JPS6281514A - Radius of curvature gauge - Google Patents

Radius of curvature gauge

Info

Publication number
JPS6281514A
JPS6281514A JP22227185A JP22227185A JPS6281514A JP S6281514 A JPS6281514 A JP S6281514A JP 22227185 A JP22227185 A JP 22227185A JP 22227185 A JP22227185 A JP 22227185A JP S6281514 A JPS6281514 A JP S6281514A
Authority
JP
Japan
Prior art keywords
light
curvature
specimen
target object
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22227185A
Other languages
Japanese (ja)
Inventor
Kazuo Takashima
和夫 高嶋
Masayuki Sugiyama
昌之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22227185A priority Critical patent/JPS6281514A/en
Publication of JPS6281514A publication Critical patent/JPS6281514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make measurement of a curvature of a specimen surface only by opposed arrangement of the specimen and three and more light projectors, by constructing in such a way that they are operated in time sequence. CONSTITUTION:A light source 11a of a light projector 11 is turned on by an output signal of a timing generator 17 and a light spot 4a of proper size is directed onto a specimen 3 by a light-projecting lens 11a. An image of this light spot 4a is developed on the light-receiving plane of a light-receiving element 14b by a light-receiving lens 14a. Next, source 12a of a light-projector 12, source 13a of a light-projector 13 are operated in time sequence and light spots 4a, 4b, 4c formed onto 3 and more points of the specimen by each projector 11, 12, 13 are received in a light-receiver 14 alternately and from distance outputs to each point oriented by outputs of this light-receiver 14, the curvature of the measurement surface of the specimen 3 can calculated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、対象物体の被測定面の曲率を非接触式で測
定する曲率測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a curvature measuring device that measures the curvature of a surface to be measured of a target object in a non-contact manner.

〔従来の技術〕[Conventional technology]

@2図は球体2円柱体1円筒体などの対象物体の曲率を
測定するために、従来使用されている非接触式の距離測
定装置を示すものであり、1は光源、2は光源1より放
射される光束を集束し、測定しようとする対象物体3に
投射する投光レンズである。上記光源1、投光レンズ2
.対象物体3は軸線A上に位置し、光源1から放射され
た光は投光レンズ2によって対象物体3上に照射され、
光束の光スポラ)4t−形成する。
Figure @2 shows a non-contact distance measuring device that is conventionally used to measure the curvature of target objects such as a sphere, 2 cylinders, and a cylinder. This is a projection lens that focuses the emitted light beam and projects it onto the target object 3 to be measured. Above light source 1, light projection lens 2
.. The target object 3 is located on the axis A, and the light emitted from the light source 1 is irradiated onto the target object 3 by the projection lens 2.
Photospora of the luminous flux) 4t- forms.

5は光スポット4の像を結像する受光レンズ、6は受光
レンズ5によって結像される元スポット4の像の位置P
に対応した電気出力iA、iBf:発生する受光素子で
、上記光スポット4.受光レンズ5.受光素子6は軸線
B上に位置し、この場合この軸線Bは前記軸線Aとθの
角度をなす。
5 is a light receiving lens that forms an image of the light spot 4; 6 is a position P of the image of the original spot 4 formed by the light receiving lens 5;
Electrical output iA, iBf corresponding to: the light receiving element that generates the light spot 4. Light receiving lens 5. The light receiving element 6 is located on the axis B, and in this case, the axis B makes an angle θ with the axis A.

そして、受光素子6の出力する2つの電気信号iA、t
Bは、それぞれ加算器T、減算器8に入力され、加算器
7に2いて両信号の和(iA+iB)が求められ、減算
器8に2いて両信号の差(tA−iB)が求められる。
Then, two electrical signals iA, t output from the light receiving element 6
B is input to an adder T and a subtracter 8, respectively, and the adder 7 calculates the sum of both signals (iA+iB), and the subtracter 8 calculates the difference between the two signals (tA-iB). .

9は加算器Tの出力で減算器8の出力を除する除算器、
10は除算器9の位置出力pt距離出力tに変換する変
換器である。
9 is a divider that divides the output of the subtracter 8 by the output of the adder T;
10 is a converter that converts the position output pt of the divider 9 into a distance output t.

次に動作について説明する。光源1より放射される元来
は、投光レンズ2によって適轟な大きさの元スポット4
で対象物体3に照射される。この元スポット4を受光レ
ンズ5が撮像し、受光素子6の受光部の上に元スポット
4の像を結像する。
Next, the operation will be explained. The light emitted from the light source 1 is originally a spot 4 of an appropriate size by the projection lens 2.
The target object 3 is irradiated with the light. The light-receiving lens 5 images this original spot 4, and forms an image of the original spot 4 on the light-receiving portion of the light-receiving element 6.

斯かる受光素子6は、たとえば、スポット像の結像位置
に比例した光信号を両端部に向って出力する元位置検出
器と、この元位置検出器の両端部に配設され受光面上に
入射する元信号に応じた電気信号t、、、iBを発生す
る光検出器とで構成されている。従って、上記電気信号
t、、、tBの値によって1元スポット像の結像位置P
は。
Such a light receiving element 6 includes, for example, an original position detector that outputs an optical signal proportional to the imaging position of the spot image toward both ends, and an original position detector arranged at both ends of this original position detector and arranged on the light receiving surface. It is composed of a photodetector that generates electrical signals t, , iB according to the input original signal. Therefore, the imaging position P of the one-dimensional spot image is determined by the values of the electric signals t, , tB.
teeth.

tA+tB として求めることができる。tA+tB It can be found as

ところで、受光素子6の出力は元スポット像の結像位置
Pとその強度とに比例した出力信号を生じる。そのため
、上記(1)式に2いては1元スポット像の強度変化に
比例して変化する信号である(iA+iB)の項を分母
に導入し、元スポット号の結像位置のみに比例する信号
を得るようにしている。
By the way, the output of the light receiving element 6 produces an output signal proportional to the imaging position P of the original spot image and its intensity. Therefore, in Equation (1) above, the term (iA+iB), which is a signal that changes in proportion to the intensity change of the one-dimensional spot image, is introduced into the denominator, and a signal that is proportional only to the imaging position of the original spot image is introduced into the denominator. I'm trying to get it.

前記加算器7と減算器8と除算器9は、受光素子6の出
力信号i A 、 i Bに基づいて上記(1)式に示
される演算を実施するための回路であり、このようにし
て除算器9の出力には元スポット像の結像位置に対応す
る出力値Pが得られる。
The adder 7, subtracter 8, and divider 9 are circuits for implementing the calculation shown in the above equation (1) based on the output signals i A and i B of the light receiving element 6, and in this way, At the output of the divider 9, an output value P corresponding to the imaging position of the original spot image is obtained.

一方、対象物体3までの距離t−tとし、投光レンズ2
と受光レンズ5の設置間隔tLとすると。
On the other hand, the distance to the target object 3 is t-t, and the projection lens 2
and the installation interval tL of the light-receiving lenses 5.

tは、 t=−・・・・・・(21 −θ として求めることができる。ここで、θは受光レンズ5
の設置位置及び焦点距離、受光素子6と受光レンズ5の
設置間隔、元スポット像の結像位置に係る出力Pによっ
て求まるものである。これらの中で位置出力P以外は固
定値として定めることができるので、結局、対象物体3
までの距離tは。
t can be determined as t=-...(21-θ). Here, θ is the light receiving lens 5.
It is determined by the installation position and focal length of , the installation interval between the light-receiving element 6 and the light-receiving lens 5, and the output P related to the imaging position of the original spot image. Since all of these except the position output P can be determined as fixed values, in the end, the target object 3
The distance t is.

t=に−P                ・・・・
・・131として得られる。この場合%には上記各固定
値によって決まる定数であり、事前の計算又は実験等に
より設定される。変換器10は上記(3)式を実施し1
位置出力Pft入力して距離出力11に出力するもので
ある。
t=to-P...
...obtained as 131. In this case, % is a constant determined by each of the above fixed values, and is set by prior calculation or experiment. The converter 10 implements the above equation (3) and 1
The position output Pft is inputted and outputted to the distance output 11.

そこで、上記距離測定装置を、不図示の移動機構によっ
て水平移動させ、対象物体3の少なくとも3点以上につ
いて距離を測定し、各点に対する距離出力を不図示の曲
率演算器に入力して演算処理し、対象物体3の測定面の
曲″4を求めている。
Therefore, the distance measuring device is moved horizontally by a moving mechanism (not shown), the distance is measured for at least three points on the target object 3, and the distance output for each point is input to a curvature calculator (not shown) for calculation processing. Then, the curve ``4'' of the measurement surface of the target object 3 is determined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は以上のようにして測定面の曲率を測定しているの
で、距離測定装置を水平移動させなければならず、この
移動装置2よび該移動装置を制御する制御装置が必要で
、構成が複雑で高価になるという問題点があった。
Conventionally, the curvature of the measurement surface is measured as described above, so the distance measuring device must be moved horizontally, and this moving device 2 and a control device to control the moving device are required, resulting in a complicated configuration. The problem was that it was expensive.

この発明は上記のような問題点を解消するためになされ
たもので、水平移動させることなく、固定状態のまま測
定面の曲率を測定することのできる構成の簡単な安価な
曲率測定装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides an inexpensive curvature measuring device with a simple configuration that can measure the curvature of a measurement surface in a fixed state without horizontal movement. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る曲率測定装置は、1つの受光部と1時系
列に動作させる3つ以上の投光部を有したものである。
The curvature measuring device according to the present invention has one light receiving section and three or more light projecting sections operated in one time series.

〔作用〕[Effect]

この発明に2ける3つ以上の投光部は時系列に動作する
ことにより、各投光部によって対象物体の3点以上に形
成てれた元スポットが交互に1つの受光部に受光され、
この受光部の出力に基づいて求めた各点までの距離出力
により、対象物体の測定面の曲率を演算する。
The three or more light projecting sections in the second aspect of the present invention operate in chronological order, so that original spots formed at three or more points on the target object by each light projecting section are alternately received by one light receiving section,
The curvature of the measurement surface of the target object is calculated based on the distance output to each point determined based on the output of the light receiving section.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図に2いて、11は光源11aと投光レンズ11b
とからなる投光部、12は光源12aと投光レンズ12
bとからなる投光部、13は光源13aと投光し/ズ1
3bとからなる投光部、14は受光レンズ14aと受光
素子14bとからなる受光部で、この受光部14は並設
された3つの投光部11〜13の片側に並べて該投光部
とともにケース15に組付は固定されている。16は受
光部14の出力に基づいて距離出力を発生する距離演算
器で、前記Wc2図に示した加算器、減算器。
2 in FIG. 1, 11 is a light source 11a and a light projection lens 11b.
12 is a light source 12a and a light projecting lens 12.
13 is a light emitting unit consisting of a light source 13a and a light emitting unit 13;
3b, and 14 is a light receiving section consisting of a light receiving lens 14a and a light receiving element 14b. The assembly is fixed to the case 15. 16 is a distance calculator that generates a distance output based on the output of the light receiving section 14, and is the adder and subtracter shown in the above-mentioned diagram Wc2.

除算器、変換器、2よび演算結果′f:記憶するメモリ
などにより構成されている。17は3つの投光部11〜
13を時系列に動作させるタイミング発生器である。
It is composed of a divider, a converter, 2, and a memory for storing the calculation result 'f. 17 is the three light projecting parts 11~
13 in time series.

つぎに動作について説明する。まず、タイミング発生器
17の出力信号で投光部110元源11aを点灯させ、
投光レンズ11aによって適当な大きさの元スボツ)4
at一対象物体3に照射する。
Next, the operation will be explained. First, the source 11a of the light projector 110 is turned on using the output signal of the timing generator 17,
A suitable size original socket) 4 using the projection lens 11a
At-target object 3 is irradiated.

この元スポット4aF)像を受光レンズ14aで受光素
子14bの受光面に結像する。
This original spot 4aF) image is formed on the light-receiving surface of the light-receiving element 14b by the light-receiving lens 14a.

この結像位置に対応して受光素子14bから出力された
電気信号i A、 L Bを距離演算器16に入力し、
演算した距離出力を−Hメモリ(図示せずンに記憶する
The electric signals iA, LB outputted from the light receiving element 14b corresponding to this imaging position are inputted to the distance calculator 16,
The calculated distance output is stored in -H memory (not shown).

ついで、つざのタイミング発生器1Tの出力信号で投光
部11の光源11’ aを消灯するとともに投光部12
の光源12a’i点灯させ、前記と同様の動作によって
対象物体3に照射した元スポット4bまでの距離を測定
し、この距離出力を−Hメモリに記憶する。
Next, the light source 11'a of the light projecting section 11 is turned off using the output signal of the timing generator 1T, and the light projecting section 12 is turned off.
The light source 12a'i is turned on, the distance to the original spot 4b irradiated onto the target object 3 is measured by the same operation as described above, and this distance output is stored in the -H memory.

引続いて、タイミング発生器17の出力信号で投光部1
2の光源12a’jz消灯するとともに投光部13の光
源13af、点灯させ、対象物体3に照射した光スボッ
)4cfでの距離を測定し、この距離出力をメモリに記
憶する。
Subsequently, the output signal of the timing generator 17 causes the light emitting unit 1 to
The light source 12a'jz of the light projector 13 is turned on while the light source 12a'jz of the light projector 13 is turned on, and the distance of the light irradiated onto the target object 3 is measured at 4cf, and this distance output is stored in the memory.

しかる後、対象物体3上の元スポッ)4a、4b。After that, the original spots on the target object 3) 4a, 4b.

4elでの各距離出力を、メモリから読出して曲率演算
器1Bに入力し、対象物体3の測定面の曲率を演算する
ものである。
Each distance output at 4el is read out from the memory and input to the curvature calculator 1B to calculate the curvature of the measurement surface of the target object 3.

なp、上記実施例は投光部が3つであるが、3つ以上設
けてもよく、上記実施例と同様の効果を奏する。
In the above embodiment, there are three light projecting units, but three or more light projecting units may be provided, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、3つ以上の投光部を
時系列に動作させるように構成し念ので。
As described above, according to the present invention, three or more light projectors are configured to operate in chronological order just in case.

対象物体に対向配設するだけで該対象物体の測定面の曲
率を測定できる。!!念、上記投光部は時系列に動作す
るので、受光部は1つで念り1曲率測定装置を簡単な構
成で安価に得ることができるという効果がある。
The curvature of the measurement surface of a target object can be measured simply by arranging it facing the target object. ! ! Note that since the light projecting section operates in a time-series manner, it is possible to obtain a single curvature measuring device with a simple configuration and at low cost by using only one light receiving section.

【図面の簡単な説明】 第1図はこの発明の一実施例を示す曲率測定装置の構成
図、第2図は従来、曲率測定のために使用する距離測定
装置の構成図である。 11〜13は投光部、11a〜13aは光源。 11b〜13bは投光レンズ、14は受光部、14aは
受光レンズ、14bは受光素子、16は距離演算器、1
7はタイミング発生器、1Bは曲率演算器。 な21図中、同一符号は同−又は相当部分を示す。 特許出願人  三菱電機株式会社 代理人 弁理士   1) 淵  博  昭手続補正書
(自発) 昭和 6晃1゛1B
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a curvature measuring device showing an embodiment of the present invention, and FIG. 2 is a block diagram of a distance measuring device conventionally used for measuring curvature. 11 to 13 are light projecting parts, and 11a to 13a are light sources. 11b to 13b are projecting lenses, 14 is a light receiving section, 14a is a light receiving lens, 14b is a light receiving element, 16 is a distance calculator, 1
7 is a timing generator, and 1B is a curvature calculator. In Figure 21, the same reference numerals indicate the same or equivalent parts. Patent applicant Mitsubishi Electric Co., Ltd. agent Patent attorney 1) Hiroshi Fuchi Showa procedural amendment (voluntary) Showa 6 Akira 1゛1B

Claims (1)

【特許請求の範囲】[Claims] 光源と該光源からの光を対象物体に対して適当な大きさ
の光スポットとして照射する投光レンズとからなる少な
くとも3つ以上の投光部と、上記光スポットの像を結像
する受光レンズと該像の結像位置に比例した複数個の電
気信号を出力する受光素子とからなる受光部と、上記3
つ以上の投光部を時系列に動作させるタイミング発生器
と、上記電気信号に基づいて距離出力を発生する距離演
算器と、上記各投光部の動作時の上記各距離出力に基づ
いて上記対象物体の測定面の曲率を演算する曲率演算器
とを備えた曲率測定装置。
At least three or more light projecting parts each consisting of a light source and a light projecting lens that irradiates the light from the light source onto a target object as a light spot of an appropriate size, and a light receiving lens that forms an image of the light spot. and a light receiving element that outputs a plurality of electrical signals proportional to the imaging position of the image;
a timing generator that operates the three or more light projectors in chronological order; a distance calculator that generates a distance output based on the electrical signal; A curvature measuring device comprising a curvature calculator that calculates the curvature of a measurement surface of a target object.
JP22227185A 1985-10-04 1985-10-04 Radius of curvature gauge Pending JPS6281514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22227185A JPS6281514A (en) 1985-10-04 1985-10-04 Radius of curvature gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22227185A JPS6281514A (en) 1985-10-04 1985-10-04 Radius of curvature gauge

Publications (1)

Publication Number Publication Date
JPS6281514A true JPS6281514A (en) 1987-04-15

Family

ID=16779764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22227185A Pending JPS6281514A (en) 1985-10-04 1985-10-04 Radius of curvature gauge

Country Status (1)

Country Link
JP (1) JPS6281514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499102U (en) * 1991-01-23 1992-08-27
US5182614A (en) * 1991-01-31 1993-01-26 Fmc Corporation Two-dimensional profile detection system
JP2017104980A (en) * 2011-09-13 2017-06-15 イスカーリミテッド Cutting chip and scrap treatment structure therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499102U (en) * 1991-01-23 1992-08-27
US5182614A (en) * 1991-01-31 1993-01-26 Fmc Corporation Two-dimensional profile detection system
JP2017104980A (en) * 2011-09-13 2017-06-15 イスカーリミテッド Cutting chip and scrap treatment structure therefor

Similar Documents

Publication Publication Date Title
US8243286B2 (en) Device and method for the contactless detection of a three-dimensional contour
NO753655L (en)
JP2008145139A (en) Shape measuring device
JPH10311779A (en) Equipment for measuring characteristics of lens
WO1990009560A1 (en) Distance gauge
JPH09113223A (en) Non-contacting method and instrument for measuring distance and attitude
JP2015108582A (en) Three-dimensional measurement method and device
JPS6281514A (en) Radius of curvature gauge
KR20070066541A (en) 3 dimensional displacement measurement apparatus of structure using digital image processing and the method thereof
JP2017125707A (en) Measurement method and measurement device
JP2528921B2 (en) Distance measurement by diffraction
JP2006308452A (en) Method and apparatus for measuring three-dimensional shape
RU2399024C2 (en) Noncontact profile measuring device
JPS62138715A (en) Method and instrument for measuring displacement
JP3976054B2 (en) Position measurement system
RU2191348C2 (en) Contactless three-coordinate meter
RU2350993C1 (en) Optical device for estimation of distance to radiation source
SU669202A1 (en) Loose material level meter
JP2003050111A (en) Three-dimensional shape input device and projector
JPH0711413B2 (en) Non-contact type surface profile measuring device
RU2379628C2 (en) Method for measurement of diametre of objects of cylindrical shape with directional reflecting surface
RU165682U1 (en) LASER SCANNING DEVICE
SU1054680A1 (en) Method of gauging linear dimensions of opaque objects
Onishi et al. 3D Position Detection with a PSD Using Frequency Modulated Light Markers
JPH01242905A (en) Method for measuring actual size of visual device