JPS628438A - Scanning type electron microscope - Google Patents
Scanning type electron microscopeInfo
- Publication number
- JPS628438A JPS628438A JP60147394A JP14739485A JPS628438A JP S628438 A JPS628438 A JP S628438A JP 60147394 A JP60147394 A JP 60147394A JP 14739485 A JP14739485 A JP 14739485A JP S628438 A JPS628438 A JP S628438A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- detector
- working distance
- objective lens
- underface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010894 electron beam technology Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000005684 electric field Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は2次電子の検出効率が高く、しかも電子線の走
査面の歪みの少ない検出器を備えた走査電子顕微鏡に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a scanning electron microscope equipped with a detector that has high secondary electron detection efficiency and less distortion of the electron beam scanning plane.
[従来技術]
走査電子顕微鏡においては、2次電子像の観察は最も重
要な機能であり、そのために従来から2次電子検出器の
構造や配置については種々考察されている。第5図及び
第6図は従来の2次電子検出の構成を示ず例示であり、
第5図の例で1は試料、2は対物レンズを示す。試料1
は試料移動機構3の上に配置され、図示外の駆動機構に
よりX。[Prior Art] In a scanning electron microscope, observation of secondary electron images is the most important function, and for this purpose, various studies have been made regarding the structure and arrangement of the secondary electron detector. FIGS. 5 and 6 do not show the configuration of conventional secondary electron detection, but are illustrative;
In the example shown in FIG. 5, 1 indicates a sample and 2 indicates an objective lens. Sample 1
is placed on the sample moving mechanism 3, and X is moved by a drive mechanism (not shown).
Y、Z方向に任意に移動可能である。対物レンズ2の上
方には集束レンズ、更には電子銃が配置され、この電子
銃からの電子線は集束レンズ、対物レンズ2により細く
集束されて試料1上に照射される。対物レンズの中又は
その近辺には電子線偏向器が設置され、集束された電子
線EBは試料1上の一定領域を2次元的に走査する。4
は2次電子の検出器であり、電子線の光軸と直角な方向
に配置され、ライトバイブ5、シンチレータ6、コロナ
リング7、コレクタ8及びライトパイプに接合された光
電子増倍管から構成されている。前記電子線EBの照射
により試料1から発生した2次電子はコロナリング7に
印加された高電圧による電位勾配により加速されてシン
チレータ6面に衝突する構成である。又第6図では試料
面に向けて尖った対物レンズの側面に沿って検出器4を
配置したもので、検出器4が試料の邪魔にならないよう
にするため第5図と同様試料面から離して配置しである
。It can be moved arbitrarily in the Y and Z directions. A focusing lens and further an electron gun are arranged above the objective lens 2, and the electron beam from this electron gun is narrowly focused by the focusing lens and the objective lens 2, and is irradiated onto the sample 1. An electron beam deflector is installed in or near the objective lens, and the focused electron beam EB scans a certain area on the sample 1 two-dimensionally. 4
is a secondary electron detector, which is arranged perpendicular to the optical axis of the electron beam and consists of a light vibrator 5, a scintillator 6, a corona ring 7, a collector 8, and a photomultiplier tube connected to a light pipe. ing. The secondary electrons generated from the sample 1 by the irradiation with the electron beam EB are accelerated by the potential gradient caused by the high voltage applied to the corona ring 7, and collide with the surface of the scintillator 6. Also, in Fig. 6, the detector 4 is placed along the side of the objective lens that is pointed toward the sample surface, and in order to prevent the detector 4 from interfering with the sample, it is placed away from the sample surface as in Fig. 5. It is arranged as follows.
[発明が解決しようとする問題点]
上記例示の装置においては、検出器4が試料の邪魔にな
らないようにするには該検出器を試料から大きく離して
配置する必要があるが、このように検出器を試料から離
すと、試料近傍に分布する加速電界が著しく弱くなり2
次電子の検出効率は非常に悪化する。そこで、第6図の
例で検出器の前方に補助加速電極を配設する構成のもの
も提案されているが、試料面での電界は強くでき、検出
効率の向上は可能であるもののワーキングディスタンス
が長くなると電子線通路上の電界が極度に強くなり、電
子線の走査面に歪みを発生ずることになり、歪んだ走査
電子顕微鏡像を観察することになる。[Problems to be Solved by the Invention] In the above-exemplified apparatus, in order to prevent the detector 4 from interfering with the sample, it is necessary to place the detector 4 at a large distance from the sample. When the detector is moved away from the sample, the accelerating electric field distributed near the sample becomes significantly weaker2.
The detection efficiency of secondary electrons is greatly deteriorated. Therefore, a configuration in which an auxiliary accelerating electrode is placed in front of the detector as shown in the example in Figure 6 has been proposed, but although the electric field at the sample surface can be made stronger and the detection efficiency can be improved, the working distance When the distance becomes long, the electric field on the electron beam path becomes extremely strong, causing distortion in the scanning plane of the electron beam, resulting in the observation of a distorted scanning electron microscope image.
そこで、本発明は上記従来の装置の欠点に鑑み電子線の
走査面の歪みなしに2次電子の検出効率を向上Jること
を目的と覆るものである。Therefore, in view of the above-mentioned drawbacks of the conventional apparatus, the present invention aims to improve the detection efficiency of secondary electrons without distorting the scanning plane of the electron beam.
[問題点を解決するための手段]
本発明の構成は試料面に向けて尖った形の対物レンズを
有し、試料から放射された電子線を捕捉するための電子
線検出器を該対物レンズの傾斜した側面に沿うように設
置し、この検出器を包囲してメツシュ状の電極を配置し
、該メツシュ状の電極の下面は前記対物レンズの下面と
略同一面にすると共に該電極の電位をワーキングディス
タンスに応じて変化させる手段を具備した走査電子顕微
鏡に特徴がある。[Means for Solving the Problems] The configuration of the present invention has an objective lens that is pointed toward the sample surface, and an electron beam detector for capturing electron beams emitted from the sample is connected to the objective lens. A mesh-like electrode is arranged to surround the detector, and the lower surface of the mesh-like electrode is made substantially flush with the lower surface of the objective lens, and the potential of the electrode is A scanning electron microscope is characterized by a means for changing the working distance according to the working distance.
[作用]
本発明においては検出器は傾斜した対物レンズの側面に
沿って配置され、該検出器は下面が対物レンズの下面と
略同一面にされたメツシュ・状の電極によって包囲し、
このメツシュ状の電極の電位をワーキングディスタンス
が大きいときは低く、ワーキングディスタンスが小さい
ときは高くするように該ワーキングディスタンスにリン
クして変化させ、試料面上に張出した電界がワーキング
ディスタンスに関係なしに適切に保たれるようになしで
ある。[Operation] In the present invention, the detector is arranged along the side surface of the inclined objective lens, and the detector is surrounded by a mesh-shaped electrode whose lower surface is substantially flush with the lower surface of the objective lens.
The electric potential of this mesh-shaped electrode is linked to the working distance so that it is low when the working distance is large and high when the working distance is small, so that the electric field extending over the sample surface is independent of the working distance. None so as to be kept properly.
[実施例]
第1図は本発明の一実施例を示す主要部概略図であり、
第5図と同一符号は同様な部材を示しである。第1図に
おいて検出器を構成するライトバイブ5やコロナリング
7はメツシュ状の電極9に包囲されており、電子は該メ
ツシュ状電極の下面からシンチレータ6の方に向けて進
入する。又、検出器は第6図の場合と同様、試料1に向
けて尖った形の対物レンズの側面に沿って配置されてい
る。前記メツシュ状電極の下面は対物レンズの下面と略
同一面に配置されており、又該電極には直流電源10か
ら試料に対し正の2次電子加速用の直流電圧が印加され
ている。該印加電圧は実際の装置により異なるが数十ボ
ルト乃至千ボルト程度である。移#J機構3は駆動装置
11によりX、 Y方向に移動され、又移動機構は上下
動装置12の上に載置され、駆動装置13により光軸方
向の位置、つまりワーキングディスタンスが変化される
。[Example] FIG. 1 is a schematic diagram of main parts showing an example of the present invention,
The same reference numerals as in FIG. 5 indicate similar members. In FIG. 1, a light vibrator 5 and a corona ring 7 constituting a detector are surrounded by a mesh-like electrode 9, and electrons enter the scintillator 6 from the lower surface of the mesh-like electrode. Further, as in the case of FIG. 6, the detector is arranged along the side of the objective lens which is pointed toward the sample 1. The lower surface of the mesh-like electrode is disposed approximately on the same plane as the lower surface of the objective lens, and a DC voltage for positive secondary electron acceleration is applied to the sample from a DC power supply 10 to the electrode. The applied voltage varies depending on the actual device, but is on the order of several tens of volts to one thousand volts. The moving mechanism 3 is moved in the X and Y directions by a driving device 11, and the moving mechanism is placed on a vertical moving device 12, and the position in the optical axis direction, that is, the working distance, is changed by a driving device 13. .
14は位置検出器でワーキングディスタンスの大きさを
検申し、制御手段15に供給している。この制御手段は
位置検出器からのワーキングディスタンスに関する情報
に基づき、前記直流電源10を制御する。即ち、ワーキ
ングディスタンスが小さいときはメツシュ状電極に比較
的高電圧が印加され、試料面に電界が張出すようにし、
又、ワーキングディスタンスが大きいとぎは電子線通路
上の電界があまり強くならないようにメツシュ状電極の
電圧を低くするように制御する。第2図はワーキングデ
ィスタンスWDと電極への印加電圧Vの関係を示してあ
り、WDが81IIIIの場合500vの電圧が印加さ
れ、約WDが20nuaまでは比較的急峻に下降し、そ
れよりWDが大きくなった場合には緩かな変化で下降す
る曲線に従って電圧を制御I″する。勿論、第2図は一
例であり、装置毎にこの特性は異なったものであり、又
例えば数段階にワーキングディスタンスを変化するよう
な場合には、その段階に応じてステップ状に印加電圧を
変えるようにすれば良い。A position detector 14 detects the working distance and supplies it to the control means 15. This control means controls the DC power supply 10 based on information regarding the working distance from the position detector. That is, when the working distance is small, a relatively high voltage is applied to the mesh-like electrode, and an electric field is extended to the sample surface.
Further, in the case of a knife having a large working distance, the voltage of the mesh electrode is controlled to be low so that the electric field on the electron beam path does not become too strong. Figure 2 shows the relationship between the working distance WD and the voltage applied to the electrodes. When WD is 81III, a voltage of 500V is applied, and the voltage decreases relatively steeply until approximately WD reaches 20nua, and then WD increases. If the voltage increases, the voltage is controlled according to the curve that gradually decreases.Of course, Fig. 2 is just an example, and this characteristic differs depending on the device, and the working distance may be changed in several stages, for example. When changing the voltage, the applied voltage may be changed in steps according to the stage.
第3図及び第4図はワーキングディスタンスを変えた場
合の試料付近の電界分布の概略と2次電子の検出のされ
方を描写するもので、第3図はワーキングディスタンス
が小さいとき、第4図はワーキングディスタンスが大き
いときである。図から明らかなように、ワーキングディ
スタンスが小さいときは、メツシュ状電極9に比較的高
い電圧を与えるわけであるが、メツシュ状電極が試料1
に近いため電界の減衰は比較的少な(、試料1と対物レ
ンズの間の狭い空間にも充分に電界を張出させることが
できる。又、第4図ではワーキングディスタンスが大き
いので電極9による電界が電子線の通路上に容易に張出
すため、該電極9に印・加する電圧を押えても充分に2
次電子は加速集束され検出器に捕捉される。尚、メツシ
ュ状電極の下面が対物レンズの下面と略同−の水平面に
置かれているのは、2次電子を強く検出器方向に曲げ、
効率を稼ぐためである。Figures 3 and 4 depict the outline of the electric field distribution near the sample and how secondary electrons are detected when the working distance is changed. is when the working distance is large. As is clear from the figure, when the working distance is small, a relatively high voltage is applied to the mesh-like electrode 9, but the mesh-like electrode
Since the working distance is large, the attenuation of the electric field is relatively small (the electric field can be sufficiently extended even in the narrow space between the sample 1 and the objective lens. easily extends over the path of the electron beam, so even if the voltage applied to the electrode 9 is suppressed, the
The secondary electrons are accelerated and focused and captured by a detector. The reason why the lower surface of the mesh electrode is placed on a horizontal plane that is approximately the same as the lower surface of the objective lens is to strongly bend the secondary electrons toward the detector.
This is to gain efficiency.
[効果]
以上説明したように、本発明では対物レンズの傾斜側面
に沿って配置した2次電子の検出器をメツシュ状の電極
で包囲すると同時に、その電極に印加する電圧をワーキ
ングディスタンスが小さいときは高くし、ワーキングデ
ィスタンスが大きいときは低くするように制御している
ので、ワーキングディスタンスが小さく2次電子を引出
し雌い場合でも充分な電界を試料面上に張出させること
ができ、又ワーキングディスタンスが大きく電界が容易
に電子線通路上に張出し、電子線の軌道に影響を与える
ような場合には、その電界を弱くできる。従って、常に
高い効率で2次電子の検出ができると同時に電界が電子
線通路上に強く張出し過ぎて走査面に歪みを与えるよう
な弊害はなくなる。[Effect] As explained above, in the present invention, the secondary electron detector arranged along the inclined side surface of the objective lens is surrounded by a mesh-like electrode, and at the same time, the voltage applied to the electrode is changed when the working distance is small. Since the working distance is controlled to be high and low when the working distance is large, a sufficient electric field can be extended over the sample surface even when the working distance is small and secondary electrons cannot be extracted. If the distance is large and the electric field easily overhangs the electron beam path and affects the trajectory of the electron beam, the electric field can be weakened. Therefore, secondary electrons can be detected with high efficiency at all times, and at the same time, there is no problem such as the electric field extending too strongly over the electron beam path and distorting the scanning plane.
第1図は本発明の一実施例を示す主要部概略図、第2図
乃至第4図は第1図の装置の動作説明図、第5図及び第
6図は従来の装置の例示である。
1:試料 2:対物レンズ3:移動機構
5ニライトパイプ6:シンチレータ 7:
コロナリング9:メツシュ状電極 10:直流電源
11:駆動装置 12:試料上下装置13:駆動
装置 14:位置検出器15:制御手段FIG. 1 is a schematic view of the main parts showing an embodiment of the present invention, FIGS. 2 to 4 are explanatory diagrams of the operation of the device shown in FIG. 1, and FIGS. 5 and 6 are illustrations of a conventional device. . 1: Sample 2: Objective lens 3: Movement mechanism
5 Nilight pipe 6: Scintillator 7:
Corona ring 9: mesh electrode 10: DC power supply 11: drive device 12: sample up/down device 13: drive device 14: position detector 15: control means
Claims (1)
から放射された電子線を捕捉するための電子線検出器を
該対物レンズの傾斜した側面に沿うように設置し、この
検出器を包囲してメッシュ状の電極を配置し、該メッシ
ュ状の電極の下面は前記対物レンズの下面と略同一面に
すると共に該電極の電位をワーキングディスタンスに応
じて変化させる手段を具備したことを特徴とする走査電
子顕微鏡。 2)前記ワーキングディスタンスが大きいときメッシュ
状電極への印加電圧を低くし、ワーキングディスタンス
が小さいとき該印加電圧を高くするように制御する特許
請求の範囲第1項記載の走査電子顕微鏡。[Claims] 1) It has an objective lens that is pointed toward the sample surface, and an electron beam detector for capturing electron beams emitted from the sample is placed along the inclined side surface of the objective lens. A mesh-like electrode is arranged surrounding this detector, and the lower surface of the mesh-like electrode is made approximately flush with the lower surface of the objective lens, and the potential of the electrode is changed according to the working distance. 1. A scanning electron microscope characterized by comprising means for causing 2) The scanning electron microscope according to claim 1, wherein the voltage applied to the mesh electrode is controlled to be low when the working distance is large, and to be high when the working distance is small.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60147394A JPS628438A (en) | 1985-07-04 | 1985-07-04 | Scanning type electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60147394A JPS628438A (en) | 1985-07-04 | 1985-07-04 | Scanning type electron microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS628438A true JPS628438A (en) | 1987-01-16 |
JPH02817B2 JPH02817B2 (en) | 1990-01-09 |
Family
ID=15429277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60147394A Granted JPS628438A (en) | 1985-07-04 | 1985-07-04 | Scanning type electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS628438A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10603825B2 (en) | 2017-02-03 | 2020-03-31 | Honda Motor Co., Ltd. | Fiber-reinforced resin molded article, manufacturing method, and manufacturing apparatus for fiber-reinforced resin molded article |
-
1985
- 1985-07-04 JP JP60147394A patent/JPS628438A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10603825B2 (en) | 2017-02-03 | 2020-03-31 | Honda Motor Co., Ltd. | Fiber-reinforced resin molded article, manufacturing method, and manufacturing apparatus for fiber-reinforced resin molded article |
Also Published As
Publication number | Publication date |
---|---|
JPH02817B2 (en) | 1990-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4636897B2 (en) | Scanning electron microscope | |
US5894124A (en) | Scanning electron microscope and its analogous device | |
JP3542140B2 (en) | Projection type ion beam processing equipment | |
JPH09171791A (en) | Scanning type electron microscope | |
JP3323021B2 (en) | Scanning electron microscope and sample image observation method using the same | |
US6979821B2 (en) | Scanning electron microscope | |
JP3372138B2 (en) | Scanning electron microscope | |
US4818874A (en) | Scanning electron microscope | |
JP3341226B2 (en) | Scanning electron microscope | |
JP4292068B2 (en) | Scanning electron microscope | |
US7394069B1 (en) | Large-field scanning of charged particles | |
JPH0935679A (en) | Scanning electron microscope | |
JPS628438A (en) | Scanning type electron microscope | |
JP3244620B2 (en) | Scanning electron microscope | |
US7161149B2 (en) | Scanning electron microscope and method of controlling same | |
JP2002025492A (en) | Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror | |
JPH0864163A (en) | Charged particle beam device | |
JP4179369B2 (en) | Scanning electron microscope | |
JP3494152B2 (en) | Scanning electron microscope | |
JPH0771755B2 (en) | Ion beam processing equipment | |
JP2672808B2 (en) | Ion beam processing equipment | |
JP2004087455A (en) | Scanning electron microscope and control method of the same | |
JPS63274049A (en) | Scanning type electron microscope | |
JPH0236207Y2 (en) | ||
JPH0236209Y2 (en) |