JPS6284523A - Vapor growth device - Google Patents
Vapor growth deviceInfo
- Publication number
- JPS6284523A JPS6284523A JP22400985A JP22400985A JPS6284523A JP S6284523 A JPS6284523 A JP S6284523A JP 22400985 A JP22400985 A JP 22400985A JP 22400985 A JP22400985 A JP 22400985A JP S6284523 A JPS6284523 A JP S6284523A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- epitaxial
- cdte
- region
- control rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔概要〕
半導体基板上に組成の異なるエピタキシャル成長層を繰
り返し成長させる方法として、装置内にエピタキシャル
成長を行わせる領域と拡散係数の大きな元素を拡散させ
る領域とを設け、エピタキシャル成長させる基板を両領
域内に移動させる装置。[Detailed Description of the Invention] [Summary] As a method for repeatedly growing epitaxial growth layers with different compositions on a semiconductor substrate, a region for epitaxial growth and a region for diffusing an element with a large diffusion coefficient are provided in an apparatus, and epitaxial growth is performed. A device that moves the substrate into both areas.
本発明は組成の異なるエピタキシャル層を繰り返し成長
し得る気相成長装置に関する。The present invention relates to a vapor phase growth apparatus capable of repeatedly growing epitaxial layers having different compositions.
エピタキシャル成長技術は半導体素子形成に多用されて
いる技術であり、当初はバイポーラトランジスタやバイ
ポーラICの分野に使用されていたが、現在はMOS
LSIの分野にまで広がっている。Epitaxial growth technology is widely used in the formation of semiconductor devices, and was initially used in the field of bipolar transistors and bipolar ICs, but is now used in the field of MOS.
It has even spread to the LSI field.
ここでエピタキシャル成長法は気相成長法と液相成長法
とがあり、成長させる半導体材料の組成や性質に応じて
それぞれ使い分けされている。Here, the epitaxial growth method includes a vapor phase growth method and a liquid phase growth method, and each is used depending on the composition and properties of the semiconductor material to be grown.
例えばインジウムfi(InP)のような蒸気圧の高い
元素を含む化合物半導体の成長には液相成長法を用いる
のが有利である。For example, it is advantageous to use a liquid phase growth method for growing a compound semiconductor containing an element with a high vapor pressure such as indium fi (InP).
然し、気相成長法は操作が簡単で且つ成長層の膜厚調整
が容易なことから大部分の用途に使用されている。However, the vapor phase growth method is used in most applications because it is easy to operate and the thickness of the grown layer can be easily adjusted.
ここで気相成長法にはエピタキシャル成長させる半導体
の構成元素を含む反応ガスを熱分解して成長させる化学
気相成長法(略称CVD法)と構成元素を分子状で蒸発
させ、基板上に一定の組成比をもつ半導体層を成長させ
る分子線エピタキシー法(略称MBE法)とに分かれる
が、本発明は前者の方法を用いる成長装置に関するもの
である。Here, the vapor phase growth method includes the chemical vapor deposition method (abbreviated as CVD method) in which growth is achieved by thermally decomposing a reactive gas containing the constituent elements of the semiconductor to be epitaxially grown, and the chemical vapor deposition method (abbreviated as CVD method) in which the constituent elements are evaporated in molecular form to form a certain amount on the substrate. There are two methods: molecular beam epitaxy (abbreviated as MBE), which grows a semiconductor layer having a certain composition ratio, and the present invention relates to a growth apparatus that uses the former method.
半導体デバイスには組成の異なる半導体層を数多くエピ
タキシャル成長させ、この上に電極をパターン形成する
ものがある。Some semiconductor devices are made by epitaxially growing a number of semiconductor layers with different compositions, and patterning electrodes thereon.
例えば赤外線検知器がこれであって、第3図に示すよう
にカドミウム・テルル(CdTe)単結晶からなる結晶
基板1の上に厚さがそれぞれ数100人のCdTe層2
と水銀・カドミウム・テルル()IgCdTe)層3と
を繰り返しエピタキシャル成長させて検知部の半導体層
が作られている。For example, an infrared detector is this type, and as shown in FIG.
The semiconductor layer of the detection section is made by repeatedly epitaxially growing a mercury-cadmium-tellurium (IgCdTe) layer 3.
ここで検知する赤外線波長を設定値に一致させるために
はCdTe層2とIgCdTe層3の膜厚制御が精度よ
く行われることと共にCdTe層2とIgCdTe層3
の二つの化合物半導体層がそれぞれ正しい成分比で形成
されていることが必要である。In order to make the detected infrared wavelength match the set value, the film thicknesses of the CdTe layer 2 and IgCdTe layer 3 must be controlled accurately, and the CdTe layer 2 and IgCdTe layer 3 must be
It is necessary that the two compound semiconductor layers are formed with correct component ratios.
第2図は従来の形成法を示すもので、成長装置を構成す
る石英製の反応管4には反応ガスを導入する複数のガス
供給口5.6と排気ロアがあり、反応管4の中にはサセ
プタ8があり、この上に結晶基板1が置かれており、反
応管4の周囲には基板加熱用のヒータ(この例の場合は
高周波コイル)9が設置されている。FIG. 2 shows a conventional formation method. A reaction tube 4 made of quartz that constitutes a growth apparatus has a plurality of gas supply ports 5.6 for introducing reaction gases and an exhaust lower. There is a susceptor 8 on which a crystal substrate 1 is placed, and a heater 9 for heating the substrate (in this example, a high frequency coil) is installed around the reaction tube 4.
そして第3図に示すようにCdTeからなる結晶基板1
の上にCdTe層2とIgCdTe層3を繰り返し結晶
成長させる場合は排気ロアより排気して反応管4の空気
を除いた後、バブラーを用いて水素(H2)に飽和させ
たジメチルカドミウム((CH3) 2Cd)とジエチ
ルテルル((C2Hs ) 2 Te)をそれぞれ組成
比に混合してガス供給口5より反応管4に供給する。As shown in FIG. 3, a crystal substrate 1 made of CdTe is
When repeating crystal growth of CdTe layer 2 and IgCdTe layer 3 on top of the CdTe layer 2 and IgCdTe layer 3, after removing the air from the reaction tube 4 by exhausting from the exhaust lower, dimethyl cadmium ((CH3) saturated with hydrogen (H2) using a bubbler is used. ) 2Cd) and diethyl tellurium ((C2Hs) 2Te) are mixed in the respective composition ratios and supplied to the reaction tube 4 through the gas supply port 5.
このように供給されたH2ガスをキャリアとする反応ガ
スはヒータ9で加熱された結晶基板1の上で熱分解して
CdTeのエピタキシャル成長が進行する。The reaction gas supplied in this manner using H2 gas as a carrier is thermally decomposed on the crystal substrate 1 heated by the heater 9, and epitaxial growth of CdTe progresses.
そして熱分解時間を調節して所定の厚さにまでCdTe
層2を成長させるとガス供給口5のコックを閉じ、代わ
りにガス供給口6を開いてH2ガスに飽和したHg蒸気
を供給する。Then, by adjusting the thermal decomposition time, the CdTe was heated to a predetermined thickness.
When the layer 2 is grown, the cock of the gas supply port 5 is closed, and the gas supply port 6 is opened instead to supply Hg vapor saturated with H2 gas.
かかるHg蒸気はogを250〜300℃に加熱しなか
らH2ガスを通すことにより作られる。Such Hg vapor is produced by heating the og to 250-300°C and then passing H2 gas through it.
このようにすると基板上のCdTe層2の上にHg原子
の一様な析出が起こり、Hg原子は熱拡散し易い金属で
あるため一様に固相拡散して表面にIgCdTe層3を
生じ、処理時間に比例してCdTe層2はIgCdTe
層3に変わってゆく。In this way, Hg atoms uniformly precipitate on the CdTe layer 2 on the substrate, and since Hg atoms are a metal that easily diffuses heat, they uniformly diffuse in solid phase to form an IgCdTe layer 3 on the surface. The CdTe layer 2 becomes IgCdTe in proportion to the processing time.
It will change to layer 3.
そこで成る一定時間経過した後、再びコックを切り換え
てH2ガスをキャリヤとする(C2H!’)2 Teと
(CH3) 2 Cdの混合ガスを供給して熱分解して
CdTe層2をエピタキシャル成長させ、このように上
記工程を繰り返して第3図に示すような多層構造′の半
導体層が形成されていた。After a certain period of time has elapsed, the cock is switched again and a mixed gas of (C2H!')2Te and (CH3)2Cd is supplied using H2 gas as a carrier and thermally decomposed to epitaxially grow the CdTe layer 2. By repeating the above steps in this way, a semiconductor layer having a multilayer structure as shown in FIG. 3 was formed.
然し、このような従来の方法ではガス交換が急速にでき
ないので各層が厚く形成される以外に、明確な境界をも
つヘテロエピタキシャル層ができないと云う問題がある
。However, in such conventional methods, gas exchange cannot be carried out rapidly, so each layer is formed thickly, and a heteroepitaxial layer with clear boundaries cannot be formed.
以上記したように従来の気相成長装置はへテロエピタキ
シャル層の成長を反応ガスの交換の形で行っているため
、各層が厚くなり易く、また均一な組成のエピタキシャ
ル層ができにくいと云う問題がある。As mentioned above, conventional vapor phase growth equipment grows heteroepitaxial layers by exchanging reactant gases, so each layer tends to become thicker, and it is difficult to form an epitaxial layer with a uniform composition. There is.
上記の問題は固相拡散により均一な組成の化合物半導体
をエピタキシャル成長させる装置が、拡散係数の大きな
ガス状の元素を拡散させる領域と、該元素を除く半導体
をエピタキシャル成長させる領域とからなり、エピタキ
シャル成長を行う基板を装着した操作棒の回転により該
基板を前記両領域内に移動させ、該基板上に組成の異な
るエピタキシャル層を反復して成長させる気相成長装置
により解決することができる。The above problem arises because the equipment that epitaxially grows compound semiconductors with a uniform composition by solid-phase diffusion consists of a region in which gaseous elements with large diffusion coefficients are diffused and a region in which semiconductors excluding the elements are epitaxially grown. This problem can be solved by using a vapor phase growth apparatus that moves the substrate into both regions by rotating an operating rod on which the substrate is attached, and repeatedly grows epitaxial layers with different compositions on the substrate.
本発明に係る気相成長装置は従来のようにコックの切り
換えにより結晶基板上に供給される反応ガスの種類を変
えるのではなく、二種類の反応ガスを並行に供給してお
き、外部より操作して結晶基板の位置を変えることによ
り結晶基板にあたって分解する反応ガスの種類を変える
ものである。The vapor phase growth apparatus according to the present invention does not change the type of reaction gas supplied onto the crystal substrate by switching the cock as in the past, but instead supplies two types of reaction gas in parallel and can be operated from the outside. By changing the position of the crystal substrate, the type of reactive gas that decomposes upon contact with the crystal substrate can be changed.
このようにすると反応ガスの交換が急速に行われるため
上記の問題が解決される。In this way, the above-mentioned problem is solved because the reaction gas is rapidly exchanged.
第1図は本発明に係る気相成長装置の断面図であって、
隔壁14によって反応ガスの存在する領域が二分されて
いること\、エピタキシャル成長を行う結晶基板1が操
作棒10の回転により二つの領域に移動できるようにな
っていることである。FIG. 1 is a sectional view of a vapor phase growth apparatus according to the present invention,
The region where the reaction gas exists is divided into two by the partition wall 14, and the crystal substrate 1 on which epitaxial growth is to be performed can be moved to the two regions by rotation of the operating rod 10.
以上光に説明した第3図の場合と同様にCdTeからな
る結晶基板1の上にCdTe層2とHgCdTe層3を
繰り返しエピタキシャル成長させる場合について説明す
る。A case will be described in which a CdTe layer 2 and a HgCdTe layer 3 are epitaxially grown repeatedly on a crystal substrate 1 made of CdTe, similar to the case of FIG. 3 explained above.
この実施例においては装置内に石英製のttg溜め11
を設けてII g 12を入れ、ヒータ13で加熱して
気化させ、ガス供給口6よりH2をキャリヤとして結晶
基板の方向に供給している。In this embodiment, a ttg reservoir 11 made of quartz is provided in the device.
II g 12 is put therein, heated by a heater 13 to vaporize it, and is supplied from a gas supply port 6 toward the crystal substrate using H2 as a carrier.
然し、これは従来と同様に反応管15の外でHgガスを
発生させ、ガス供給口6を通して供給してもよい。However, this may be done by generating Hg gas outside the reaction tube 15 and supplying it through the gas supply port 6 as in the conventional case.
一方、CdTeをエピタキシャル成長させる反応ガスは
先と同様にH2をキャリヤとしバブラーを通して(CH
3) 2 Cdと(C2H5)2Teをガス供給口5を
通じて供給する。On the other hand, the reaction gas for epitaxial growth of CdTe uses H2 as a carrier and passes through a bubbler (CH
3) 2Cd and (C2H5)2Te are supplied through the gas supply port 5.
この実施例においてはヒータ13でHg12を250〜
280℃に加熱して約76 Torrの蒸気圧とし、一
方(C2H5) 2 Teと(C)+3 ) z Cd
はバブラーを通して10数Torrとした混合ガスを5
°β/分の流速で供給した。In this embodiment, the heater 13 controls Hg12 from 250 to
heated to 280°C to a vapor pressure of about 76 Torr, while (C2H5) 2 Te and (C)+3 ) z Cd
A mixed gas of 10-odd Torr is passed through a bubbler at 5
A flow rate of °β/min was supplied.
一方、結晶基板1はヒータ9により380〜450℃に
加熱した。Meanwhile, the crystal substrate 1 was heated to 380 to 450° C. by the heater 9.
そして当初は第1図に示すような位置に結晶基板」を保
持しCdTeのエピタキシャル成長を行うが、この場合
の成長速度は2〜4μffl/時である。Initially, CdTe is epitaxially grown while holding the crystal substrate in the position shown in FIG. 1, and the growth rate in this case is 2 to 4 μffl/hour.
そして約0.05μmのCdTe層2が成長すると操作
棒10を半回転して結晶基板1をHg蒸気中に移す。When the CdTe layer 2 of about 0.05 μm has grown, the operating rod 10 is turned half a turn to move the crystal substrate 1 into Hg vapor.
これによりCdTe層2の上にHg原子が析出し、この
温度で直ちに固相拡散が進行して時間と共にHgCdT
e層3に変化してゆく。As a result, Hg atoms precipitate on the CdTe layer 2, solid phase diffusion immediately proceeds at this temperature, and over time HgCdT
It changes to e-layer 3.
そこで、エピタキシャル成長したCdTe層2の半分に
まで固相拡散が進行した段階で、操作棒10を更に半回
転させ再びCdTe層の成長を行わせ、以後同様に操作
棒10を半回転させることによりHgの固相拡散を進行
させる。Therefore, when the solid phase diffusion has progressed to half of the epitaxially grown CdTe layer 2, the operating rod 10 is further rotated half a turn to grow the CdTe layer again. Proceed with solid-phase diffusion.
このような方法をとることにより膜厚の精度が良く、ま
た均質な組成をもつエピタキシャル層を連続して成長さ
せることができる。By employing such a method, it is possible to continuously grow an epitaxial layer with good film thickness accuracy and a homogeneous composition.
以上記したように本発明の実施より固相拡散では均一な
成長層ができないと云う従来の問題点が解決され、膜厚
精度が良く且つ均一な結晶組成の多層なエピタキシャル
層を収率よく製造することができる。As described above, by carrying out the present invention, the conventional problem that a uniform growth layer cannot be formed by solid-phase diffusion has been solved, and multilayer epitaxial layers with good film thickness accuracy and uniform crystal composition can be manufactured with high yield. can do.
第1図は本発明に係る気相成長装置の断面図、第2図は
従来の気相成長装置の断面図、第3図は本発明を適用し
たエピタキシャル層の断面図、
である。
図において、
1は結晶基板、 2はCdTe層、3はHg
CdTe層、 4.15は反応管、9.13
はヒータ、 10は操作棒、11はh溜め、
12はug、14は隔壁、
である。FIG. 1 is a sectional view of a vapor phase growth apparatus according to the present invention, FIG. 2 is a sectional view of a conventional vapor phase growth apparatus, and FIG. 3 is a sectional view of an epitaxial layer to which the present invention is applied. In the figure, 1 is a crystal substrate, 2 is a CdTe layer, and 3 is a Hg
CdTe layer, 4.15 is reaction tube, 9.13
is the heater, 10 is the operating rod, 11 is the h reservoir,
12 is ug, and 14 is a partition wall.
Claims (1)
ャル成長させる装置が、拡散係数の大きなガス状の元素
を拡散させる領域と、該元素を除く半導体化合物をエピ
タキシャル成長させる領域とからなり、エピタキシャル
成長を行う基板を前記両領域内に移動させ、該基板上に
組成の異なるエピタキシャル層を反復して成長させるこ
とを特徴とする気相成長装置。An apparatus for epitaxially growing a compound semiconductor with a uniform composition by solid-phase diffusion comprises a region for diffusing a gaseous element with a large diffusion coefficient and a region for epitaxially growing a semiconductor compound excluding the element, and a substrate on which epitaxial growth is to be performed. A vapor phase growth apparatus characterized in that the epitaxial layers are moved into both regions and epitaxial layers having different compositions are repeatedly grown on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22400985A JPS6284523A (en) | 1985-10-08 | 1985-10-08 | Vapor growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22400985A JPS6284523A (en) | 1985-10-08 | 1985-10-08 | Vapor growth device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6284523A true JPS6284523A (en) | 1987-04-18 |
Family
ID=16807157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22400985A Pending JPS6284523A (en) | 1985-10-08 | 1985-10-08 | Vapor growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6284523A (en) |
-
1985
- 1985-10-08 JP JP22400985A patent/JPS6284523A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07201762A (en) | Gas feeder for manufacturing semiconductor element | |
US3361591A (en) | Production of thin films of cadmium sulfide, cadmium telluride or cadmium selenide | |
US3825439A (en) | Method for forming amorphous semiconductors | |
US4253887A (en) | Method of depositing layers of semi-insulating gallium arsenide | |
US5202283A (en) | Technique for doping MOCVD grown crystalline materials using free radical transport of the dopant species | |
US3858548A (en) | Vapor transport film deposition apparatus | |
JPH02185026A (en) | Selective forming method of al thin-film | |
JPS6284523A (en) | Vapor growth device | |
KR20070037503A (en) | Method for the deposition of layers containing silicon and germanium | |
KR100226764B1 (en) | Thin film forming method using chemical vapor deposition system | |
US5306660A (en) | Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor | |
KR100226763B1 (en) | Thin film forming method using chemical vapor deposition system | |
Snyder et al. | Growth of CdTe by organometallic vapor phase epitaxy in an impinging jet reactor | |
JP2648211B2 (en) | Preparation method of oxide thin film | |
JP2658213B2 (en) | Vapor phase epitaxial growth method | |
JPS6390833A (en) | Manufacture of compound thin film of group ii and vi elements | |
JPS63228713A (en) | Vapor growth method | |
JPS62138390A (en) | Molecular beam epitaxy | |
Reid et al. | The Role of Gas Phase Decomposition in the ALE Growth of III–V Compounds | |
JPH0582358B2 (en) | ||
JPH0687458B2 (en) | Vapor phase epitaxial growth method | |
JPH02181938A (en) | Vapor phase epitaxial growth apparatus | |
JPH02239187A (en) | Method and device for vapor growth | |
JPS62182195A (en) | Method for growing iii-v compound semiconductor | |
JPH02219246A (en) | Vapor epitaxial growth method |