JPH08185874A - Sealing method for solid high molecular fuel cell - Google Patents

Sealing method for solid high molecular fuel cell

Info

Publication number
JPH08185874A
JPH08185874A JP6339775A JP33977594A JPH08185874A JP H08185874 A JPH08185874 A JP H08185874A JP 6339775 A JP6339775 A JP 6339775A JP 33977594 A JP33977594 A JP 33977594A JP H08185874 A JPH08185874 A JP H08185874A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
packing
fuel cell
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6339775A
Other languages
Japanese (ja)
Inventor
Tsutomu Seki
務 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6339775A priority Critical patent/JPH08185874A/en
Publication of JPH08185874A publication Critical patent/JPH08185874A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/26Hot fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/472Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially flat
    • B29C66/4722Fixing strips to surfaces other than edge faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding

Abstract

PURPOSE: To prevent a solid high molecular electrolytic film from expanding or deteriorating, due to humidification and heating at the time of power generation by specifying a moisture state and a heating condition for bonding and integrating the film with a packing by use of an adhesive. CONSTITUTION: Steam is fed to the internal space of both upper and lower dies 20 and 21 through steam introduction tubes 22 and 23. Thereafter, two packings 12 are arranged on the upper and lower peripheral sections of a high molecular electrolytic film 1 and set between the dies 20 and 21. Then, heat is applied thereto, while pressure being applied with the dies 20 and 21. Steam is used for this heating process. During an operation, steam is condensed and the condensation heat thereof is used to maintain hot water temperature equal to or above the glass transition point of the film 1 under pressure. As a result, the film 1 can be bonded to the packings 12 in a moisture state, without being dried.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型燃料電池
のシ−ル方法に関し、より具体的には固体高分子型燃料
電池の固体高分子電解質膜とシ−ル用パッキンとのガス
シ−ルを容易且つ確実にし、発電時における膜膨張によ
る電池破損や製造時の加熱による膜の変質をなくし、固
体高分子型燃料電池の安全性を有効且つ格段に向上させ
ることができるようにした固体高分子型燃料電池のシ−
ル方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing method for a polymer electrolyte fuel cell, and more specifically to a gas seal between a polymer electrolyte membrane of a polymer electrolyte fuel cell and a seal packing. -It is possible to improve the safety of the polymer electrolyte fuel cell effectively and significantly by eliminating the damage of the cell due to the expansion of the membrane during power generation and the deterioration of the membrane due to the heating during manufacturing. Polymer electrolyte fuel cell
Le method.

【0002】[0002]

【従来の技術】固体高分子型燃料電池はイオン伝導体す
なわち電解質が固体で且つ高分子である点に特徴を有す
るものであるが、その固体高分子電解質としては具体的
にはイオン交換樹脂等の膜が使用され、この高分子電解
質膜を挟んで負極(アノ−ド)及び正極(カソ−ド)の
両電極を配置し、例えば負極側に燃料としての水素ガス
を、また正極側には酸素又は空気を供給して電気化学反
応を起こさせることにより電気を発生させるものであ
る。
2. Description of the Related Art A polymer electrolyte fuel cell is characterized in that an ionic conductor, that is, an electrolyte is a solid and a polymer. The solid polymer electrolyte is specifically an ion exchange resin or the like. Is used, and both electrodes of the negative electrode (anode) and the positive electrode (cathode) are arranged with the polymer electrolyte membrane sandwiched between them. For example, hydrogen gas as a fuel is placed on the negative electrode side, and on the positive electrode side. Electricity is generated by supplying oxygen or air to cause an electrochemical reaction.

【0003】この装置には各種態様のものがあるが、図
1は、この固体高分子型燃料電池の原理ないしは一態様
を説明するための概略図である。図1中、1は高分子電
解質膜、2はカソ−ド電極(正極)、3はアノ−ド電極
(負極)であり、高分子電解質膜1は相対するこの正負
両電極2、3間に配置されている。また4はカソ−ド電
極側集電体、5はアノ−ド電極側集電体であり、それぞ
れ正負の電極2及び3に当接されている。このうちカソ
−ド電極側集電体4の電極2側には酸素又は空気供給用
の溝が設けられ、同じくアノ−ド電極側集電体5の電極
3側には水素供給用の溝が設けられ、正極側集電体4の
溝は酸素又は空気供給管6に、また負極側集電体5の溝
は水素供給管7に連通している。
Although there are various modes of this apparatus, FIG. 1 is a schematic diagram for explaining the principle or one mode of this polymer electrolyte fuel cell. In FIG. 1, 1 is a polymer electrolyte membrane, 2 is a cathode electrode (positive electrode), 3 is an anode electrode (negative electrode), and the polymer electrolyte membrane 1 is between the opposite positive and negative electrodes 2 and 3. It is arranged. Further, 4 is a cathode electrode side current collector, and 5 is an anode electrode side current collector, which are in contact with the positive and negative electrodes 2 and 3, respectively. Of these, a groove for oxygen or air supply is provided on the electrode 2 side of the cathode electrode side current collector 4, and a hydrogen supply groove is also provided on the electrode 3 side of the anode electrode side current collector 5. The groove of the positive electrode side current collector 4 is connected to the oxygen or air supply pipe 6, and the groove of the negative electrode side current collector 5 is connected to the hydrogen supply pipe 7.

【0004】8は、正極側集電体4に当接して設けられ
たカソ−ド端子板、9は負極側集電体5に当接して設け
られたアノ−ド端子板であり、電池の作動中にこれらを
通して電力が取り出される。また10は上部枠体すなわ
ち上部フレ−ム、11は下部枠体すなわち下部フレ−ム
であり、これら上下両枠体10、11により高分子電解
質膜1からカソ−ド端子板8及びアノ−ド端子板9まで
の電池本体(この用語は、後述のとおり電極を電解質膜
に当接したものを指すものとしても使用している)を被
って固定されている。
Reference numeral 8 is a cathode terminal plate provided in contact with the positive electrode side current collector 4, and 9 is an anode terminal plate provided in contact with the negative electrode side current collector 5. Power is drawn through them during operation. Further, 10 is an upper frame, that is, an upper frame, 11 is a lower frame, that is, a lower frame. The battery main body up to the terminal plate 9 (this term is also used as referring to the one in which the electrode is in contact with the electrolyte membrane as described later) is fixed.

【0005】これら上下両枠体10、11間には、高分
子電解質膜1からカソ−ド端子板8及びアノ−ド端子板
9までの電池本体の周縁部を囲ってパッキン(ガスケッ
ト)12が設けられ、これによってその電池本体の周縁
部を密に固定してシ−ルし、特に高分子電解質膜1及び
正負両電極2、3に対してガスシ−ルされている。な
お、図1中、13及び14は冷却水供給管であり、これ
らはそれぞれ上部枠体10及び下部枠体11の内面に設
けられた溝(閉じた通路)に連通し、カソ−ド端子板8
の背面及びアノ−ド端子板9の背面から間接的に冷却す
るようになっている。
A packing (gasket) 12 is provided between the upper and lower frames 10 and 11 to surround the periphery of the battery main body from the polymer electrolyte membrane 1 to the cathode terminal plate 8 and the anode terminal plate 9. By this, the peripheral portion of the battery body is tightly fixed and sealed, and in particular, gas sealing is performed on the polymer electrolyte membrane 1 and the positive and negative electrodes 2 and 3. In FIG. 1, 13 and 14 are cooling water supply pipes, which communicate with grooves (closed passages) provided on the inner surfaces of the upper frame body 10 and the lower frame body 11, respectively, and are connected to the cathode terminal plate. 8
Is indirectly cooled from the back surface of the anode terminal board 9 and the back surface of the anode terminal board 9.

【0006】以上は、電池本体が単一の場合であるが、
この電池本体を二つ以上積み重ねて構成することも行わ
れる。この場合には、二つ以上の各電池本体間にセパレ
−タを介在させ、これにも適宜冷却水用の溝等を設ける
必要はあるが、電池本体の周縁部を囲ってパッキンを設
け、その電池本体の周縁部を密に固定してシ−ルし、高
分子電解質膜1及び正負両電極2、3に対してガスシ−
ルをすること等を含めて、基本的には上述単一の電池本
体の場合と同じである。この場合には、パッキン等の締
め付けは、上下両枠体10、11に加え、上記セパレ−
タ−をも介して行われる。
[0006] The above is the case of a single battery body,
It is also possible to stack two or more battery bodies. In this case, it is necessary to interpose a separator between each of the two or more battery bodies, and to provide a groove for cooling water, etc., as appropriate, but a packing is provided so as to surround the periphery of the battery body. The periphery of the battery body is tightly fixed and sealed, and gas seal is applied to the polymer electrolyte membrane 1 and the positive and negative electrodes 2 and 3.
This is basically the same as the case of the single battery main body described above, including the operation of the battery pack. In this case, in addition to the upper and lower frame members 10 and 11, the packing and the like should be tightened.
It is also performed via the target.

【0007】前述単一の電池本体、また電池本体を二つ
以上積み重ねて構成する場合にも、その縁部を密に、特
にガス密にシ−ルする必要がある。そのシ−ルの仕方と
しては、上述のとおり高分子電解質膜の周囲にパッキ
ンを介在させて密着させる(図1中、パッキン12等参
照)、Oリングを介在させ、これにより密着させる等
の手法が用いられ、提案されているが、図2は、このう
ちOリングによるシ−ルの仕方の一例を示すものであ
る。
Even when the above-mentioned single battery main body or two or more battery main bodies are stacked, it is necessary to seal the edge portion tightly, particularly gas-tightly. As a sealing method, as described above, a packing is provided around the polymer electrolyte membrane so as to be in close contact (see packing 12, etc. in FIG. 1), an O-ring is interposed, and thereby a close contact is made. 2 is used and proposed, but FIG. 2 shows an example of a sealing method using an O-ring.

【0008】図2のとおり、電解質膜1の両面上に電極
2(3)が配置され、図1の態様ではその上下から上下
両枠体10(11)により、また電池本体を二つ以上積
み重ねて構成する場合には上下両枠体及びセパレ−タ1
6、17により、これらと電解質膜1の周縁部との間に
Oリング15を介在させて密着させることでシ−ルされ
る。なお図2中符号「16(10)」、「17(1
1)」と示しているのは、セパレ−タ16、17が最上
部又は最下部となる場合に、上部枠体10又は下部枠体
11に相当することになることを意味している。
As shown in FIG. 2, the electrodes 2 (3) are arranged on both sides of the electrolyte membrane 1, and in the embodiment of FIG. 1, two or more battery bodies are stacked from above and below by the upper and lower frame bodies 10 (11). In the case of the configuration, both the upper and lower frames and the separator 1
6 and 17, the O-ring 15 is interposed between these and the peripheral portion of the electrolyte membrane 1 so as to be in close contact with each other, whereby sealing is achieved. In FIG. 2, reference numerals “16 (10)” and “17 (1
1) ”means that the separators 16 and 17 correspond to the upper frame body 10 or the lower frame body 11 when the separators 16 and 17 are the uppermost or lowermost portions.

【0009】しかし、これらの手法でその密着、シ−ル
を確実にするためには、何れもそれらパッキン又はOリ
ングを強く押圧する必要があるが、このためこれらが当
接する高分子電解質膜自体を損傷するばかりでなく、前
述電池本体に対しても必要以上の締め付けが行われてし
まうことにもなり、また電解質膜は、通常、温度や加湿
の有無により伸縮する性質があり、これによりシ−ル部
分に負担がかかりやすいため、上述、等の何れのシ
−ル手法をとるにしても、この点にも十分配慮する必要
がある。
However, in order to ensure the close contact and the seal by these methods, it is necessary to strongly press the packing or the O-ring, and therefore, the polymer electrolyte membrane itself with which they abut is contacted. Not only the battery will be damaged, but also the battery body will be tightened more than necessary, and the electrolyte membrane usually has the property of expanding and contracting depending on the temperature and the presence or absence of humidification. -Since the burden is apt to be placed on the seal portion, it is necessary to pay sufficient attention to this point even if any of the above sealing methods is adopted.

【0010】本発明者は、その電池本体の周縁部(周辺
部)を固定してシ−ルし、高分子電解質膜1及び正負両
電極2、3に対してガスシ−ルをするに当たり、そのよ
うなパッキンやOリングを介在させる手法における上記
諸欠点を一挙に解決し、高分子電解質膜を軽く押さえる
だけで十分にシ−ルすることができ、またこれによって
高分子電解質膜自体を損傷することのない等の優れた利
点を有するシ−ル法を先に開発し提案している(特願平
6−309936号)。
The present inventor fixes the peripheral portion (peripheral portion) of the battery main body and seals it, and gas seals the polymer electrolyte membrane 1 and the positive and negative electrodes 2 and 3. The above-mentioned drawbacks in the method of interposing packings or O-rings can be solved all at once, and the polymer electrolyte membrane can be sufficiently sealed by only lightly pressing it, and this also damages the polymer electrolyte membrane itself. It has previously developed and proposed a seal method having excellent advantages such as the fact that it does not occur (Japanese Patent Application No. 6-309936).

【0011】上記開発、提案に係る発明では、固体高分
子型燃料電池のシ−ルを、固体高分子型燃料電池の高分
子電解質膜とパッキン(ガスケット)、好ましくは予め
サンドブラストにより表面処理をして細かい凹凸を付し
たパッキン(ガスケット)を予め接着剤により接合して
一体化することにより行うものであるが、図3(a)
は、上記で得たパッキンを一体化した高分子電解質膜
を、また図3(b)はそのパッキン一体化高分子電解質
膜の両側にガス拡散電極を接合した燃料電池本体の構造
を示したものである。
In the inventions according to the above developments and proposals, the seal of the polymer electrolyte fuel cell is surface-treated with a polymer electrolyte membrane and packing (gasket) of the polymer electrolyte fuel cell, preferably by sandblasting in advance. The packing (gasket) having fine irregularities is preliminarily joined by an adhesive to be integrated, as shown in FIG. 3 (a).
Shows the structure of the polymer electrolyte membrane in which the packing obtained above is integrated, and FIG. 3 (b) shows the structure of the fuel cell body in which the gas diffusion electrodes are joined to both sides of the packing-integrated polymer electrolyte membrane. Is.

【0012】図3(b)中、高分子電解質膜1及び正負
両電極2、3の配置は図1〜図2の場合と同じである
が、上記で得た電極2、3は、撥水化カ−ボンペ−パ−
がガス拡散層18を、また触媒粒子の堆積層が触媒層1
9を形成している。このため、両電極2、3は、ともに
触媒層19側が高分子電解質膜面に当接するように接合
されており、これにより電解質膜とパッキンの間のガス
シ−ルを容易且つ確実にし、燃料電池としての安全性を
向上させることができるだけでなく、従来よりも膜を軽
く押さえるだけで十分にシ−ルすることができ、このた
め電解質膜の損傷を大幅に低減させることができるもの
である。
In FIG. 3 (b), the arrangement of the polymer electrolyte membrane 1 and the positive and negative electrodes 2 and 3 is the same as in FIGS. 1 and 2, but the electrodes 2 and 3 obtained above are water repellent. Chemical Carbon Paper
Is the gas diffusion layer 18 and the deposited layer of catalyst particles is the catalyst layer 1
9 are formed. Therefore, both electrodes 2 and 3 are joined so that the catalyst layer 19 side is in contact with the polymer electrolyte membrane surface, thereby facilitating and ensuring gas seal between the electrolyte membrane and the packing, and thus the fuel cell. Not only can the safety be improved, but also the membrane can be sufficiently sealed by lightly pressing the membrane as compared with the conventional one, and thus the damage to the electrolyte membrane can be greatly reduced.

【0013】ところで、この技術を実施するに際して
は、上記パッキンに接着剤の溶液を塗布した後、乾燥さ
せて溶媒をとばし、この塗布面と高分子電解質膜を当接
させ、次いで温度120℃以上、特に140〜200℃
でホットプレスして両者を接合している。しかし、この
ように接着剤を乾燥させて溶媒をとばし、しかもそのホ
ットプレス時において、高分子電解質膜をそのよな高温
に加熱するため、その膜が乾燥してしまい、発電時とは
異なるサイズになってしまうことが観察された。そして
このことは、発電時の加湿により膜の膨張による電池の
破損という危険性を持っており、また上記加熱により膜
が変質する可能性もある。
By the way, in carrying out this technique, after applying a solution of an adhesive to the packing, it is dried to remove the solvent, the applied surface is brought into contact with the polymer electrolyte membrane, and then the temperature is 120 ° C. or higher. , Especially 140-200 ℃
They are hot-pressed together to join the two. However, in this way, the adhesive is dried to remove the solvent, and at the time of hot pressing, the polymer electrolyte membrane is heated to such a high temperature that the membrane dries, resulting in a size different from that during power generation. It was observed that This has a risk of damaging the battery due to expansion of the membrane due to humidification during power generation, and there is a possibility that the membrane may be deteriorated by the above heating.

【0014】[0014]

【発明が解決しようとする課題】そこで、本発明では、
固体高分子型燃料電池の高分子電解質膜とパッキン(ガ
スケット)とを予め接着剤により接着して一体化するこ
とによりシ−ルを行う固体高分子型燃料電池のシ−ル方
法において、その固体高分子電解質膜とパッキンとの接
着剤による接着一体化に際して、その含水状態及び加熱
条件に特定、格別の工夫をすることにより、上記のよう
な欠点のない固体高分子型燃料電池のシ−ル方法を提供
するものである。
Therefore, according to the present invention,
A polymer electrolyte membrane of a polymer electrolyte fuel cell and a packing (gasket) are preliminarily adhered to each other with an adhesive to form a seal. When the polymer electrolyte membrane and the packing are bonded and integrated with an adhesive, the water-containing state and heating conditions are specified and special measures are taken to make the seal of the solid polymer fuel cell free from the above-mentioned drawbacks. It provides a method.

【0015】[0015]

【課題を解決するための手段】すなわち、本発明は、固
体高分子電解質膜とパッキンを予め接着剤により接合一
体化してシ−ルする固体高分子型燃料電池のシ−ル方法
において、その固体高分子電解質膜とパッキンとを、そ
の間の接着剤を乾燥させることなく、加圧下、固体高分
子電解質膜のガラス転移点以上の湯温度下で該固体高分
子電解質膜を含水状態として接合させることを特徴とす
る固体高分子型燃料電池のシ−ル方法を提供する。
That is, the present invention relates to a sealing method for a solid polymer electrolyte fuel cell in which a solid polymer electrolyte membrane and packing are bonded and integrated with an adhesive in advance and sealed. To bond the polymer electrolyte membrane and the packing to each other in a water-containing state under pressure, at a hot water temperature above the glass transition point of the polymer electrolyte membrane, without drying the adhesive between them. And a sealing method for a polymer electrolyte fuel cell.

【0016】ここで、上記高分子電解質膜としては、そ
の種類如何を問わず何れも適用できるが、その優れた特
性から好ましくはパ−フルオロカ−ボンスルフォン酸系
の樹脂膜を使用することができる。この膜はその優れた
電気的特性に加え、化学的にも物理的にもきわめて安定
であり、機械的強度も大きく、厚さ50〜200μm程
度の膜として使用され、この膜厚でも単位面積当りの電
気抵抗は0.1〜0.5Ω程度で電池の内部抵抗の主な
原因とはなり得ないほど小さい等、優れた特性を備える
材料として知られているものである。
Here, as the above-mentioned polymer electrolyte membrane, any type can be applied, but a perfluorocarbon sulfonic acid type resin membrane can be preferably used because of its excellent characteristics. . In addition to its excellent electrical characteristics, this film is extremely stable chemically and physically, has high mechanical strength, and is used as a film with a thickness of 50 to 200 μm. It is known as a material having excellent characteristics such that its electric resistance is about 0.1 to 0.5Ω and is so small that it cannot be the main cause of the internal resistance of the battery.

【0017】ガラス転移点は、固体高分子電解質膜の種
類等如何により異なるが(上記パ−フルオロカ−ボンス
ルフォン酸系の樹脂膜のガラス転移点は通常100〜1
20℃程度であるが、この範囲とは限らず、その重合
度、スルフォン酸基の量によっても異なる)、本発明で
は、使用する固体高分子電解質膜のガラス転移点に応じ
て上記加圧、加熱時の湯温度をそれ以上となるよう調節
するものである。
The glass transition point varies depending on the type of solid polymer electrolyte membrane and the like (the glass transition point of the above-mentioned perfluorocarbon sulfonic acid type resin membrane is usually 100 to 1).
It is about 20 ° C., but is not limited to this range, and varies depending on the degree of polymerization thereof and the amount of sulfonic acid groups). In the present invention, the above-mentioned pressurization depending on the glass transition point of the solid polymer electrolyte membrane to be used, The hot water temperature during heating is adjusted to be higher than that.

【0018】また、上記パッキンの材質としては、フッ
素ゴムその他それ自体化学的に安定で、これと接触する
材料を変質させることなく、また水素や空気等の流体が
浸透しない等、パッキンとして所定の諸性質を備えてい
るものであれば、何れも使用することができる。そして
この場合、上記接着剤による接合一体化をより効果的に
する上では、その接着に先立ち、そのパッキン自体の高
分子電解質膜と当接する面(電池と接する面)に対して
サンドブラスト(スチ−ルブラスト等を含む)やプラズ
マエッチング等により細かい凹凸を付けておくのが特に
有効である。これによって高分子電解質膜に対してパッ
キンを密にシ−ルし且つ強固に固定することができる。
As the material of the packing, fluororubber or the like is chemically stable in itself, does not deteriorate the material that comes into contact with the rubber, and the fluid such as hydrogen or air does not permeate. Any material can be used as long as it has various properties. In this case, in order to make the joining and integration by the adhesive more effective, a sand blast (steel) is applied to the surface of the packing itself that contacts the polymer electrolyte membrane (the surface that contacts the battery) prior to the bonding. It is especially effective to form fine irregularities by means of plasma etching, etc.). As a result, the packing can be tightly sealed and firmly fixed to the polymer electrolyte membrane.

【0019】さらに、その接着剤としては、高分子電解
質膜とパッキンを密に接着し、ガスシ−ルできるもので
あれば何れも使用できるが、両者、就中高分子電解質膜
を化学作用等により劣化させないものである必要があ
り、このため特に高分子電解質膜と同系統の成分からな
る接着剤であるのが望ましい。この点、高分子電解質膜
として上記パ−フルオロカ−ボンスルフォン酸系の樹脂
膜を使用する場合には、その接着剤としては、好ましく
はこれと同じ高分子電解質膜の溶液を使用し、例えばN
afion−117(登録商標)の膜を使用するなら、
Nafion溶液(Aldrich Chemical
社製、登録商標)を使用する。
Further, as the adhesive, any adhesive can be used as long as it can tightly adhere the polymer electrolyte membrane and the packing and gas seals. However, both of them, especially the polymer electrolyte membrane are deteriorated by chemical action or the like. It is necessary not to allow it to occur, and therefore, it is particularly desirable to use an adhesive composed of the same type of components as the polymer electrolyte membrane. In this respect, when the above-mentioned perfluorocarbonsulfonic acid resin film is used as the polymer electrolyte membrane, the same solution of the polymer electrolyte membrane is preferably used as the adhesive agent, for example, N
If afion-117 (R) membrane is used,
Nafion solution (Aldrich Chemical
(Registered trademark) manufactured by the company is used.

【0020】また、上記予め高分子電解質膜とパッキン
(ガスケット)とを接着して一体化するその接着一体化
の仕方としては、例えば高分子電解質膜とパッキンとの
当接面の一方又は両方に適当な接着剤を塗布し(好まし
くはパッキンに塗布する)、必要に応じて溶媒を除去し
た後、高分子電解質膜に対してパッキンを当接させ、加
圧且つ加温下に行うが、本発明においては、この加熱を
前述のとおりガラス転移点以上の湯温度で行うことによ
り、該高分子電解質膜を含水状態で接着一体化させるこ
とができるものである。
In addition, the above-mentioned method of adhering and integrating the polymer electrolyte membrane and the packing (gasket) in advance is, for example, one or both of the contact surfaces of the polymer electrolyte membrane and the packing. Apply an appropriate adhesive (preferably to the packing), remove the solvent if necessary, then bring the packing into contact with the polymer electrolyte membrane, and apply pressure and heat. In the present invention, this heating is performed at a hot water temperature equal to or higher than the glass transition point as described above, whereby the polymer electrolyte membrane can be bonded and integrated in a water-containing state.

【0021】図4は、本発明方法を実施する態様を原理
的に示した模式図である。図4中、20は上金型、21
は下金型、22、23はスチ−ム導入管であり、このス
チ−ム導入管22、23を介して上下両金型内に水蒸気
が供給される。図示のとおり高分子電解質膜1の上下周
辺部に2枚のパッキン12を配置した後、上下金型2
0、21間にセットし、両金型20、21により圧力を
かけながら加熱する。
FIG. 4 is a schematic diagram showing in principle the mode for carrying out the method of the present invention. In FIG. 4, 20 is an upper die, 21
Is a lower mold, and 22 and 23 are steam introducing pipes, and steam is supplied into the upper and lower molds through the steam introducing pipes 22 and 23. As shown in the figure, after arranging two packings 12 on the upper and lower peripheral portions of the polymer electrolyte membrane 1, the upper and lower molds 2
It is set between 0 and 21 and heated while pressure is applied by both molds 20 and 21.

【0022】この加熱は上記水蒸気により行うが、操作
時にこの水蒸気が凝縮し、その凝縮熱を利用するように
することにより、その加熱温度として湯の温度すなわち
100℃又はそれ以上の温度に維持することができるも
のである(なお、固体高分子電解膜が、100℃以上の
ガラス転移点を持つものであるときは、対応して水蒸気
を1気圧以上に加圧する)。また、本発明ではその加熱
源として、上記水蒸気に代えて温度100℃又はそれ以
上に加熱した湯を供給するようにしても差し支えなく、
この場合には、上記スチ−ム導入管22、23を湯供給
用導管として構成する。本発明においては、(高分子電
解質膜7及び接着剤を予め乾燥しない点に加え)、これ
により高分子電解質膜を乾燥させることなく、濡れた状
態すなわち含水状態の膜としたままでパッキンとの接合
を完結させることができるものである。
This heating is carried out by the steam described above, and the steam is condensed during operation, and the heat of condensation is used so that the heating temperature is maintained at the temperature of hot water, that is, at 100 ° C. or higher. (Note that when the solid polymer electrolyte membrane has a glass transition point of 100 ° C. or higher, steam is correspondingly pressurized to 1 atm or higher). Further, in the present invention, as the heating source, hot water heated to a temperature of 100 ° C. or higher may be supplied instead of the steam,
In this case, the steam introduction pipes 22 and 23 are constructed as hot water supply conduits. In the present invention (in addition to the fact that the polymer electrolyte membrane 7 and the adhesive are not dried in advance), this allows the polymer electrolyte membrane to be used as a membrane in a wet state, that is, in a water-containing state without drying the polymer electrolyte membrane. The joining can be completed.

【0023】この点、前述提案の方法では、その膜をホ
ットプレス時において温度120℃以上、特に140〜
200℃に加熱するため、その高分子電解質膜が乾燥し
てしまい、発電時とは異なるサイズになってしまう可能
性があり、このため発電時の膜の膨張による電池の破損
という危険性を持ち、また、加熱による膜の変質も問題
であったが、本発明によれば、それら欠点を一挙に解決
し得たもので、高分子電解質膜とパッキンを含水状態で
接合し、これにより発電時における膜のストレスもない
ため、より安全な発電を行うことを可能としたものであ
る。
In this respect, in the method proposed above, the temperature of the film during hot pressing is 120 ° C. or higher, particularly 140 to
Since the polymer electrolyte membrane is heated to 200 ° C, it may be dried and have a different size from that during power generation. Therefore, there is a risk of battery damage due to expansion of the membrane during power generation. Also, the deterioration of the membrane due to heating was also a problem, but according to the present invention, those drawbacks could be solved all at once, and the polymer electrolyte membrane and the packing were joined in a water-containing state, thereby generating power. Since there is no stress on the membrane in the above, it is possible to perform safer power generation.

【0024】次に、本発明に係るシ−ル方法の一態様に
ついてその概略を述べると、(a)まず、例えば厚さ1
〜5mm程度のパッキンのシ−ル面(電池と接触する面
=高分子電解質膜と接触する面)にサンドブラスト或い
はプラズマエッチング処理により細かな凹凸を付ける。
(b)、(a)の処理面(細かな凹凸を有する面)に接
着剤としての高分子電解質膜の溶液(例えば、Nafi
on溶液、Aldrich Chemical社製、商
品名)をその電解質膜が0.1〜5mg/cm2 程度と
なるように塗付する。この場合その塗付の仕方として
は、ロ−ル法、刷毛を用いる手法その他この種塗布手段
として通常使用される方法を適用することができる。
Next, an outline of one embodiment of the seal method according to the present invention will be described. (A) First, for example, a thickness of 1
Fine ruggedness is formed by sandblasting or plasma etching on the seal surface of the packing (the surface in contact with the battery = the surface in contact with the polymer electrolyte membrane) of about 5 mm.
A solution of a polymer electrolyte membrane as an adhesive (for example, Nafi) on the treated surface (the surface having fine irregularities) of (b) and (a)
on solution, manufactured by Aldrich Chemical Co., Ltd., is applied so that the electrolyte membrane has a concentration of about 0.1 to 5 mg / cm 2 . In this case, as the coating method, a roll method, a method using a brush, or a method usually used as this kind of coating means can be applied.

【0025】(c)、次いで、上記(b)の塗布溶液中
の溶媒をまず室温で乾かし、表面から溶媒の確認ができ
なくなったら(すなわちその表面から溶媒から見えなく
なった時点で)、真空乾燥器を用いて温度約80℃で、
約3時間程度乾かし、溶媒を完全に取り除く。高分子電
解質膜にパッキンの塗布面が接するようにして、例えば
図4に示すようにプレス用の金型内に入れる。
(C) Then, the solvent in the coating solution of the above (b) is first dried at room temperature, and when the solvent cannot be confirmed from the surface (that is, when the solvent is no longer visible from the surface), vacuum drying is performed. At a temperature of about 80 ° C
Dry for about 3 hours to completely remove the solvent. The packing surface of the polymer electrolyte membrane is in contact with the polymer electrolyte membrane, and the packing is placed in a pressing die as shown in FIG. 4, for example.

【0026】(d)、金型を上下から挟んで、圧力約1
00〜200kg/cm2 でプレスし、温度100℃に
加熱した水を金型内に導入して、高分子電解質膜とパッ
キンを接合する。(e)、(a)〜(d)のようにして
得られた、予めパッキンを接合した電解質膜にガス拡散
電極を接合して燃料電池本体を得る。次いで、この燃料
電池本体をパッキンがシ−ル部分に収まる枠体(及びセ
パレ−タ)で挟み、アノ−ド電極、カソ−ド電極の両電
極その他必要な構成要素を例えば図1のように組み立て
ることにより、燃料電池を構成することができる。
(D) The pressure is about 1 by sandwiching the mold from above and below.
Water is heated at a temperature of 100 ° C. into a mold by pressing at a pressure of 00 to 200 kg / cm 2 to bond the polymer electrolyte membrane and the packing. The fuel cell main body is obtained by joining the gas diffusion electrode to the electrolyte membrane obtained by the steps (e) and (a) to (d) and having the packing joined thereto in advance. Next, the fuel cell main body is sandwiched by a frame (and a separator) in which the packing fits in the seal portion, and the anode electrode, cathode electrode, and other necessary components are arranged as shown in FIG. 1, for example. By assembling, a fuel cell can be constructed.

【0027】なお、パッキンの厚みや形状は燃料電池構
造の態様、規模等如何により図1のような形態とは異な
る場合があるが、本発明のシ−ル方法は、それら態様、
規模等如何により制限されることはなく、また電池本体
が単一の場合とは限らず、この電池本体を二つ以上積み
重ねて構成する場合についても同様に適用できるもので
ある。
The thickness and shape of the packing may be different from those shown in FIG. 1 depending on the mode and scale of the fuel cell structure.
It is not limited by the scale and the like, and is not limited to the case where the battery main body is a single body, and is similarly applicable to the case where two or more battery main bodies are stacked.

【0028】[0028]

【実施例】以下、本発明の実施例を説明するが、本発明
がこの実施例に限定されるものではないことは勿論であ
る。まず、厚さ3mmのバイトン製パッキン(フッ素
ゴム)のシ−ル面(電池すなわち電解質膜と接触する
面)にサンドブラストにより細かい凹凸を付けた。次
いで、で処理した凹凸面上に塗布法によりNafio
n膜(パ−フルオロカ−ボンスルフォン酸系樹脂膜、A
ldrich Chemical社製、登録商標)の溶
液をその電解質膜が1mg/cm2 となるように塗布し
た。
EXAMPLES Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples. First, the seal surface (the surface that contacts the battery, that is, the electrolyte membrane) of a Viton packing (fluorine rubber) having a thickness of 3 mm was finely roughened by sandblasting. Then, apply Nafio on the uneven surface treated with
n film (perfluorocarbon sulfonic acid resin film, A
A solution of ldrich Chemical, registered trademark) was applied so that the electrolyte membrane had a concentration of 1 mg / cm 2 .

【0029】その後上記の塗布面の溶液中の溶媒を
室温で乾かし、その表面から溶媒が確認できなくなった
時点で、真空乾燥器を用いて温度80℃で約3時間程度
乾かし、溶媒を完全に取り除いた。得られたパッキン2
枚をその塗布面(シ−ル面)を内側にして、その間にN
afion−117膜(パ−フルオロカ−ボンスルフォ
ン酸系樹脂膜、Du Pont社製、商品名)を挟み、
この高分子電解質膜に塗布面が接するようにして、図4
に示すプレス用の金型内に入れてセットした。 引続き、金型を上下から挟んで圧力150kg/cm
2 でプレスし、温度100℃に加熱した水を金型内に導
入して、膜とパッキンを接合し、図3(a)に示すよう
なパッキンを接着、一体化した固体高分子電解質膜を得
た。
Then, the solvent in the solution on the coated surface was dried at room temperature, and when the solvent could not be confirmed from the surface, it was dried at a temperature of 80 ° C. for about 3 hours by using a vacuum dryer to completely remove the solvent. I removed it. Obtained packing 2
With the coated surface (sealing surface) of the sheet facing inward, N
afion-117 film (perfluorocarbon-sulfonic acid resin film, manufactured by Du Pont, trade name) is sandwiched,
As shown in FIG.
It was put in the mold for the press shown in and set. Then, the mold is sandwiched from above and below, and the pressure is 150 kg / cm.
Pressing at 2 and introducing water heated to a temperature of 100 ° C into the mold, the membrane and the packing are joined, and the packing as shown in Fig. 3 (a) is adhered and integrated into a solid polymer electrolyte membrane. Obtained.

【0030】、〜で得られたパッキン一体化固体
高分子電解質膜にガス拡散電極を接合して、図3(b)
に示すような燃料電池本体を得た。本実施例で使用した
このガス拡散電極は、気孔率80%、厚さ0.4mmの
カ−ボンペ−パ−をネオフロン(テトラフルオロエチレ
ン−ヘキサフルオロプロピレン共重合体、ダイキン工業
社製、商品名)のディスパ−ジョンで撥水化したカ−ボ
ンペ−パ−上に、NAFION−117(パ−フルオロ
カ−ボンスルホン酸樹脂、Du Pont社製、商品
名)のアルコ−ル溶液でコ−ティングした白金50重量
%担持の触媒粒子(担体:カ−ボンブラック)にポリテ
トラフルオロエチレンのディスパ−ジョンを加えた懸濁
液を堆積させて得たものである。
A gas diffusion electrode is bonded to the packing-integrated solid polymer electrolyte membrane obtained in steps (1) and (2) in FIG.
A fuel cell body as shown in was obtained. The gas diffusion electrode used in this example is a carbon paper having a porosity of 80% and a thickness of 0.4 mm, made of neoflon (tetrafluoroethylene-hexafluoropropylene copolymer, manufactured by Daikin Industries, Ltd., trade name. ) On the carbon paper which was made water-repellent by the dispersion, coated with an alcohol solution of NAFION-117 (perfluorocarbon sulfonic acid resin, manufactured by Du Pont, trade name). It was obtained by depositing a suspension obtained by adding a dispersion of polytetrafluoroethylene to catalyst particles carrying 50% by weight of platinum (carrier: carbon black).

【0031】次いで、常法により、上記燃料電池本体に
集電体、端子板等を密着させ、水素及び酸素の出入口等
を設置して図1のように固体高分子型燃料電池としてセ
ットし、その電極特性及び電池としての性能の変化を測
定した。比較例として別途作製した、本発明のように高
分子電解質膜とパッキンとを予め接着・一体化すること
なく、パッキンを従来法により密に圧接してシ−ルをし
た以外は、本実施例と同様にして得た燃料電池について
も同じく測定した。
Then, by a conventional method, a current collector, a terminal plate, etc. are brought into close contact with the fuel cell body, hydrogen and oxygen inlets / outlets are installed, and the solid polymer fuel cell is set as shown in FIG. The change in the electrode characteristics and the performance as a battery was measured. This example was prepared separately as a comparative example, except that the packing was closely pressed and sealed by the conventional method without sealing and pre-bonding the polymer electrolyte membrane and the packing as in the present invention as in the present invention. The fuel cell obtained in the same manner as above was also measured.

【0032】両者は、ほぼ同等の性能を示したが、従来
法では、膜の破損等が発電中に30%の割合で生じたの
に対して、実施例で得た燃料電池では作動当初から高分
子電解質膜の破損等のトラブルは生じなかった。この
点、同じ試験を10回実施しても全く同様であった。ま
たシ−ル後の電解質膜面を目視により観察たところ、本
実施例によものには、その解体後でも膜の損傷は認めら
れなかった。
Although both showed almost the same performance, in the conventional method, the damage of the membrane and the like occurred at a rate of 30% during power generation, whereas in the fuel cell obtained in the example, from the beginning of operation. No troubles such as breakage of the polymer electrolyte membrane occurred. In this respect, even if the same test was performed 10 times, it was exactly the same. Further, when the surface of the electrolyte membrane after sealing was visually observed, no damage to the membrane was observed in the example according to this example even after the disassembly.

【0033】[0033]

【発明の効果】本発明に係るシ−ル方法によれば、高分
子電解質膜とパッキンが含水状態で接合されており、発
電時における膜のストレスもないため、より安全な発電
を行うことができる。また、電解質膜とパッキンの間の
ガスシ−ルを容易且つ確実にすることができ、燃料電池
の安全性を向上させることができる。また従来よりも膜
を軽く押さえるだけで十分にシ−ルすることができ、こ
のため電解質膜の損傷を大幅に低減させることができ
る。
According to the seal method of the present invention, since the polymer electrolyte membrane and the packing are bonded together in a water-containing state and there is no stress on the membrane during power generation, safer power generation can be performed. it can. In addition, the gas seal between the electrolyte membrane and the packing can be easily and reliably ensured, and the safety of the fuel cell can be improved. Further, the membrane can be sufficiently sealed by simply pressing it lightly as compared with the conventional one, and therefore, the damage to the electrolyte membrane can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体高分子型燃料電池の一態様を説明するため
の概略図。
FIG. 1 is a schematic diagram for explaining one embodiment of a polymer electrolyte fuel cell.

【図2】Oリングによる従来のシ−ル態様の一例を示す
図。
FIG. 2 is a diagram showing an example of a conventional seal mode using an O-ring.

【図3】パッキンを一体化した高分子電解質膜及びこれ
にガス拡散電極を接合した燃料電池本体の構造を示す
図。
FIG. 3 is a view showing a structure of a polymer electrolyte membrane in which packing is integrated and a fuel cell main body in which a gas diffusion electrode is joined thereto.

【図4】本発明方法を実施する態様を原理的に示した模
式図。
FIG. 4 is a schematic diagram showing in principle the mode for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 高分子電解質膜 2 カソ−ド電極(正極) 3 アノ−ド電極(負極) 4、5 集電体 6 空気供給管 7 水素供給管 8、9 端子板 10 上部枠体(上部フレ−ム) 11 下部枠体(下部フレ−ム) 12 パッキン 13、14 冷却水供給管 15 Oリング 16、17 セパレ−タ 18 ガス拡散層 19 触媒層 20 上金型 21 下金型 22、23 スチ−ム導入管 1 Polymer Electrolyte Membrane 2 Cathode Electrode (Positive Electrode) 3 Anode Electrode (Negative Electrode) 4, 5 Current Collector 6 Air Supply Pipe 7 Hydrogen Supply Pipe 8, 9 Terminal Plate 10 Upper Frame (Upper Frame) 11 Lower frame (lower frame) 12 Packing 13, 14 Cooling water supply pipe 15 O-ring 16, 17 Separator 18 Gas diffusion layer 19 Catalyst layer 20 Upper mold 21 Lower mold 22, 23 Introducing steam tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜とパッキンを予め接着
剤により接合一体化してシ−ルする固体高分子型燃料電
池のシ−ル方法において、その固体高分子電解質膜とパ
ッキンとを、その間の接着剤を乾燥させることなく、加
圧下、固体高分子電解質膜のガラス転移点以上の湯温度
下で該固体高分子電解質膜を含水状態として接合させる
ことを特徴とする固体高分子型燃料電池のシ−ル方法。
1. A sealing method for a solid polymer electrolyte fuel cell in which a solid polymer electrolyte membrane and a packing are preliminarily bonded and integrated with an adhesive to seal the solid polymer electrolyte membrane and the packing. The solid polymer electrolyte fuel cell is characterized in that the solid polymer electrolyte membrane is bonded in a water-containing state under pressure at a hot water temperature above the glass transition point of the solid polymer electrolyte membrane without drying the adhesive. Seal method.
【請求項2】パッキンのシ−ル面にサンドブラスト又は
プラズマエッチングにより細かい凹凸を付けた後、接着
剤をその凹凸面に塗布する請求項1記載の固体高分子型
燃料電池のシ−ル方法。
2. The sealing method for a polymer electrolyte fuel cell according to claim 1, wherein the seal surface of the packing is provided with fine irregularities by sandblasting or plasma etching, and then an adhesive is applied to the irregular surface.
【請求項3】固体高分子電解質膜がパ−フルオロカ−ボ
ンスルフォン酸樹脂系の膜であり、接着剤がパ−フルオ
ロカ−ボンスルフォン酸系の樹脂溶液である請求項1又
は2記載の固体高分子型燃料電池のシ−ル方法。
3. The solid polymer electrolyte according to claim 1, wherein the solid polymer electrolyte membrane is a perfluorocarbon-sulfonic acid resin-based membrane, and the adhesive is a perfluorocarbon-sulfonic acid-based resin solution. Molecular fuel cell seal method.
JP6339775A 1994-12-28 1994-12-28 Sealing method for solid high molecular fuel cell Pending JPH08185874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6339775A JPH08185874A (en) 1994-12-28 1994-12-28 Sealing method for solid high molecular fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6339775A JPH08185874A (en) 1994-12-28 1994-12-28 Sealing method for solid high molecular fuel cell

Publications (1)

Publication Number Publication Date
JPH08185874A true JPH08185874A (en) 1996-07-16

Family

ID=18330696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6339775A Pending JPH08185874A (en) 1994-12-28 1994-12-28 Sealing method for solid high molecular fuel cell

Country Status (1)

Country Link
JP (1) JPH08185874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286430A (en) * 2005-04-01 2006-10-19 Dainippon Printing Co Ltd Electrolyte membrane-electrode conjugate with gasket for solid polymer fuel cell and its manufacturing method
US7335436B2 (en) 2001-03-31 2008-02-26 Samsung Sdi Co., Ltd. Proton exchange membrane fuel cell stack
JP2013109950A (en) * 2011-11-21 2013-06-06 Toppan Printing Co Ltd Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335436B2 (en) 2001-03-31 2008-02-26 Samsung Sdi Co., Ltd. Proton exchange membrane fuel cell stack
JP2006286430A (en) * 2005-04-01 2006-10-19 Dainippon Printing Co Ltd Electrolyte membrane-electrode conjugate with gasket for solid polymer fuel cell and its manufacturing method
JP2013109950A (en) * 2011-11-21 2013-06-06 Toppan Printing Co Ltd Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
JPH08148169A (en) Sealing method for solid polymeric fuel cell
US6699613B2 (en) Fuel cell having sealant for sealing a solid polymer electrolyte membrane
US6783883B1 (en) Gas-proof assembly composed of a bipolar plate and a membrane-electrode unit of polymer electrolyte membrane fuel cells
JP5363335B2 (en) Gas diffusion layer with built-in gasket
CN1322619C (en) Fuel cell and its making method
US20070209758A1 (en) Method and process for unitized mea
US20070210475A1 (en) Sealing arrangement for fuel cells
KR20060090216A (en) Membrane electrode assembly for use in electrochemical devices
JPH08148170A (en) Sealing method for solid polymeric fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
US8586265B2 (en) Method of forming membrane electrode assemblies for electrochemical devices
JP2003082488A (en) Membrane-electrode assembly and its manufacturing method
JP4071032B2 (en) Solid polymer fuel cell and power generation system using the same
JPH08185875A (en) Sealing method for solid high molecular fuel cell
JP2001319676A (en) Fuel cell and its manufacturing method
JP2019106344A (en) Method for manufacturing fuel cell
JPH08185874A (en) Sealing method for solid high molecular fuel cell
JP2007193948A (en) Fuel cell
JP2009009912A (en) Assembling system and assembling method for fuel cell, and fuel cell assembled by the same assembly method
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JP4124666B2 (en) Assembly method of fuel cell stack
CA2360184C (en) Solid polymer electrolyte membrane comprising a moisture-proof layer and fuel cell comprising same
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
EP1984967A1 (en) Method of forming membrane electrode assemblies for electrochemical devices