / electrode assembly
JPS60163376A (en) Porous electrode
JPS60254570A (en) Phosphoric acid type fuel cell
JPH04126366A (en) Solid electrolyte type fuel cell
JPS63236263A (en) Manufacture of gas diffusion electrode