JPS6285657A - Motor - Google Patents

Motor

Info

Publication number
JPS6285657A
JPS6285657A JP60224274A JP22427485A JPS6285657A JP S6285657 A JPS6285657 A JP S6285657A JP 60224274 A JP60224274 A JP 60224274A JP 22427485 A JP22427485 A JP 22427485A JP S6285657 A JPS6285657 A JP S6285657A
Authority
JP
Japan
Prior art keywords
power generation
frequency power
magnet
coil
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60224274A
Other languages
Japanese (ja)
Inventor
Kotoji Kawashima
琴司 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Kumagaya Seimitsu Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Kumagaya Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Kumagaya Seimitsu Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60224274A priority Critical patent/JPS6285657A/en
Publication of JPS6285657A publication Critical patent/JPS6285657A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lead out a lead wire for a driving coil simply by using adjacent strands for a frequency magnet coil as a pair of strand pairs and omitting strand pairs of the end of the strand pairs and strand pairs in which electromotive force, phase thereof differs from electromotive force obtained by the omitted strand pairs by 180 deg., is generated. CONSTITUTION:A driving coil and a circuit substrate 4 are mounted on the stator 5 side. A magnet 13 for drive, which is faced oppositely to the driving coil and multipolar-magnetized, and a frequency magneto magnet 14 are fitted to a rotor 11 axially supported to the stator 5 side. A frequency magneto coil 15 is formed at a position on the circuit substrate 4 faced oppositely to the frequency magneto magnet 14. On pair of adjacent strands for the frequency magneto coil 15 is used as a strand pair, and the strand pair at the end of the strand pairs is omitted while the strand pair from which electromotive force, which is generated by the omitted strand pair and phase thereof differs by 180 deg., is acquired is omitted.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はモータに係り、特に、音9機器、映像機器、情
報機器等の定速回転駆動機構に好適し、速度検出用の周
波数発電装置を備えたモータの改良に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a motor, and is particularly suitable for constant speed rotation drive mechanisms of audio equipment, video equipment, information equipment, etc., and is suitable for frequency power generation for speed detection. This invention relates to improvements in motors equipped with devices.

(口〉 従来の技術 モータの周波数発電装置は、スラーータ側に周波数発電
用フィルを形成し、これに対向−Jる周波数発電用マグ
ネットをロータ側に配置し、このロータの回転に伴)て
ロータの回転数に応じた周波数信号を出力する構成が知
られている(たとえば特公昭58−35027号公報)
(Example) Conventional frequency power generation devices for motors have a frequency power generation filter formed on the sluter side, and an opposing frequency power generation magnet placed on the rotor side.As the rotor rotates, the rotor A configuration is known that outputs a frequency signal according to the rotation speed of the motor (for example, Japanese Patent Publication No. 58-35027).
.

そして、その周波数発電用コイルは、t′!−夕の円滑
な回転を確保するために、ロータの回転方向の全周にわ
たって形成することが好士しい17、周波数発電用コイ
ルからの信号精度や出力し・ベルの向上、さらには周波
数を高める観点から、その周波数発電用コイルを最も外
側に形成するのが一般的である。
And, the frequency power generation coil is t'! - In order to ensure smooth rotation, it is preferable to form the entire circumference of the rotor in the rotating direction17, to improve the signal accuracy and output from the frequency power generation coil, and to further increase the frequency. From this point of view, it is common to form the frequency power generation coil on the outermost side.

例えば、周波数発電装置付きブラシレスモータにあつて
は、軸受部を有するケーシングに回路基板を取付け、駆
動コイルを巻いた磁心をその回路基板と平行にそのケー
シングに取付け、その磁心の先端の外周にこれらと僅か
な間隔をおいて囲むような環状の駆動用マグネットを有
するロータを上記軸受部に軸支きせ、駆動用マグネット
にあって、回路基板に面する部分に周波数発電用マグネ
ットを形成するとともに、回路基板上にこの周波数発電
用マグネット・に対向する周波数発電用フィルを形成し
てなる構成を有している。
For example, in the case of a brushless motor with a frequency generator, a circuit board is attached to a casing having a bearing, a magnetic core around which a drive coil is wound is attached to the casing parallel to the circuit board, and these are attached to the outer periphery of the tip of the magnetic core. A rotor having an annular driving magnet surrounding the circuit board with a slight interval is pivotally supported on the bearing part, and a frequency power generation magnet is formed in a portion of the driving magnet facing the circuit board, It has a structure in which a frequency power generation fill facing the frequency power generation magnet is formed on a circuit board.

すなわち、周波散発軍用フィルは、磁心の先端外周を囲
むように回路基板に形成されている。
That is, the frequency sporadic military fill is formed on the circuit board so as to surround the outer periphery of the tip of the magnetic core.

そして、駆動フィルを切り換え駆動する駆動回路が回路
基板において周波数発電用コイルの外側に形成されるの
が一般的であるから、駆動コイルの入出力リードは周波
数発電用コイルの外側に導出して回路基板に接続される
Since the drive circuit that switches and drives the drive filter is generally formed on the outside of the frequency power generation coil on the circuit board, the input/output leads of the drive coil are routed outside the frequency power generation coil to form the circuit. Connected to the board.

具体的には、その駆動コイルの入出力リードを周波数発
電用コイルの外側に直接導出する方法のほか、間波数発
宣用コイルの内側で一度回路基板に接続してジャンパー
線によって周波数発電用コイルの外側に引き出す方法や
、両面回路基板を用いて周波数発電用コイルの内側から
引き出す方法がある。
Specifically, in addition to directly leading the input/output leads of the drive coil to the outside of the frequency generation coil, there are two methods: connecting the input and output leads of the drive coil directly to the outside of the frequency generation coil, and connecting it to the circuit board once inside the frequency generation coil and connecting it to the frequency generation coil with a jumper wire. There are two methods: one method is to draw it out from the outside of the frequency power generation coil, and another method is to draw it out from the inside of the frequency power generation coil using a double-sided circuit board.

(ハ〉 発明が解決しようとする問題点しかしながら、
上述した何れの構成においても駆動コイルの入出力リー
ドと周波数発電用コイルとが立体的に交差されることに
なり、軸方向の厚みが大きくなって小型化に制約が生じ
たり、ジャンパー線の接読が必要となって工数が増加し
たり、きらに両面回路基板を用いる場合にはコストが大
幅に上昇する欠点がある。
(c) Problems that the invention seeks to solve However,
In any of the above-mentioned configurations, the input/output leads of the drive coil and the frequency power generation coil intersect three-dimensionally, which increases the thickness in the axial direction, resulting in restrictions on miniaturization and problems with jumper wire connections. There are disadvantages that reading is required, which increases the number of man-hours, and when a double-sided circuit board is used, the cost increases significantly.

このような欠点を解決する方法として、周波数発電用フ
ィルの円周上の一部を欠除して駆動コイルのリードを引
き出せばよいが、その場合、周波数発電用コイルの性能
が著しく低下してしまう。
One way to solve this problem is to remove a part of the circumference of the frequency power generation fill and pull out the leads of the drive coil, but in that case, the performance of the frequency power generation coil will drop significantly. Put it away.

すなわち、周波数発電用コイルには、ロータの回転に伴
なう周波数発電信号の他に駆動用マグネットの漏れ磁束
による起電力が生じ易い、そこで、駆動用マグネットに
対する側波散発1用コイルの形成位置や形状を工夫して
駆動用マグネットによる起電力の位相和が零となるよう
にしているが、周波数発電用フノルの一部を欠除するこ
とによって位相和が零とならなくなり、駆動用マグネッ
トからの起電力による信号がノイズとなって定速制御回
路の誤動作を生じさせてしまう。
That is, in the frequency power generation coil, in addition to the frequency power generation signal accompanying the rotation of the rotor, an electromotive force is likely to be generated due to the leakage magnetic flux of the drive magnet. The phase sum of the electromotive force generated by the drive magnet is made to be zero by devising the structure and shape, but by removing a part of the frequency power generation funnel, the phase sum becomes zero, and the electromotive force from the drive magnet becomes zero. The signal due to the electromotive force becomes noise and causes a malfunction of the constant speed control circuit.

本発明はこのような従来の欠点を解決するためになされ
たもので、周波数発電用コイルの一部を欠除しても、周
波数発電用コイルの性能、特に駆動用マグネットからの
悪影響を排除することが可能で、周波数発電用コイルの
高い性能を維持するものである。
The present invention has been made to solve these conventional drawbacks, and even if a part of the frequency power generation coil is removed, the performance of the frequency power generation coil, especially the adverse effects from the drive magnet, can be eliminated. It is possible to maintain high performance of the frequency power generation coil.

(ニ)問題点を解決するための手段 このような問題点を解決するために本発明は、ステータ
側に環状に駆動フィルおよび回路基板を配置し、そのス
テータ側に軸支されたロータに、その駆動コイルに対向
しかつ多極着磁された駆動用マグネットと、その駆動コ
イルの外側に位置しかつ多極着磁された周波数発電用マ
グネットとを設ける。さらに、そのロータの回転方向と
交差して延びる素線であって、その回転方向に間隔をお
いて配列きれた複数の素線を直列接続してなる周波数発
電用コイルを、その回路基板−Lの周波数発電用マグネ
ットと対向する位置に形成し、隣合う面数素子を一対の
素線用とする。そして、周波数発電用コイルの端の素線
用を省略するとともに、駆動用マグネフトの回転によっ
てその省略された素線用で生ずる起電力と180°逆位
相の起電力が得られる素線用をも省略したものである。
(d) Means for Solving the Problems In order to solve these problems, the present invention arranges a driving filter and a circuit board in an annular manner on the stator side, and a rotor that is pivotally supported on the stator side. A driving magnet that faces the drive coil and is magnetized with multiple poles, and a frequency power generation magnet that is located outside the drive coil and is magnetized with multiple poles are provided. Furthermore, a frequency power generation coil formed by connecting in series a plurality of strands of strands that extend across the rotational direction of the rotor and are arranged at intervals in the rotational direction is attached to the circuit board-L. It is formed at a position facing the frequency power generation magnet, and the adjacent surface number elements are used for a pair of strands. In addition to omitting the element wire at the end of the frequency power generation coil, a element wire element is also provided which can generate an electromotive force 180 degrees opposite in phase to the electromotive force generated by the omitted element wire by rotation of the driving magnetft. This has been omitted.

〈ホ)作用 本発明のこのような手段により、ロータの回転に伴って
周波数発電用マグネットの磁束が各素線を横切って起電
力が生じ、ロータの回転に応じた周波数発電出力が得ら
れる。
(E) Effect With such a means of the present invention, as the rotor rotates, the magnetic flux of the frequency power generation magnet crosses each strand to generate an electromotive force, and a frequency power generation output corresponding to the rotation of the rotor can be obtained.

一方、ロータの回転に伴って、駆動用マグネフトからの
漏れ磁束による起電力が周波数発電用コイルの各素線に
生ずるが、起電力が互いに180゜逆位相の素線用が省
略諮れていイ)から、省略4゛る的の周波数発電用コイ
ルにおいて駆動用マグ界ットからの起電力が打ち消され
る、ように構成されていれば、残りの素線用に生ずる起
電力も互いに打ち消される。
On the other hand, as the rotor rotates, an electromotive force is generated in each wire of the frequency power generation coil due to leakage magnetic flux from the drive magnet, but it is recommended that the electromotive force be omitted for wires with 180° opposite phase to each other. ), if the electromotive force from the drive magnet is canceled out in the frequency power generation coil omitted, the electromotive forces generated in the remaining wires will also cancel each other out.

(へ)実施例 以下、本発明の詳細な説明する。(f) Example The present invention will be explained in detail below.

第1図および第2図は、本発明に係るモータの一実施例
を示すもので、ブラシレス七−夕を例にして示している
FIGS. 1 and 2 show one embodiment of the motor according to the present invention, and show a brushless Tanabata festival as an example.

第2区において、ボールベアリングやオイルレスメタル
等の軸受部1を有するケーシング2には、フランジ3が
形成されており、このフランジ3には回路基板4が重ね
るようにして取付けられ、スデータ5が構成されている
In the second section, a flange 3 is formed on a casing 2 having a bearing part 1 such as a ball bearing or an oil-less metal, and a circuit board 4 is attached to the flange 3 so as to be stacked on top of each other. It is configured.

り′−シング2には、放射状に延びる複数の突極片6を
一体的に有する磁心7が回路基板4とモ行に取付1うら
れており、各突極片6には駆動コイル8が分割して巻か
れ、回路基板4に形成された駆動回路(図示汁ず)に接
続されている。
A magnetic core 7 integrally having a plurality of radially extending salient pole pieces 6 is attached to the circuit board 4 in the mounting 2, and a drive coil 8 is attached to each salient pole piece 6. It is divided and wound and connected to a drive circuit (not shown) formed on the circuit board 4.

力・・・ブ状のロータ板9の回転中心部には、ゲージン
グ2の軸受部1に軸支された口・−夕軸10が取付けら
れ、ロータ11が回転自在に軸支されている。
A shaft 10 which is supported by a bearing part 1 of a gauging 2 is attached to the center of rotation of the rotor plate 9, and a rotor 11 is rotatably supported.

ロータ板9の側壁12の内側には、突極片6の先端と僅
かな間隔を置きか一つこれを囲むような環状の駆動用マ
グネット13が取付けられている。駆動用マグネット1
3は、第1[:!]のように例えば4極に着磁されてい
る。
An annular driving magnet 13 is attached to the inside of the side wall 12 of the rotor plate 9 so as to surround the tip of the salient pole piece 6 at a slight distance from the tip. Drive magnet 1
3 is the first [:! ] For example, it is magnetized into four poles.

この駆動用マグネット13における回路基vi4個は、
多極着磁された周波数発電用マグネ・・・l・14とな
っており、第1図のように、例えば16極に着磁されて
いる。
The four circuit boards vi in this driving magnet 13 are:
The multi-pole magnetized frequency power generation magnet is 1.14, and as shown in FIG. 1, it is magnetized to, for example, 16 poles.

また、回路基板4において、各突極片6の外周の周波数
発電用マグネz)14との対向領域には、周波数発電用
:lイル15がプリント回路として形成されている。
Further, in the circuit board 4, a frequency power generation coil 15 is formed as a printed circuit in an area facing the frequency power generation magnet 14 on the outer periphery of each salient pole piece 6.

次に、この周波数発電用ロイル15を説1]、Q fる
が、便宜上、従来の構成を示す第3図を用いて説明する
Next, this frequency power generation coil 15 will be explained in the following, but for convenience, it will be explained using FIG. 3 showing a conventional configuration.

すなわち、周波数発電用コイル15は、ロータ11の回
転方向を横切って延びる短い素腺工6をけ一タ11の回
転方向に周波数発電用マグネット14の磁極に対応さ什
て配置し、各素線16をfU列に接続してなり、全体と
して矩形状に折り返され、環状に形成されている。
That is, the frequency power generation coil 15 is constructed by arranging short wires 6 extending across the rotational direction of the rotor 11 in correspondence with the magnetic poles of the frequency power generation magnet 14 in the rotational direction of the key 11. 16 are connected in fU rows, and the whole is folded back into a rectangular shape to form an annular shape.

なお、符号A1〜A4は周波数発電用マグネット14の
N極に対応させ、符号B1〜B4はS極に対応さ刊た素
線用である。
Note that the symbols A1 to A4 correspond to the north pole of the frequency power generation magnet 14, and the symbols B1 to B4 correspond to the south pole.

本発明は、第1図に示すように、周波数発電用コイル1
5の端の−・alを第1の素線用A4、B4とすると、
二の第1の素線用A4、B4が省略され乙とともに別の
第2の素線用A2、B2も省略され工いる。この第2の
素線用A2、B2は、第1の素線用A4、B4において
生ずる駆動用マグネット13による起電力と180°逆
位相の起電力が生ずる位置にある素線用である。
As shown in FIG. 1, the present invention provides a frequency power generation coil 1.
Assuming that -.al at the end of 5 is A4 and B4 for the first strand,
2, A4 and B4 for the first strand are omitted, and together with B, A2 and B2 for the second strand are also omitted. The second strands A2 and B2 are for strands located at positions where an electromotive force 180° opposite in phase to the electromotive force generated by the driving magnet 13 generated in the first strands A4 and B4 is generated.

そして、駆動コイル8からの入出力リード(図示せず)
は、省略された第1の素線用A4.34部分から導出さ
れる。
And input/output leads from the drive coil 8 (not shown)
is derived from the omitted A4.34 portion for the first strand.

次に、本発明のモータの動作を説明する。Next, the operation of the motor of the present invention will be explained.

もし、第3図のように周波数発電用コイル15の各素線
16に省略がないとすれば、図中の駆動用マグネット1
3の下半分のN極およびS極との関係τ?は、各素線A
1〜A4、B1〜B4には、第4図に示すようなベクト
ルの起電力が生じ、各起電力が打ち消されて周波数発電
用コイル15の出力端P1、B2には信号が生じない。
If each strand 16 of the frequency power generation coil 15 is not omitted as shown in FIG. 3, then the drive magnet 1 in the figure
Relationship τ with the N and S poles of the lower half of 3? is each strand A
1 to A4 and B1 to B4, vector electromotive forces as shown in FIG. 4 are generated, and each electromotive force is canceled out, so that no signal is generated at the output ends P1 and B2 of the frequency power generation coil 15.

一方、十述した本発明に係る第1図の構成では、第1の
素線用A4、B4を省略(45、さらにこれと180′
″位相の異なる起電力を生しる素線用A2、B2をも省
略したので、残りの素線用A1、B1、A3、A3の起
電力も互いに打ち消され一℃出力がなくなる。
On the other hand, in the configuration of FIG. 1 according to the present invention described above, the first strands A4 and B4 are omitted (45, and 180'
``Since the strands A2 and B2, which generate electromotive forces with different phases, are also omitted, the electromotive forces of the remaining strands A1, B1, A3, and A3 cancel each other out, resulting in no output per degree Celsius.

従って、−組の素線用の他にもう−・絹の素線用を省略
すればよいことになる。
Therefore, in addition to the wires for the - pair of wires, the wires for the silk wires may be omitted.

本発明のモータは、周波数発電用コイル15に駆動用マ
グネソ!・13が周対向する構成に限らず、周波数発電
用−]イル15と駆動用マグネット13が平面的に対向
する構成においてイ〕実施可能であり、さらに、一般的
なモータ構成において応用できる。
The motor of the present invention has a frequency power generation coil 15 and a driving magneto! - It is possible to implement not only the structure in which the coils 13 for frequency power generation and the drive magnet 13 face each other in a planar manner, but also in a structure in which the coils 15 for frequency power generation and the drive magnets 13 face each other in a planar manner, and furthermore, it can be applied to a general motor structure.

(ト)発明の詳細 な説明したように本発明のモータは、駆動コイル8のリ
ードの導出に必要な素線線を省略するとともに、この省
略した素線線と180m位相の異なる起電力の得られる
素線線を省略したから、駆動フィル8のリードの導出が
簡単となるうえ、できる限り周波数発電用コイルのスペ
ースが確保きれるとともに、駆動用マグネットの漏れ磁
束の悪影響を極めて小きく抑えることができる。
(g) As described in detail of the invention, the motor of the present invention omits the strands of wire necessary for leading out the leads of the drive coil 8, and obtains an electromotive force with a phase difference of 180 m from the strands of the omitted strands. Since the strands of wire are omitted, the leads of the drive filter 8 can be easily derived, and the space for the frequency power generation coil can be secured as much as possible, and the negative effects of leakage magnetic flux from the drive magnet can be kept to an extremely small level. can.

また、駆動用マグネットの極数が少なくても、周波数発
電用コイルの極数が多極であれば、削除する素線の数を
必要最小限ですませることができ、周波数信号出力の低
下はわずかとなる。
In addition, even if the number of poles of the drive magnet is small, if the number of poles of the frequency power generation coil is large, the number of wires to be removed can be kept to the minimum necessary, and the decrease in frequency signal output will be slight. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明のモータの一実施例の要部
を示す模式図および中断正面図、第3図は従来のモータ
の要部を示す模式図、第4図および第5図は第3図およ
び第1図のモータの動作を説明するベクトル図である。 1・・・軸受部、2・・・ケーシング、4・・・回路基
板、5・・・ステータ、6 ・・突極片、7・・・磁心
、8 ・・駆動コイル、9・・・ロータ板、1o・・ロ
ータ軸、11・・・ロータ、13・・・駆動用マグネッ
ト、14・・・周波数発電用マグネット、15・・・周
波数発電用フィル、16・・・素線。
1 and 2 are a schematic diagram and an interrupted front view showing the main parts of an embodiment of the motor of the present invention, FIG. 3 is a schematic diagram showing the main parts of a conventional motor, and FIGS. 4 and 5 3 is a vector diagram explaining the operation of the motor of FIG. 3 and FIG. 1. FIG. DESCRIPTION OF SYMBOLS 1... Bearing part, 2... Casing, 4... Circuit board, 5... Stator, 6... Salient pole piece, 7... Magnetic core, 8... Drive coil, 9... Rotor Plate, 1o... Rotor shaft, 11... Rotor, 13... Drive magnet, 14... Frequency power generation magnet, 15... Frequency power generation filter, 16... Element wire.

Claims (1)

【特許請求の範囲】[Claims] (1)ステータ側に環状に配置された駆動コイルと、 前記ステータ側に配置された回路基板と、 前記駆動コイルに対向し多極着磁された駆動用マグネッ
ト、および前記駆動コイルの外周に位置し多極着磁され
た周波数発電用マグネットを有し、且前記ステータ側に
軸支されるロータと、前記回路基板上の前記周波数発電
用マグネットと対向する位置に、前記ロータの回転方向
と交差して延びる素線であって、その回転方向に間隔を
おいて配列された複数の素線を直列接続してなる周波数
発電用コイルと、 を具備するモータにおいて、 隣合う前記素線を一対の素線組とし、前記周波数発電用
コイルの端の素線組を省略するとともに、前記駆動用マ
グネットの回転によってその省略された素線組で得られ
る起電力と180°逆位相の起電力が生ずる素線組をも
省略してなることを特徴とするモータ。
(1) A drive coil arranged in an annular manner on the stator side, a circuit board arranged on the stator side, a multipolar magnetized drive magnet facing the drive coil, and a drive magnet located on the outer periphery of the drive coil. The rotor has a multi-pole magnetized frequency power generation magnet, and a rotor is pivotally supported on the stator side, and a rotor is provided on the circuit board at a position opposite to the frequency power generation magnet, intersecting the rotational direction of the rotor. a frequency power generation coil formed by connecting in series a plurality of strands arranged at intervals in the direction of rotation, the strands extending as shown in FIG. A wire set is used, and the wire set at the end of the frequency power generation coil is omitted, and the rotation of the driving magnet generates an electromotive force that is 180° opposite in phase to the electromotive force obtained with the omitted wire set. A motor characterized in that a wire assembly is also omitted.
JP60224274A 1985-10-08 1985-10-08 Motor Pending JPS6285657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60224274A JPS6285657A (en) 1985-10-08 1985-10-08 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224274A JPS6285657A (en) 1985-10-08 1985-10-08 Motor

Publications (1)

Publication Number Publication Date
JPS6285657A true JPS6285657A (en) 1987-04-20

Family

ID=16811202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224274A Pending JPS6285657A (en) 1985-10-08 1985-10-08 Motor

Country Status (1)

Country Link
JP (1) JPS6285657A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364560A (en) * 1986-09-03 1988-03-23 Hitachi Ltd Drum motor
JP2008249133A (en) * 2007-03-05 2008-10-16 Nsk Ltd Rolling bearing device having structure arranging drive unit between contact angles and rolling bearing device having structure arranging drive unit within bearing width
JP2009136127A (en) * 2007-03-05 2009-06-18 Nsk Ltd Roller bearing comprising rotational sensor of in-contact-angle arrangement structure, roller bearing comprising resolver of in-contact-angle arrangement structure, roller bearing comprising resolver of in-bearing-width arrangement structure, and roller bearing comprising combination bearing of in-contact-angle arrangement structure
US8616775B2 (en) 2007-11-06 2013-12-31 Nsk Ltd. Roller bearing device having radial-plane arrangement structure of rotation sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364560A (en) * 1986-09-03 1988-03-23 Hitachi Ltd Drum motor
US8662755B2 (en) 2007-02-08 2014-03-04 Nsk Ltd. Roller bearing device having radial-plane arrangement structure of rotation sensor
JP2008249133A (en) * 2007-03-05 2008-10-16 Nsk Ltd Rolling bearing device having structure arranging drive unit between contact angles and rolling bearing device having structure arranging drive unit within bearing width
JP2009136127A (en) * 2007-03-05 2009-06-18 Nsk Ltd Roller bearing comprising rotational sensor of in-contact-angle arrangement structure, roller bearing comprising resolver of in-contact-angle arrangement structure, roller bearing comprising resolver of in-bearing-width arrangement structure, and roller bearing comprising combination bearing of in-contact-angle arrangement structure
US8616775B2 (en) 2007-11-06 2013-12-31 Nsk Ltd. Roller bearing device having radial-plane arrangement structure of rotation sensor
US8651744B2 (en) 2007-11-06 2014-02-18 Nsk Ltd. Roller bearing device having radial-plane arrangement structure of rotation sensor

Similar Documents

Publication Publication Date Title
JPH0655025B2 (en) Brushless DC motor
JPS60245457A (en) Motor
JP2000287427A (en) Brushless motor
JPS58116059A (en) Magnetic converter
JPS6285657A (en) Motor
US6020663A (en) Motor having rotational-speed detector
JPS5855747B2 (en) Brushless rotary motor
JPS6217470B2 (en)
US4382214A (en) Direct current motor
JPH1141897A (en) Motor with rotation speed detection means
JPS6137862B2 (en)
JPH0614773B2 (en) Brushless motor
SE509189C2 (en) Washing device drive device
JPH10108441A (en) Motor
JPS587829Y2 (en) Partially driven electric motor on the outer periphery
JP2601049B2 (en) motor
JPH0815388B2 (en) DC brushless motor
JP3046048B2 (en) Brushless motor
JP3095147B2 (en) motor
JPS6260457A (en) Flat type motor
JPH0433552A (en) Motor with frequency generator
JPH0332349A (en) Brushless motor
JPS62236346A (en) Servo motor
JP2975692B2 (en) Motor pulse signal generator
JPS62100156A (en) Motor with frequency generator