JPS628134A - Light source device - Google Patents

Light source device

Info

Publication number
JPS628134A
JPS628134A JP60148523A JP14852385A JPS628134A JP S628134 A JPS628134 A JP S628134A JP 60148523 A JP60148523 A JP 60148523A JP 14852385 A JP14852385 A JP 14852385A JP S628134 A JPS628134 A JP S628134A
Authority
JP
Japan
Prior art keywords
tube
fluorescent tube
light
temperature
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60148523A
Other languages
Japanese (ja)
Inventor
Yutaka Kusaka
日下 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Original Assignee
Casio Computer Co Ltd
Casio Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Casio Electronics Manufacturing Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP60148523A priority Critical patent/JPS628134A/en
Publication of JPS628134A publication Critical patent/JPS628134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To improve the light distribution of a fluorescent tube and to prevent the shielding of light by excess mercury by providing heat radiating members in contact with or proximity to part of the wall of the fluorescent tube. CONSTITUTION:The fluorescent tube 1 is housed into a lamp house 2 and the tube 1 is fixed by a lamp retainer 3 provided at one end of the house 2. Aluminum sheets 4, 5 are disposed as the heat radiating members so as to contact with both ends of the tube 1 except the main exposing region thereof. The sheets 4, 5 are fixed to the aperture of the house 2 by an adhesive agent 6 and a silicon grease 7 is coated to the parts thereof in contact with the tube 1 in order to improve heat conductivity. Aluminum foil 8 is wound as the reflecting member to partly enclose the wall of the tube 1 along the circumferential surface thereof. An insulating film 9 consisting of polyimide, etc., a plate heater 10 and a cover 11 made of a polycarbonate resin, etc. are successively wound thereon. A temp. sensor such as thermistor is attached to the wall of the tube 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は1例えば複写機や読取り装置等の原稿露光用光
源として、あるいは電子写真方式の光書込みプリンタの
光源として使用される光源装置に関し、特には発光手段
として螢光管を備え、その光量安定化のための手段を有
する光源装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a light source device used, for example, as a light source for exposing originals in copying machines, reading devices, etc., or as a light source in electrophotographic optical writing printers, and particularly relates to The present invention relates to a light source device that includes a fluorescent tube as a light emitting means and has means for stabilizing the amount of light.

〔従来技術〕[Prior art]

従来、上記のような光源装置としては、螢光管の管壁の
一部に面状の加熱ヒータを巻きつけ、更に螢光管の近辺
に冷却ファンを設置し、螢光管の管壁近くに設けられた
温度センサの検出する温度に応じて、上記の加熱ヒータ
および冷却ファンをそれぞれ“オン”、“オフ”するこ
とにより螢光管を発光効率の良い温度状態に維持しよう
としたものがある。
Conventionally, the above-mentioned light source device has a planar heater wrapped around a part of the wall of the fluorescent tube, and a cooling fan installed near the fluorescent tube. In this method, the heater and cooling fan were turned on and off depending on the temperature detected by a temperature sensor installed in the lamp, respectively, to maintain the fluorescent tube at a temperature with good luminous efficiency. be.

〔従来技術の問題点〕[Problems with conventional technology]

一般に、螢光管の光量は水銀蒸気圧と管電流とで決定さ
れる。特に水銀蒸気圧は温度に依存するため、温度によ
って発光効率が決定される。発光効率は、一般に螢光管
の管壁温度が約40(”C)のとき最も高く、それ以上
でも以下でも低下する。
Generally, the amount of light from a fluorescent tube is determined by mercury vapor pressure and tube current. In particular, since mercury vapor pressure depends on temperature, luminous efficiency is determined by temperature. Generally, the luminous efficiency is highest when the tube wall temperature of the fluorescent tube is about 40 ("C), and decreases when the temperature is higher or lower than that.

また、水銀蒸気圧は管壁温度の最も低い点(最冷点)の
温度で決定されるので、この最冷点の温度を約40(℃
)に維持することが望ましい。
In addition, since the mercury vapor pressure is determined by the temperature at the lowest point (coldest point) of the tube wall temperature, the temperature at this coldest point is approximately 40 (°C).
) is desirable.

ところが、上記従来の装置では、温度センサを螢光管の
平均的温度が検出される部位に設置しているので、最冷
点に対する温度制御の応答性を考慮して、温度センサが
約80(’C)以上を検出したときに冷却ファンを作動
させるようにしている。
However, in the conventional device described above, the temperature sensor is installed at the location where the average temperature of the fluorescent tube is detected. 'C) When the above is detected, the cooling fan is activated.

この場合、冷却ファンが作動する直前の管壁温度が最も
上った状態では、螢光管の中央部の光量が最も減少する
。そして、螢光管が冷却ファンで冷やされると、螢光管
全体として発光効率が高まるが、冷却ファンに近い部分
がより多く冷されるため、過渡的に水銀蒸気が移動し安
定するまでの間。
In this case, when the temperature of the tube wall is at its highest just before the cooling fan is activated, the amount of light at the center of the fluorescent tube decreases the most. When the fluorescent tube is cooled by a cooling fan, the luminous efficiency of the fluorescent tube as a whole increases, but because the part near the cooling fan is cooled more, the mercury vapor moves temporarily until it stabilizes. .

この部分の光量がより増大する。また、冷却ファンが停
止すると、今度は逆の現象が起り、この部分の光量は減
少する。このように従来の装置では。
The amount of light in this part increases further. Furthermore, when the cooling fan stops, the opposite phenomenon occurs, and the amount of light in this area decreases. In this way, with conventional equipment.

冷却ファンの“オン”、“オフ”に伴い極部的な温度変
化が生じるため、最冷点の位置およびその温度が変動し
、その結果光量の変動が起り、螢光管の配光が悪化する
という問題が生じる。
As the cooling fan turns on and off, localized temperature changes occur, which changes the location of the coldest spot and its temperature, resulting in fluctuations in the amount of light and worsening the light distribution of the fluorescent tube. The problem arises.

また、螢光管内の余剰水銀は最冷点に析出する。Further, excess mercury within the fluorescent tube is deposited at the coldest point.

従来の装置では、最冷点の場所は、実装機の構造あるい
は冷却時の状態により変動し2通常外部から加熱および
冷却を行なわない場合、比較的温度の低い両端部あるい
は中央部が最冷点となり易い。
In conventional equipment, the location of the coldest spot varies depending on the structure of the mounting machine or the state during cooling. 2 Normally, when heating and cooling are not performed externally, the coldest spot is at both ends or in the center where the temperature is relatively low. It's easy to become.

従って、余剰水銀はこれらの部分に析出し易く。Therefore, excess mercury tends to precipitate in these parts.

もしこの余剰水銀が螢光管前面のアパーチャ一部に析出
した場合は、光を遮断することになり、複写機等におい
ては画像に悪影響を与えることになる。
If this excess mercury precipitates on a portion of the aperture in front of the fluorescent tube, it will block light and adversely affect images in copying machines and the like.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の欠点に鑑み、螢光管の配光が良く、
かつ余剰水銀による光遮断を防止した光源装置を提供す
ることを目的とする。
In view of the above-mentioned drawbacks of the conventional art, the present invention provides good light distribution of the fluorescent tube.
It is also an object of the present invention to provide a light source device that prevents light from being blocked by excess mercury.

〔発明の要点〕[Key points of the invention]

本発明は上記目的を達成するために、螢光管を具備する
光源装置において2前記螢光管の管壁の一部に接触また
は近接させて放熱部材を設けたことを特徴とする。
In order to achieve the above object, the present invention is characterized in that, in a light source device equipped with a fluorescent tube, a heat radiating member is provided in contact with or in close proximity to a part of the tube wall of the two fluorescent tubes.

〔発明の実施例〕[Embodiments of the invention]

以下9本発明の実施例について1図面を参照しながら説
明する。
Nine embodiments of the present invention will be described below with reference to one drawing.

第1図は1本発明の一実施例を示す斜視図である。ここ
では、螢光管1を断面路コの字形のランプハウス2内に
収め、ランプハウス2の一端に設けられたランプ押え3
によって螢光管1を固定している。また、放熱部材とし
て、アルミMi、4. 5を螢光管1の主露光領域(実
際に光源として利用される中央の領域)以外の両端部に
接触するように配設している。ここで、第2図に示した
A−A断面図に明らかなように、アルミ板4.5は接着
剤6でランプハウス2の開口部に固着されており。
FIG. 1 is a perspective view showing an embodiment of the present invention. Here, a fluorescent tube 1 is housed in a lamp house 2 having a U-shaped cross section, and a lamp holder 3 is installed at one end of the lamp house 2.
The fluorescent tube 1 is fixed by. In addition, as a heat dissipation member, aluminum Mi, 4. 5 are arranged so as to contact both ends of the fluorescent tube 1 other than the main exposure area (the central area actually used as a light source). Here, as is clear from the AA sectional view shown in FIG. 2, the aluminum plate 4.5 is fixed to the opening of the lamp house 2 with an adhesive 6.

その螢光管1との接触部には、熱伝導性を良くするため
にシリコングリース7を塗布している。
The contact portion with the fluorescent tube 1 is coated with silicone grease 7 to improve thermal conductivity.

更に本実施例では、螢光管1の管壁の一部を包むように
、その周面に沿って反射部材として厚さ約50〔μm〕
のアルミ箔8を巻付け、その上から順に、ポリイミド等
の絶縁フィルム91面状の加熱ヒ7夕10及びポリカー
ボネート樹脂等のカバー11を巻付けている。ここで、
螢光管1の管壁には、サーミスタ等の温度センサ(不図
示)が取付けられており、この温度センサで検出された
管壁温度に基づいて加熱ヒータ10および不図示の冷却
ファンを作動させる。
Furthermore, in this embodiment, a reflective member with a thickness of about 50 [μm] is provided along the circumferential surface of the fluorescent tube 1 so as to surround a part of the tube wall.
An aluminum foil 8 is wrapped around the aluminum foil 8, and an insulating film 91 made of polyimide or the like, a heating layer 10 in the form of a sheet, and a cover 11 made of polycarbonate resin or the like are wrapped in order from above. here,
A temperature sensor (not shown) such as a thermistor is attached to the tube wall of the fluorescent tube 1, and a heater 10 and a cooling fan (not shown) are operated based on the tube wall temperature detected by this temperature sensor. .

本実施例は上記構成からなり、特にアルミ板4゜5を設
けたことにより、螢光管1に発生した熱はアルミ板4.
5を伝わって外部に放出される。そのため、アルtfl
!4.5との接触部が、常に螢光管lの最冷点となり、
他の部分よりも10〜30(deg)低くなる。もル、
螢光管1の連続点灯時にその自己発熱等によって管壁温
度が上昇した場合でも2発光効率は、最冷点の温度で決
定されるため、はとんど低下しない。
This embodiment has the above-mentioned structure, and in particular, by providing the aluminum plate 4.5, the heat generated in the fluorescent tube 1 is transferred to the aluminum plate 4.5.
5 and is released to the outside. Therefore, altfl
! 4.5 is always the coldest point of the fluorescent tube l,
It is 10 to 30 degrees lower than other parts. Mole,
Even if the temperature of the tube wall rises due to self-heating or the like during continuous lighting of the fluorescent tube 1, the luminous efficiency of the fluorescent tube 1 will hardly decrease because it is determined by the temperature of the coldest point.

また、螢光管1の点灯直後の立上り時や、冷却ファンが
動作した場合でも、最冷点の位置が変動することがなく
、最冷点温度が急激に変化せず。
Further, even when the fluorescent tube 1 starts up immediately after lighting or when the cooling fan operates, the position of the coldest point does not change, and the temperature of the coldest point does not change suddenly.

管壁温度は全体で一様に変化する。従って、このような
場合でも螢光管1の光量の変動は殆どなく。
The tube wall temperature changes uniformly throughout. Therefore, even in such a case, there is almost no variation in the amount of light from the fluorescent tube 1.

配光の悪化が防げる。第3図に、管壁温度が高くなり、
冷却ファンが作動した際の光量変動を、アルミ板4,5
を備えた場合(1)と備えない従来の場合(n)とで比
較例示した。同図で明らかなように、■の場合は大きく
変動している(変動率10.5%)のに対して、■の場
合はほとんど変動がなく (変動率1.3%)、安定し
た光量が得られて更に本実施例では、アルミF14.5
によって。
Prevents deterioration of light distribution. Figure 3 shows that as the tube wall temperature increases,
Changes in light intensity when the cooling fan operates are measured using aluminum plates 4 and 5.
A comparative example is shown between a case (1) in which the device is provided and a conventional case (n) in which the device is not provided. As is clear from the figure, in the case of ■, there is a large fluctuation (variation rate of 10.5%), while in the case of ■, there is almost no fluctuation (variation rate of 1.3%), and the amount of light is stable. Furthermore, in this example, aluminum F14.5
By.

最冷点を螢光管1の主露光領域外に人為的に設けたこと
により、余剰水銀を全てこの最冷点に集めることができ
る。従って、有効な光が余剰水銀によって遮断されるこ
とを防止している。
By artificially providing the coldest point outside the main exposure area of the fluorescent tube 1, all excess mercury can be collected at this coldest point. Therefore, effective light is prevented from being blocked by excess mercury.

また本実施例では、螢光管1と加熱ヒータ10との間に
アルミ箔8を設けており、このレフレクタ−用のアルミ
箔8は2従来その代りに用いられていたアルミ蒸着フィ
ルムと異なり、配熱作用を持っている。すなわち、アル
ミ箔8の熱伝導性により、最冷点をより速(暖めること
ができ、またその周辺部との温度差を小さくすることが
できる。
Furthermore, in this embodiment, an aluminum foil 8 is provided between the fluorescent tube 1 and the heater 10, and this aluminum foil 8 for the reflector is different from the aluminum vapor-deposited film conventionally used in its place. It has a heat distributing effect. That is, due to the thermal conductivity of the aluminum foil 8, the coldest point can be warmed up more quickly, and the temperature difference with the surrounding area can be reduced.

従って、低温状態から点灯開始した場合であっても、ウ
オームアツプ直後の光量落込みがなく、ウオームアンプ
のための時間も短縮された。第4図に、低温時(5(’
C) ’)に点灯開始した場合の光量の立上り特性を、
アルミ箔8を備えた場合(I[[)とアルミ蒸着フィル
ムを備えた従来の場合(IV)とで比較例示した。同図
で明らかなように、■の場合は大きく変動している(変
動率68.5%)のに対して、■の場合は変動が少ない
(変動率l006%)。
Therefore, even when lighting is started from a low temperature state, there is no drop in the amount of light immediately after warm-up, and the time required for warm-up is shortened. Figure 4 shows that at low temperature (5('
C) The rise characteristics of the light intensity when the lighting starts at '),
A comparative example is shown between a case (I [[)) provided with aluminum foil 8 and a conventional case (IV) provided with an aluminum vapor-deposited film. As is clear from the figure, in the case of ■, there is a large fluctuation (variation rate of 68.5%), whereas in the case of ■, there is little fluctuation (variation rate of 1006%).

なお、この変動率も、上述した式により求めた。In addition, this variation rate was also calculated|required by the formula mentioned above.

更に、アルミ箔8を螢光管1と加熱ヒータ10との間に
設けて、これをアースすることにより。
Furthermore, an aluminum foil 8 is provided between the fluorescent tube 1 and the heater 10, and this is grounded.

加熱ヒータ10に流れる漏洩電流を防止できる。Leakage current flowing through the heater 10 can be prevented.

すなわち、螢光管1は一般に高周波点灯であり。That is, the fluorescent tube 1 is generally lit at a high frequency.

また加熱ヒータ10はACloo(V)で作動している
ため、電磁誘導により加熱ヒータ10に漏洩電流が発生
し易いが、アルミ箔8でシールドすることにより、この
発生を防いでいる。
Further, since the heater 10 operates at ACloo (V), leakage current is likely to occur in the heater 10 due to electromagnetic induction, but this is prevented by shielding with the aluminum foil 8.

なお、上記実施例では、放熱部材としてアルミ板を用い
たが1例えば銅板、鉄板等の熱伝導性のよい材料であれ
ば、いずれでもよい。また、放熱部材の形状は板状のも
のに限らず1例えば棒状のものであってもよい。更に、
放熱部材を螢光管に直接接触させる必要もなく、十分に
放熱効果が得られる程度に近接して設けてもよい。
In the above embodiment, an aluminum plate was used as the heat dissipation member, but any material with good thermal conductivity such as a copper plate or an iron plate may be used. Further, the shape of the heat radiating member is not limited to a plate shape, but may be, for example, a rod shape. Furthermore,
There is no need for the heat dissipation member to be in direct contact with the fluorescent tube, and it may be provided as close as possible to obtain a sufficient heat dissipation effect.

また、上記実施例において、アルミ箔の代りに例えば銅
箔であってもよく、すなわち熱伝導性および光反射性の
良い材料であればなんでもよい。
Further, in the above embodiments, for example, copper foil may be used instead of aluminum foil; that is, any material with good thermal conductivity and light reflectivity may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、放熱手段により螢
光管の最冷点の位置を人為的に決めているため、冷却フ
ァンの“オン2.“オフ”動作に影響されて最冷点の位
置が変動してしまうということがなり、最冷点の温度変
化を最小に留めることが出来る。よって、特に連続点灯
時の螢光管の配光を良好にするとともに、螢光管の温度
を制御することによって最も発光効率の高い状態で螢光
管を点灯させることを可能にしている。
As explained above, according to the present invention, since the position of the coldest point of the fluorescent tube is artificially determined by the heat dissipation means, the position of the coldest point of the fluorescent tube is This means that the temperature change at the coldest point can be kept to a minimum.This makes it possible to improve the light distribution of the fluorescent tube especially during continuous lighting, and also to keep the temperature of the fluorescent tube constant. By controlling this, it is possible to light the fluorescent tube in a state with the highest luminous efficiency.

また、最冷点の位置が主露光領域外になるよう放熱手段
を配置すれば、余剰水銀を主露光領域外に析出させるこ
とができ、この析出による光の遮断を防止できる。
Further, by arranging the heat dissipation means so that the position of the coldest point is outside the main exposure area, surplus mercury can be deposited outside the main exposure area, and light blocking due to this precipitation can be prevented.

従って1本発明に係る光源装置を複写機や光書込みプリ
ンタ等の光源として使用すれば、極めて高品位でかつ安
定した画像を得ることができる。
Therefore, if the light source device according to the present invention is used as a light source for a copying machine, an optical writing printer, etc., extremely high quality and stable images can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図。 第2図は第1図に示した実施例のA−A断面図。 第3図は冷却ファンが作動した際の光量変動を上記実施
例と従来例との比較で示したグラフ。 第4図は点灯開始時の光量の立上り特性を上記実施例と
従来例との比較で示したグラフである。 1・・・螢光管。 2・・・ランプハウス。 4.5・・・アルミ板。 7・・・シリコングリース。
FIG. 1 is a perspective view showing one embodiment of the present invention. FIG. 2 is a sectional view taken along line A-A of the embodiment shown in FIG. FIG. 3 is a graph showing the variation in light amount when the cooling fan is operated, comparing the above embodiment with the conventional example. FIG. 4 is a graph showing a comparison of the rise characteristics of the light amount at the start of lighting between the above embodiment and the conventional example. 1... Fluorescent tube. 2... Lamp house. 4.5...Aluminum plate. 7... Silicone grease.

Claims (2)

【特許請求の範囲】[Claims] (1)螢光管を具備する光源装置において、前記螢光管
の管壁の一部に接触または近接させて放熱部材を設けた
ことを特徴とする光源装置。
(1) A light source device comprising a fluorescent tube, characterized in that a heat radiating member is provided in contact with or in close proximity to a part of the tube wall of the fluorescent tube.
(2)前記放熱部材がアルミ板である特許請求の範囲第
1項記載の光源装置。
(2) The light source device according to claim 1, wherein the heat radiation member is an aluminum plate.
JP60148523A 1985-07-05 1985-07-05 Light source device Pending JPS628134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60148523A JPS628134A (en) 1985-07-05 1985-07-05 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60148523A JPS628134A (en) 1985-07-05 1985-07-05 Light source device

Publications (1)

Publication Number Publication Date
JPS628134A true JPS628134A (en) 1987-01-16

Family

ID=15454679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60148523A Pending JPS628134A (en) 1985-07-05 1985-07-05 Light source device

Country Status (1)

Country Link
JP (1) JPS628134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970023603A (en) * 1995-10-02 1997-05-30 조셉 에스. 로마나우 Discharge lamp with light-transmitting conductive coating for high frequency suppression and heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970023603A (en) * 1995-10-02 1997-05-30 조셉 에스. 로마나우 Discharge lamp with light-transmitting conductive coating for high frequency suppression and heating

Similar Documents

Publication Publication Date Title
US5207505A (en) Illumination light source device
US4985815A (en) Light reflector
CA2438613C (en) Amalgam-doped mercury low-pressure uv irradiator
JPH07335015A (en) Display device
JPS628134A (en) Light source device
JPS627034A (en) Light source device
JPS627035A (en) Light source device
JP2018198143A (en) Heating device
JPH0258625B2 (en)
JPS62195847A (en) Luminaire
JPH07111146A (en) Low-pressure mercury vapor electric discharge lamp and lighting system using it
JP2744389B2 (en) Document illumination device
JPS6262347A (en) Fluorescent lamp for exposing device
JPS60252383A (en) Flash fixing device
JPS5850349Y2 (en) optical fixer
TWI224232B (en) Direct light source and application thereof
JPH0697604B2 (en) Electrodeless discharge lamp device
JPH0128501Y2 (en)
KR100232582B1 (en) Reflection exposure method and lamp housing of exposure
KR20230039288A (en) Pressing member of fixing device with protective film for preventing corrosion by lubricant
JPH0422371Y2 (en)
JPH10213700A (en) Ultraviolet ray irradiation device
JP2008058871A (en) Lamp unit
JP2018198144A (en) Heating device
JPH10188638A (en) Backlight and liquid crystal display device