JPS6281509A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPS6281509A
JPS6281509A JP22227285A JP22227285A JPS6281509A JP S6281509 A JPS6281509 A JP S6281509A JP 22227285 A JP22227285 A JP 22227285A JP 22227285 A JP22227285 A JP 22227285A JP S6281509 A JPS6281509 A JP S6281509A
Authority
JP
Japan
Prior art keywords
light
distance
mirror
target object
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22227285A
Other languages
Japanese (ja)
Other versions
JPH0367565B2 (en
Inventor
Kazuo Takashima
和夫 高嶋
Masayuki Sugiyama
昌之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22227285A priority Critical patent/JPS6281509A/en
Publication of JPS6281509A publication Critical patent/JPS6281509A/en
Publication of JPH0367565B2 publication Critical patent/JPH0367565B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To measure quickly distance between specimens and groove width etc., allowing measuring light fluxes to be emitted in 2 back-to-back directions and simultaneous measurements of 2 points. CONSTITUTION:Light fluxes 25 transmitted through lenses 16, 17 other emission from a light source 15 have its part 25a reflected by a half-mirror 18 and this reflected beam is directed to a light spot Pa on specimen 19a from the second light emission opening 14a. The balance of the fluxes 25 after transmitted through the half-mirror 18, is reflected by a mirror 20 to reach the half-mirror 18 again and after reflection by the half-mirror 18, they are directed on a specimen 19b to a light spot Pb from the aperture 14a. Light-receiving lenses 21a, 22b photograph images of said light spots Pa, Pb and pick up these images on light-receiving surfaces of light-receiving elements of 22a, 22b and electric signals depending upon these image positions are subjected to arithmetic operations by distance-calculating units 23a, 23b and a distance D between the specimens 19a, 19b can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、対象物体までの距離を測定する距離測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance measuring device that measures the distance to a target object.

〔従来の技術〕[Conventional technology]

第2図は、従来の非接触式の距離測定装置を示すもので
あり、図において、1は光源、2は光源1より放射され
る光束を集束し測定しようとする対象物体3に投射する
投光レンズである。
FIG. 2 shows a conventional non-contact distance measuring device. In the figure, 1 is a light source, and 2 is a projection that focuses the luminous flux emitted from the light source 1 and projects it onto the target object 3 to be measured. It is a light lens.

上記光源1、投光レンズ2、対象物体3が軸線A上に位
置し、光源1から放射された光は投光レンズ2によって
対象物体3上に照射され、光束の光スポット4を形成す
る。
The light source 1, the light projection lens 2, and the target object 3 are located on the axis A, and the light emitted from the light source 1 is irradiated onto the target object 3 by the light projection lens 2 to form a light spot 4 of a luminous flux.

5は光スポット4の像を結像する受光レンズ、6は受光
レンズ5によって結像される光スポット4の像の結像位
置Pに対応した電気信号を発生する受光素子で、上記光
スポット4、受光レンズ5、受光素子6は軸線B上に位
置し、この場合この軸線Bは前記軸線Aとθの角度をな
す。
5 is a light receiving lens that forms an image of the light spot 4; 6 is a light receiving element that generates an electric signal corresponding to the imaging position P of the image of the light spot 4 formed by the light receiving lens 5; , the light-receiving lens 5, and the light-receiving element 6 are located on the axis B, and in this case, the axis B makes an angle θ with the axis A.

そして、受光素子6の出力する2つの電気信号’A+’
B は、それぞれ加算器7、減算器8に入力され、加算
器7において両信号の和(iA+in)が求められ、減
算器8において両信号の差(iA−iB)が求められる
。9は加算器7の出力で減算器8の出力を除する除算器
、10は除算器9の位置出力Pを距離出力りに変換する
変換器である。
Then, the two electrical signals 'A+' output from the light receiving element 6
B is input to an adder 7 and a subtracter 8, respectively, the adder 7 calculates the sum of both signals (iA+in), and the subtracter 8 calculates the difference between the two signals (iA-iB). 9 is a divider that divides the output of the subtracter 8 by the output of the adder 7, and 10 is a converter that converts the position output P of the divider 9 into a distance output.

上記において、光源1、投光レンズ2、受光レンズ5、
受光素子6によって検出ヘッド11が構成され、上記加
算器7、減算器8、除算器9、変換器10によって処理
部12が構成される。
In the above, a light source 1, a light projecting lens 2, a light receiving lens 5,
The light receiving element 6 constitutes a detection head 11, and the adder 7, subtracter 8, divider 9, and converter 10 constitute a processing section 12.

次に動作について説明する。光源1より放射される光束
は、投光レンズ2によって適当な大きさの光スポット4
で対象物体3に照射される。この光スポット4を受光レ
ンズ5が撮像し、受光素子6の受光面の上に光スポット
4の像を結像する。
Next, the operation will be explained. The light beam emitted from the light source 1 is converted into a light spot 4 of an appropriate size by a projection lens 2.
The target object 3 is irradiated with the light. The light spot 4 is imaged by the light receiving lens 5, and an image of the light spot 4 is formed on the light receiving surface of the light receiving element 6.

斯かる受光素子6は、たとえば、スポット像の結像位置
に比例した光信号を両端部に向って出力する光位置検出
器と、この光位置検出器の両端部に配設された受光面上
に入射する光信号に応じた電気信号iA*ist’発生
する光検出器とで構成されている。従って、上記電5気
信号IA、1B  の値によって、光スポット像の結像
位置Pは、 として求めることができる。
The light-receiving element 6 includes, for example, an optical position detector that outputs an optical signal proportional to the imaging position of the spot image toward both ends, and a light-receiving surface arranged at both ends of the optical position detector. and a photodetector that generates an electrical signal iA*ist' in response to an incident optical signal. Therefore, from the values of the electrical signals IA and 1B, the imaging position P of the optical spot image can be determined as follows.

ところで、受光素子6の出力は光スポット像の結像位置
Pとその強度とに比例した出力信号を生じる。そのため
、上記(1)式においては、光スポット像の強度変化に
比例して変化する信号である(i^++B)の項を分母
に導入し、光スポット像の結像位置のみに比例する信号
を得るようにしている。
By the way, the output of the light receiving element 6 produces an output signal proportional to the imaging position P of the light spot image and its intensity. Therefore, in the above equation (1), the term (i^++B), which is a signal that changes in proportion to the intensity change of the light spot image, is introduced into the denominator, and the term (i^++B), which is a signal that changes in proportion to the intensity change of the light spot image, is introduced into the denominator. I'm trying to get it.

前記加算器7と減算器8と除算器9は、受光素子6の出
力信号iA+iBに基づいて上記(1)式に示される演
算を実施するための回路であり、このようにして除算器
9の出力には光スポット像の結像位置に対応する出力値
Pが得られる。
The adder 7, the subtracter 8, and the divider 9 are circuits for implementing the calculation shown in equation (1) above based on the output signal iA+iB of the light receiving element 6. An output value P corresponding to the imaging position of the light spot image is obtained as the output.

一方、対象物体3までの距離を2とし、投光レンズ2と
受光レンズ5の設置間隔をLとすると、Lは、 L−□          ・・・・・・・・・(2)
tanθ として求めることができる。ここで、θは受光レンズ5
の設置位置及び焦点距離、受光素子6と受光レンズ5の
設置間隔、光スポット像の結像位置に係る出力Pによっ
て求まるものである。これらの中で位置出力P以外は固
定値として定めることができるので、結局、対象物体3
までの距離2は、1−に−P            
・・・・・・・・・(3)として得られる。この場合、
Kは上記各固定値によって決まる定数であり、事前の計
算又は実験等により設定される。変換器10は上記(3
)式を実施し、位置出力P=i入力して距離出力λを出
力するものである。
On the other hand, if the distance to the target object 3 is 2 and the installation interval between the light emitting lens 2 and the light receiving lens 5 is L, then L is L-□ (2)
It can be obtained as tanθ. Here, θ is the light receiving lens 5
It is determined by the installation position and focal length of , the installation interval between the light receiving element 6 and the light receiving lens 5, and the output P related to the imaging position of the light spot image. Since all of these except the position output P can be determined as fixed values, in the end, the target object 3
The distance to 2 is 1- to -P
It is obtained as (3). in this case,
K is a constant determined by each of the above fixed values, and is set by prior calculation or experiment. The converter 10 is
), inputs the position output P=i, and outputs the distance output λ.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の非接触式の距離測定装置は以上のように構成され
ているので、測定光束の出射口は1箇所であり、対象物
体の溝幅あるいは該対象物体間の間隔などの測定時には
、複数の距離測定装置を背中合せにするか、または、前
記距離測定装置をたとえば投光レンズ2と受光レンズ5
の中心を結ぶ線Oを中心として該距離測定装置を回転さ
せて測定することが必要であった。また、複数の距離測
定装置を背中合せにすることは全体の構成が複雑かつ大
型化する。また、距離測定装置を回転させることは特別
に回転駆動装置が必要となり高価になるという問題点が
あった。
Since the conventional non-contact distance measuring device is configured as described above, there is only one exit point for the measurement light beam, and when measuring the groove width of the target object or the distance between the target objects, there are multiple exit points. The distance measuring devices may be placed back to back, or the distance measuring devices may be arranged, for example, with a light emitting lens 2 and a light receiving lens 5.
It was necessary to measure by rotating the distance measuring device around a line O connecting the centers of . Furthermore, arranging a plurality of distance measuring devices back to back makes the entire configuration complicated and large. Additionally, rotating the distance measuring device requires a special rotary drive device, which is expensive.

この発明は、上記のような問題点を解消するためになさ
れたもので、対象物体の溝幅あるいは対象物体間の間隔
などを、固定状態のまま迅速に測定できる構成の簡単な
安価な距離測定装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is a simple and inexpensive distance measurement system that can quickly measure the groove width of a target object or the distance between target objects in a fixed state. The purpose is to obtain equipment.

〔問題点を解決するための手段〕 この発明に係る距離測定装置は、左右両側の壁面に第1
.第2の光入射口と第1.第2の光出射口を対向して設
けたケース内に、1つの光源からの光を分割して上記第
1.第2の光出射口から対象物体に光スポットとして照
射させるミラーと、上記第1.第2の光入射口から入射
した上記光スポット像を第1.第2の位置検出器上に結
像する第1.第2の受光レンズとを設け、上記第1.第
2の位置検出器からのそれぞれの出力信号を演算処理し
て距離出力を得るようにしたものである。
[Means for solving the problem] The distance measuring device according to the present invention has first
.. a second light entrance aperture and a first light entrance; The light from one light source is divided into a case provided with a second light exit opening facing the first one. a mirror for irradiating a target object as a light spot from a second light exit; The above-mentioned light spot image incident from the second light entrance is converted into the first light spot image. The first position imaged onto the second position detector. a second light-receiving lens; Each output signal from the second position detector is processed to obtain a distance output.

〔作用〕[Effect]

この発明における1つの光源からの光は、ミラーによっ
て2方向に分割されることにより、同時に測定光束が相
反する180度方向に出射され、対象物体の溝幅あるい
は対象物体間の間隔を測定する。
In this invention, the light from one light source is split into two directions by a mirror, so that measurement light beams are simultaneously emitted in opposite directions of 180 degrees to measure the groove width of the target object or the distance between the target objects.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。図に
おいて、12はケースで、左右両側の壁面に第1.第2
の光入射口13a、13bと第1゜第2の光出射口14
a、14bが対向して設けられている。15は光源、1
6は光源15からの光を集光する集光レンズ、17は集
光レンズ16からの光を平行光とするレンズ、18は平
行光の一部を上記第2の光出射口14aから対象物体1
9aに光スポットPaとして照射させるノ)−フミラー
、20はハーフミラ−18を透過した光を上記第1の光
出射口14bから対象物体19bに光スポットPbとし
て照射させるように該ノ・−フミラ−18に向って反射
させるミラー、218.21bは上記第1.第2の光入
射口13a、13bから入射した上記対象物体198.
19b上の光スポット像Pa、Pbを結像する第1.第
2の受光レンズ、22a、22bは上記光スポット像の
結像位置に比例した信号を出力する第1.第2の受光素
子、23a、23bはそれぞれ第1.第2の受光素子2
2a、22bの出力信号を演算処理して距離出力を発生
する第1.第2の距離演算器で、例えば、前記第2図に
示した加算器、減算器、除算器、変換器により構成され
ている。24は第1゜第2の距離演算器23a、23b
の距離出力1.。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, reference numeral 12 denotes a case, and there are first casings on the left and right walls. Second
The light entrance ports 13a, 13b and the first and second light exit ports 14
a and 14b are provided facing each other. 15 is a light source, 1
6 is a condenser lens that condenses the light from the light source 15; 17 is a lens that converts the light from the condenser lens 16 into parallel light; and 18 is a lens that directs a portion of the parallel light from the second light exit port 14a to the target object. 1
A half mirror 20 is configured to irradiate the target object 19b with the light transmitted through the half mirror 18 from the first light exit port 14b as a light spot Pb. The mirror 218.21b that reflects the light toward the first. The target object 198. which entered from the second light entrance ports 13a and 13b.
The first light spot images Pa and Pb are formed on 19b. The second light receiving lenses 22a and 22b output a signal proportional to the imaging position of the light spot image. The second light receiving elements 23a and 23b are respectively connected to the first light receiving elements 23a and 23b. Second light receiving element 2
2a and 22b to generate a distance output. The second distance computing unit is composed of, for example, the adder, subtracter, divider, and converter shown in FIG. 2 above. 24 is the first and second distance calculators 23a and 23b.
Distance output 1. .

l、を加算する加算器である。This is an adder that adds l.

つぎに動作について説明する。図面は対象物体19a、
19b間の間隔を測定する場合を例示するもので、ケー
ス12の先端部を図示のように対象物体間に配設する。
Next, the operation will be explained. The drawing shows the target object 19a,
This exemplifies the case where the distance between the objects 19b is measured, and the tip of the case 12 is disposed between the objects as shown.

光源15から放射されてレンズ16.17を透過した光
束25は、その一部25aがハーフミラ−18で反射し
、第2の光出射口14aから対象物体19aに光スボツ
)Paとして照射される。
A portion 25a of the light beam 25 emitted from the light source 15 and transmitted through the lens 16.17 is reflected by the half mirror 18, and is irradiated from the second light exit aperture 14a onto the target object 19a as a light spot (Pa).

ハーフミラ−18を透過した残りの光束25bは、ミラ
ー20で反射して再びハーフミラ−18に至り該ハーフ
ミラ−18で反射して、第2の光出射口14bから対象
物体19bに光スポットpb  として照射される。
The remaining light flux 25b that has passed through the half mirror 18 is reflected by the mirror 20, reaches the half mirror 18 again, is reflected by the half mirror 18, and is irradiated from the second light exit port 14b onto the target object 19b as a light spot PB. be done.

受光レンズ21a、21bは上記光スポットPa、 P
b を撮像し、受光素子22a、22bの受光面の上に
結像する。このため、受光素子22a。
The light-receiving lenses 21a and 21b detect the light spots Pa and P.
b is imaged and formed on the light-receiving surfaces of the light-receiving elements 22a and 22b. For this reason, the light receiving element 22a.

22bからは、それぞれ光スポットの結像位置に応じた
2つの電気信号’A−1・’B−a、i A−b・iB
−。
From 22b, two electric signals 'A-1 and 'B-a, i A-b and iB are generated, respectively, according to the imaging position of the optical spot.
−.

が発生し、これ等の電気信号i□、・1B−、,1A−
b・i B−bはそれぞれ距離演算器23a、23bに
入力される。
are generated, and these electrical signals i□,・1B−,,1A−
b·i B−b are input to distance calculators 23a and 23b, respectively.

距離演算器23a、23bは入力された電気信号に基づ
いて距離出力1.、 lbを演算して出力し、この距離
出力1.Ibを加算器24で加算(t、+1.、)して
、対象物体19a、19b間の間隔りを求めるものであ
る。
The distance calculators 23a and 23b produce distance outputs 1 . . . based on the input electrical signals. , lb is calculated and output, and this distance output 1. Ib is added by an adder 24 (t, +1.) to obtain the distance between the target objects 19a and 19b.

また、ケース12の先端部を対象物体の溝内に挿入配設
した場合は、上記と同様の操作によって溝幅を測定する
ことができる。
Further, when the distal end of the case 12 is inserted into the groove of the target object, the groove width can be measured by the same operation as described above.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、背中合せの2方向に
測定光束を出射させて同時に2ポイントの測定が同時に
できるように構成したので、対象物体間の間隔や溝幅な
どの測定が迅速にできる。
As described above, according to the present invention, since the measurement light beam is emitted in two directions back to back and the measurement of two points can be performed at the same time, it is possible to quickly measure the distance between objects and the groove width. can.

また、ハーフミラ−を用いて1つの光源の光を二分割し
、2方向の測定光束としているので、距離測定装置を構
成な簡単で小形、かつ安価に得ることができる。
Further, since the light from one light source is divided into two by using a half mirror to form measurement light beams in two directions, the distance measuring device can be constructed simply, compactly, and inexpensively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す距離測定装置の構成
図、第2図は従来の距離測定装置の構成図である。 12はケース、13a、13bは入射口、14a、14
bは出射口、15は光源、18はハーフミラ−119a
、19bは対象物体、20はミラー、21a、21bは
受光レンズ、22a、22bは受光素子、23a、23
bは距離演算器。 なお、図中、同一部材は同−又は相当部分を示す。
FIG. 1 is a block diagram of a distance measuring device showing an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional distance measuring device. 12 is a case, 13a, 13b are entrance ports, 14a, 14
b is an exit port, 15 is a light source, 18 is a half mirror 119a
, 19b is a target object, 20 is a mirror, 21a, 21b are light receiving lenses, 22a, 22b are light receiving elements, 23a, 23
b is a distance calculator. In the drawings, the same members indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 第1、第2の光入射口と第1、第2の光出射口とを左右
の壁面に対向して設けたケースと、このケース内に配設
され光源からの光の一部を上記第1の光出射口から対象
物体に光スポットとして照射させるハーフミラーと、こ
のハーフミラーを透過した光を上記第2の光出射口から
上記対象物体に光スポットとして照射させるように該ハ
ーフミラーに向つて反射させるミラーと、上記第1、第
2の光入射口から入射した上記対象物体上の光スポット
像を結像する第1、第2の受光レンズと、上記光スポッ
ト像の結像位置に比例した信号を出力する第1、第2の
受光素子と、上記出力信号を演算処理して距離出力を発
生する第1、第2の距離演算器とを備えた距離測定装置
A case in which first and second light entrance ports and first and second light exit ports are provided facing each other on left and right walls; a half mirror that irradiates the target object as a light spot from a first light exit port; and a half mirror that directs the light transmitted through the half mirror to the half mirror so that the light that has passed through the half mirror is irradiated as a light spot from the second light exit port to the target object. a mirror that reflects the light, first and second light receiving lenses that form images of the light spot on the target object that have entered from the first and second light entrances; A distance measuring device comprising first and second light receiving elements that output proportional signals, and first and second distance calculators that process the output signals to generate a distance output.
JP22227285A 1985-10-04 1985-10-04 Distance measuring apparatus Granted JPS6281509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22227285A JPS6281509A (en) 1985-10-04 1985-10-04 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22227285A JPS6281509A (en) 1985-10-04 1985-10-04 Distance measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6281509A true JPS6281509A (en) 1987-04-15
JPH0367565B2 JPH0367565B2 (en) 1991-10-23

Family

ID=16779778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22227285A Granted JPS6281509A (en) 1985-10-04 1985-10-04 Distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6281509A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443711A (en) * 1987-08-11 1989-02-16 Fujitec Kk Surface strain measuring instrument
US5980166A (en) * 1995-10-05 1999-11-09 Kanefusa Corporation Rotary tool with shank
KR101005051B1 (en) 2008-11-14 2010-12-30 에프엠전자(주) Laser sensor
JP2012047743A (en) * 2010-08-26 2012-03-08 Mitsutoyo Corp Two-beam assembly and operation method of chromatic point sensor apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443711A (en) * 1987-08-11 1989-02-16 Fujitec Kk Surface strain measuring instrument
US5980166A (en) * 1995-10-05 1999-11-09 Kanefusa Corporation Rotary tool with shank
KR101005051B1 (en) 2008-11-14 2010-12-30 에프엠전자(주) Laser sensor
JP2012047743A (en) * 2010-08-26 2012-03-08 Mitsutoyo Corp Two-beam assembly and operation method of chromatic point sensor apparatus

Also Published As

Publication number Publication date
JPH0367565B2 (en) 1991-10-23

Similar Documents

Publication Publication Date Title
JPH04115108A (en) Three-dimensional scanner
CA2197410C (en) Method and apparatus for reducing the unwanted effects of noise present in a three dimensional color imaging system
JPS6281509A (en) Distance measuring apparatus
JPH02287113A (en) Distance measuring instrument
JPH0758172B2 (en) Shape measuring method and apparatus
JPS5962811A (en) Focus detecting device
JPH0483133A (en) Three-dimensional scanner
JPS58173408A (en) Edge detector in optical measuring apparatus
JPS6281519A (en) Range finder
US8605291B2 (en) Image correlation displacement sensor
JPH0429477B2 (en)
JPS6337202A (en) Optical apparatus for measuring minute displacement
JPH05281130A (en) Foreign-matter inspection apparatus
JP2509776B2 (en) Three-dimensional shape measuring device
JPH01142401A (en) Optical displacement measuring apparatus
JP2866566B2 (en) 3D shape input device
JPS6281514A (en) Radius of curvature gauge
JPS63263401A (en) Displacement measuring method
JPH0454411A (en) Optical position measuring instrument
JPH0483132A (en) Three-dimensional scanner
JPS63255606A (en) Displacement measuring apparatus
JPH1123229A (en) Measuring method for film thickness
JPH02272514A (en) Method for positioning optical cutting microscope device and its optical means
JPS6281521A (en) Range finder
JPS6117904A (en) Pattern detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees