JPS6280895A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS6280895A
JPS6280895A JP60220216A JP22021685A JPS6280895A JP S6280895 A JPS6280895 A JP S6280895A JP 60220216 A JP60220216 A JP 60220216A JP 22021685 A JP22021685 A JP 22021685A JP S6280895 A JPS6280895 A JP S6280895A
Authority
JP
Japan
Prior art keywords
bit line
current
write
writing
line current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60220216A
Other languages
Japanese (ja)
Inventor
Kazuhiro Toyoda
豊田 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60220216A priority Critical patent/JPS6280895A/en
Publication of JPS6280895A publication Critical patent/JPS6280895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To attain high-speed writing by decreasing a bit line current at the inversion from read to write and applying a write signal after a prescribed delay time. CONSTITUTION:When an external input write signal descends to L and a potential C is fed to a base in the timing transited from read to write, then a bit line current transistor TC is turned on. Then a current from a read current source IR to both bit lines B01, B11 is cut off, the bit line current is decreased and the stored electric charge in a memory cell MC is reduced. While the bit line current is lost after a prescribed delay time, a large write current from a write current source IW is fed and the write on the cell MC is applied at high speed.

Description

【発明の詳細な説明】 〔概 要〕 フリップフロップ形のメモリセルを用いた半導体メモリ
において、ビット線電流の制御手段を設けて、書込み時
間の短縮を図るために書込みの直前にビット線電流を減
少させることによりメモリセル内の蓄積電荷を減少させ
これにより書込み及び読出しの高速化を図った半導体メ
モリに関する。
[Detailed Description of the Invention] [Summary] In a semiconductor memory using a flip-flop type memory cell, a bit line current control means is provided to control the bit line current immediately before writing in order to shorten the writing time. The present invention relates to a semiconductor memory in which the amount of charge accumulated in a memory cell is reduced by increasing the speed of writing and reading.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体メモリに関し、特に飽和形メモリセルの
書込み時間を短縮するため書込み直前にビット線電流を
零附近にまで減少させて読出しおよび書込みの高速化を
図った半導体メモリに関する。
The present invention relates to a semiconductor memory, and more particularly to a semiconductor memory in which the bit line current is reduced to near zero immediately before writing to shorten the writing time of a saturated memory cell, thereby increasing the speed of reading and writing.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体メモリの回路図である。 FIG. 4 is a circuit diagram of a conventional semiconductor memory.

第4図において、MCは飽和形メモリ、例えば、PNP
N形4層のサイリスクを交叉接合したもの、W゛および
W−は一対のワード線、BQIおよびB、は一対のビッ
ト線であって図示の如く各メモリセルごとにn対設けら
れる。また、■□は読出し用電流源、Is=は書込み用
電流源である。メモリセルMCのT、およびT3はPN
P形トランジスタ、T2およびT4はNPN形のマルチ
エミッタトランジスタであり、T、およびT2でPNP
NNPN形イリスクの片側を構成する。
In FIG. 4, MC is a saturated memory, e.g.
N-type four-layer silices are cross-junctioned, W' and W- are a pair of word lines, BQI and B are a pair of bit lines, and n pairs are provided for each memory cell as shown. Also, ■□ is a current source for reading, and Is= is a current source for writing. T and T3 of memory cell MC are PN
The P-type transistors, T2 and T4, are NPN-type multi-emitter transistors;
It constitutes one side of the NNPN type Irisk.

このような構成において、片側T1およびT2がオン状
態のときT2のコレクタ電位はロー(L)レベルなので
T4のベースもLレベルとなりフリップフロップ動作を
行う。メモリセルの選択は、選択されたワード線対w”
、w−と選択されたビンを線対B or + B + 
iの交差するメモリセルが選択され、選択時はハイ (
H)レベル、非選択時はLレベルとなる。本説明では図
示のメモリセルMCが選択されるとする。即ち、ECL
回路を構成するT31〜T 3111 T41−741
% + Ts+〜TSfi、’r”61〜TI、fiに
おいて、T31のベース端子Y、にHレベルが入力され
、Y2〜Y、、がLレベルであればビット線対に電流I
、lが供給される。これによりビット線対B。1.B1
1が選択される。
In such a configuration, when T1 and T2 on one side are in an on state, the collector potential of T2 is at a low (L) level, so the base of T4 is also at an L level, and a flip-flop operation is performed. Memory cell selection is performed using the selected word line pair w”
, w− and the selected bin as a line pair B or + B +
The memory cell where i intersects is selected, and when selected, it is high (
H) level; when not selected, it is L level. In this description, it is assumed that the illustrated memory cell MC is selected. That is, E.C.L.
T31 to T3111 T41-741 that make up the circuit
%+Ts+~TSfi,'r''61~TI,fi, if the H level is input to the base terminal Y of T31, and the L level of Y2~Y,, the current I flows to the bit line pair.
, l are supplied. This causes bit line pair B. 1. B1
1 is selected.

このような状態において、読出し時には端子A。In such a state, terminal A is used for reading.

τの信号レベルは同電位(0)にあり従ってトランジス
タT11とTelのベースは同電位にある。このときの
A、−入−のレベル5即ち、T、とT□のベース電位は
第3図(b)に示すようにT2のベース電位■1とT4
のベース電位V2のほぼ中間レベルに設定される。この
場合、当然T2のベース電位はT4のコレクタ電位であ
り、T4のベース電位はT2のコレクタ電位である。今
、T2のへ一ス電位はT4のベース電位より高く、かつ
T11のベース電位、即ち、τの電位より高いので、T
2およびTllからなるECL回路ではT2からビット
線13o+に電流が流れる。一方、T4およびT21か
らなるECL回路ではT、のベース電位はT2.のベー
ス、即ち、Aの電位より低いのでTelからビット線B
11に電流が流れる。このようにしてビット線BOIお
よびB11を流れる電流を比較することによって読出し
が行われる。
The signal levels of τ are at the same potential (0), so the bases of the transistors T11 and Tel are at the same potential. At this time, the base potentials of A, -in- level 5, that is, T, and T□ are the base potentials of T2, ■1 and T4, as shown in FIG. 3(b).
The base potential V2 is set at approximately the intermediate level of the base potential V2. In this case, the base potential of T2 is naturally the collector potential of T4, and the base potential of T4 is the collector potential of T2. Now, the base potential of T2 is higher than the base potential of T4 and higher than the base potential of T11, that is, the potential of τ, so T
In the ECL circuit consisting of T2 and Tll, a current flows from T2 to bit line 13o+. On the other hand, in the ECL circuit consisting of T4 and T21, the base potential of T is T2. Since the potential of the base of the bit line B is lower than that of the base of the bit line B, that is, the potential of the bit line B
A current flows through 11. Reading is performed by comparing the currents flowing through bit lines BOI and B11 in this manner.

一方、書込み時では、T2をオフ状態にする必要がある
ためT2のベース電位より高いレベルにTllのベース
電位を上げる必要がある。即ち、第3図(b)の如くτ
のレベルをVlにもち上げる。
On the other hand, during writing, it is necessary to turn off T2, so it is necessary to raise the base potential of Tll to a level higher than the base potential of T2. That is, as shown in FIG. 3(b), τ
Raise the level to Vl.

これによりビット線BOIを流れていた電流は減少しT
2ばオフ状態となる。同時にT21のベース電位、即ち
、Aのレベルを■2にしてT4のベース電位より下げる
とT、からビット線Bllに電流が流れ出す。この場合
にT4のオンを早めるために 。
As a result, the current flowing through the bit line BOI decreases and T
2, it is in the off state. At the same time, when the base potential of T21, that is, the level of A, is set to 2 and is lower than the base potential of T4, a current flows from T to the bit line Bll. In this case, to turn on T4 earlier.

ビット線B11に電流Sr。からT41を介して供給さ
れる。即ち、T、のベース端子子に第3図(b)の如き
電位V2を与えてT7をオフし、今まで′r7に流れて
いた電流I。をT41を介してビット線B11に供給し
T、に大電流を供給することにより書込み時の高速化を
図っている。
A current Sr is applied to the bit line B11. is supplied from T41. That is, by applying a potential V2 as shown in FIG. 3(b) to the base terminal of T, T7 is turned off, and the current I that has been flowing through 'r7. is supplied to the bit line B11 via T41, and a large current is supplied to T, thereby increasing the speed of writing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような構成にあっては次の如き問題点がある。即
ち、書込みの直前にはT2を経てビット線SO+にまだ
電流が流れており、このときにはまだT、とT2のベー
スコレクタ接合には蓄積電荷がたまっている。これはベ
ース領域とエピタキシャル領域からなる構造において主
にエピタキシャル領域に蓄積電荷がたまるためである。
The above configuration has the following problems. That is, just before writing, current still flows through T2 to bit line SO+, and at this time, accumulated charges are still accumulated at the base-collector junction of T and T2. This is because, in a structure consisting of a base region and an epitaxial region, accumulated charges are mainly accumulated in the epitaxial region.

この蓄積電荷をできるだけ早く引き抜き、書込み時には
ビット線電流をできるだけ減少させ、読出し時にはビッ
ト線電流を大きくすることによって書込みと読出しの高
速化が可能であるが、現状では読出しの高速化のために
ビット線電流を大きくするとT t 、 T zのオン
側の蓄積電荷が増大し書込みに移行する反転時間が増大
してしまうという問題がある。
It is possible to speed up writing and reading by extracting this accumulated charge as quickly as possible, reducing the bit line current as much as possible during writing, and increasing the bit line current during reading. If the line current is increased, the accumulated charges on the on side of T t and T z will increase, and there is a problem that the inversion time for transition to writing will increase.

〔実施例〕〔Example〕

第1図は本発明に係る半導体メモリの回路図である。第
1図において、第4図と同一の構成要素には同一の参照
記号が付与されている。本発明の特徴は従来の半導体メ
モリ回路にビット線電流を制御する手段としてマルチエ
ミッタトランジスタTcを各ビット線対共通に設けたこ
とにある。前述の如く書込みおよび読出しの高速化を図
るためには読出しから書込みに反転する時のビット線B
OIおよびB、のビット電流を出来るだけ減少させ書込
み時に大電流を例えばビット線B、側に流してやる必要
があるが、読出し電流r、を制御するビット線電流制御
トランジスタTcを設けることによってこれが可能とな
る。以下にビット線電流制御手段Tcの機能を説明する
が、他の回路動作については第4図の従来回路と変わら
ないため説明を省略する。
FIG. 1 is a circuit diagram of a semiconductor memory according to the present invention. In FIG. 1, the same components as in FIG. 4 are given the same reference symbols. A feature of the present invention is that a multi-emitter transistor Tc is provided in common to each bit line pair in a conventional semiconductor memory circuit as a means for controlling bit line current. As mentioned above, in order to increase the speed of writing and reading, bit line B is used when switching from reading to writing.
It is necessary to reduce the bit currents of OI and B as much as possible and allow a large current to flow into the bit line B, for example, during writing, but this is possible by providing a bit line current control transistor Tc that controls the read current r. becomes. The function of the bit line current control means Tc will be explained below, but the other circuit operations are the same as the conventional circuit shown in FIG. 4, so the explanation will be omitted.

ビット線電流制御用トランジスタTcのベース端子Cに
第3図(a)に示すような信号を外部入力書込信号WE
、 と同じタイミングで供給する。
An external input write signal WE is applied to the base terminal C of the bit line current control transistor Tc as shown in FIG. 3(a).
, is supplied at the same timing as .

即ち、WE、がHレヘルで読出し時にありその後WE、
がLレベルに立下がって書込みに移行するのと同じタイ
ミングでCに示すような電位をT。
That is, WE is at H level at the time of reading, and then WE,
At the same timing as T falls to L level and shifts to writing, a potential as shown in C is applied to T.

のベースに供給する。これによりTcはオン状態となる
ために電流I、lは両方のビット線B01゜B、側に流
れずカントされる。これによって両方のビット線電流は
第2図のTに示す如くほぼ零付近にまで減少する。次に
所定の遅延時間Tの後に内部書込み信号WE、と同じタ
イミングでA、τおよびB、Bに第3図(a)に示す如
きタイミングで供給する。その後の書込み動作は前述の
第4図回路と同一となるので省略するが、第2図に示す
ように所定の遅延時間T後ではビット線Bo+およびB
llにはビット線電流はな(、書込み側のビット線Bl
l側に電流11て示す如く大電流を供給して書込みの高
速化を図ることができる。尚、第2図において実線は本
発明の場合のビット線電流の大きさを示し、読出し時に
はIRの電流が、読出しから書込みに反転する間の遅延
時間にほぼ零となり書込み時に大電流■8が流れる。一
方、一点鎖線で示すように従来はビット線BOIの電流
が抜けきらなかったために高速化が図れなかった。
supply to the base of As a result, Tc is turned on, so that currents I and l do not flow to both bit lines B01°B and are canted. As a result, both bit line currents decrease to approximately zero, as shown at T in FIG. Next, after a predetermined delay time T, the internal write signal WE is supplied to A, τ and B, B at the same timing as shown in FIG. 3(a). The subsequent write operation is the same as that of the circuit shown in FIG. 4 and will therefore be omitted, but as shown in FIG.
There is no bit line current in ll (, write side bit line Bl
By supplying a large current as shown by the current 11 to the l side, it is possible to speed up the writing. Incidentally, in FIG. 2, the solid line indicates the magnitude of the bit line current in the case of the present invention, and during reading, the IR current becomes almost zero during the delay time between reversing from reading to writing, and a large current (8) occurs during writing. flows. On the other hand, as shown by the dashed-dotted line, in the past, the current in the bit line BOI could not be completely drained, making it impossible to increase the speed.

この遅延時間は数ナノ秒あれば十分である。A few nanoseconds is sufficient for this delay time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、読出しから書込みへの反転時にビット
線電流を減少させ、所定の遅延時間後に書込み信号を供
給するようにしたので、メモリセル内の蓄積電荷が減少
しかつ高速書込みが可能となり、その結果読出しおよび
書込みの高速化が可能である。
According to the present invention, the bit line current is reduced at the time of reversal from read to write, and the write signal is supplied after a predetermined delay time, which reduces the accumulated charge in the memory cell and enables high-speed writing. As a result, read and write speeds can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体メモリ回路図、第2図は本
発明と従来のビット線電流を比較するタイミングチャー
ト、 第3図(a)は本発明による信号タイミングチャート、 第3図(b)は従来の信号タイミングチャート、および
、 第4図は従来の半導体メモリ回路図である。 (符号の説明) HC・・・メモリセル w”、w−・・・ワード線 1301、  Bll、  Bon+  B+n・・・
ビット線Tc・・・ビット線電流制御トランジスタI、
I・・・読出し電流源 Iw・・・書込み電流源
FIG. 1 is a semiconductor memory circuit diagram according to the present invention, FIG. 2 is a timing chart comparing the bit line current of the present invention and the conventional bit line current, FIG. 3(a) is a signal timing chart according to the present invention, FIG. 3(b) ) is a conventional signal timing chart, and FIG. 4 is a conventional semiconductor memory circuit diagram. (Explanation of symbols) HC...Memory cell w'', w-...Word line 1301, Bll, Bon+B+n...
Bit line Tc...Bit line current control transistor I,
I...Read current source Iw...Write current source

Claims (1)

【特許請求の範囲】 1、複数のワード線対と複数のビット線対との交叉部に
設けられたフリップフロツプ形のメモリセルを有する半
導体メモリにおいて、各ビット線対共通にビット線電流
制御手段を備え、該ビット線電流制御手段によって、選
択されたビット線対に流れるビット線電流を書込みの直
前において減少させ、減少後に書込み側のビット線に書
込み電流を供給するようにしたことを特徴とする半導体
メモリ。 2、該ビット線電流制御手段がマルチエミッタトランジ
スタからなる特許請求の範囲第1項記載の半導体メモリ
[Claims] 1. In a semiconductor memory having a flip-flop type memory cell provided at the intersection of a plurality of word line pairs and a plurality of bit line pairs, bit line current control means is commonly provided for each bit line pair. The bit line current control means reduces the bit line current flowing through the selected bit line pair immediately before writing, and after the reduction, the write current is supplied to the writing side bit line. semiconductor memory. 2. The semiconductor memory according to claim 1, wherein the bit line current control means comprises a multi-emitter transistor.
JP60220216A 1985-10-04 1985-10-04 Semiconductor memory Pending JPS6280895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220216A JPS6280895A (en) 1985-10-04 1985-10-04 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220216A JPS6280895A (en) 1985-10-04 1985-10-04 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS6280895A true JPS6280895A (en) 1987-04-14

Family

ID=16747700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220216A Pending JPS6280895A (en) 1985-10-04 1985-10-04 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS6280895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146187A (en) * 1988-11-28 1990-06-05 Nec Corp Semiconductor memory
US5083292A (en) * 1989-03-13 1992-01-21 Fujitsu Limited Bipolar random access memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146187A (en) * 1988-11-28 1990-06-05 Nec Corp Semiconductor memory
US5083292A (en) * 1989-03-13 1992-01-21 Fujitsu Limited Bipolar random access memory

Similar Documents

Publication Publication Date Title
US4918339A (en) Data output circuit
US4337523A (en) Bipolar memory circuit
JP2723695B2 (en) Semiconductor storage device
US3727196A (en) Dynamic random access memory
JPH0142167B2 (en)
JPS5819794A (en) Semiconductor memory
US4622479A (en) Bootstrapped driver circuit for high speed applications
US3778783A (en) Dynamic random access memory
JPS6280895A (en) Semiconductor memory
US4618944A (en) Semiconductor memory having word line discharge current controller
JPS6052518B2 (en) semiconductor storage device
US4964081A (en) Read-while-write ram cell
JPS6196588A (en) Semiconductor memory device
IE54937B1 (en) Semiconductor memory circuit including a charge absorbing circuit
US5563840A (en) Integrated semiconductor device
US3821717A (en) Dynamic random access memory
JPS6235191B2 (en)
JPH01171192A (en) Semiconductor memory device
JPH0259558B2 (en)
JPS60256997A (en) Semiconductor storage device
JPS6227475B2 (en)
Nakase et al. A 2 ns 16 K ECL RAM with reduced word line voltage swing
JPH05258563A (en) Dynamic type semiconductor storage device
JPH0381239B2 (en)
JPS61121529A (en) Logic gate circuit