JPS628043A - Method for correcting dencity - Google Patents

Method for correcting dencity

Info

Publication number
JPS628043A
JPS628043A JP14638585A JP14638585A JPS628043A JP S628043 A JPS628043 A JP S628043A JP 14638585 A JP14638585 A JP 14638585A JP 14638585 A JP14638585 A JP 14638585A JP S628043 A JPS628043 A JP S628043A
Authority
JP
Japan
Prior art keywords
concentration
density
measured
standard plate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14638585A
Other languages
Japanese (ja)
Inventor
Kenji Ozawa
小沢 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP14638585A priority Critical patent/JPS628043A/en
Publication of JPS628043A publication Critical patent/JPS628043A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to accurately correct a measured density value in the entire region of a density measuring range, by using the correction coefficient and constant of a density area to which the measured density of a specimen belongs. CONSTITUTION:The white light from a light source 10 is condensed to the stage 12 placed on a specimen 13 by a condensing lens 11. Next, the spot light transmitted through the specimen 13 is condensed to a light receiver 15 by a condensing lens 14 and a turret 19 provided with one hole 20 and three standard plates 21-23 known in density at an equal interval is arranged between the lens 14 and the light receiver 15. Next, the light receiver 15 converts the incident light to an electric signal to sent the same to an amplifier 26 and the amplified signal is converted to a digital signal through an A/D converter 27 in timing synchronous to position signal from a position detector 25. This digital signal is converted to a density value by a logarithmic converter 28 while the density value is sent to an operation part 29 where the measured density of the specimen is corrected to be displayed on a display device 30.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、濃度計に用いられる濃度校正方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a concentration calibration method used in a concentration meter.

〔従来の技術〕[Conventional technology]

感光材料の性能を評価したり、あるいは画像記録装置の
階調表現能力を評価したりするために、濃度計が用いら
れる。この濃度計は、測定光路に配置した試料を光源で
照明し、この試料からの光を受光器で光電変換してから
処理回路に送り、ここで濃度値に変換して表示する構成
になっており、試料の照明の仕方から2つの種類がある
。その1つは、試料の透過光を測定する透過形であり、
もう1つは試料の表面で反射した光を測定する反射形で
ある。
Densitometers are used to evaluate the performance of photosensitive materials or the gradation expression ability of image recording devices. This densitometer has a structure in which a light source illuminates a sample placed in the measurement optical path, the light from the sample is photoelectrically converted by a receiver, and then sent to a processing circuit, where it is converted into a concentration value and displayed. There are two types depending on how the sample is illuminated. One is the transmission type, which measures the transmitted light of the sample.
The other type is a reflection type that measures the light reflected from the surface of the sample.

一般的に、光源の輝度、受光器の感度等は、経時変化を
受けて変動するため、この変動に応じた誤差が測定値に
含まれている。したがって、高精度の測定を行うには、
測定値を校正して誤差を取り除くことが必要である。従
来の濃度校正方法としては、例えば特公昭59二396
 g 4号公報に記載されているように、濃度が既知の
1個の標準板を用い、この標準板を測定して照準板測定
濃度を求め、これから補正係数を算出して、試料の測定
濃度を校正するようにした方法が知られている。
In general, the brightness of a light source, the sensitivity of a light receiver, and the like vary over time, and thus errors corresponding to these variations are included in the measured value. Therefore, for highly accurate measurements,
It is necessary to calibrate the measurements to remove errors. As a conventional concentration calibration method, for example, Japanese Patent Publication No. 592-396
g As described in Publication No. 4, use one standard plate with a known concentration, measure this standard plate to obtain the concentration measured by the aiming plate, calculate the correction coefficient from this, and calculate the measured concentration of the sample. There are known methods for calibrating the .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

測定範囲内の全てにおいて、誤差が同じであれば、前述
°した校正方法は有益であるが、実際は受光器の感度特
性等の影響により、誤差にバラツキがあるため、従来の
方法では濃度校正を正しく行うことができなかった。
The calibration method described above is useful if the error is the same throughout the measurement range, but in reality, the error varies due to the influence of the sensitivity characteristics of the photoreceptor, so conventional methods do not perform concentration calibration. I couldn't do it right.

本発明は、濃度測定範囲の全域において、濃度校正を正
しく行うことができるようにした濃度校正方法を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a concentration calibration method that allows concentration calibration to be performed correctly over the entire concentration measurement range.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明は、濃度が既知の
複数の標準板を用い、これらを測定光路にそれぞれ挿入
して標準板測定濃度を求め、これらの標準板測定濃度を
境界点として濃度測定範囲を複数の濃度エリヤに分割し
、各濃度エリヤ毎に補正係数と及び定数を求め、この濃
度エリヤに応じた補正係数と定数を用いて試料の測定濃
度を校正するようにしたものである。
In order to solve the above problems, the present invention uses a plurality of standard plates with known densities, inserts each of these into the measurement optical path to obtain the measured concentration of the standard plate, and uses the measured concentration of these standard plates as a boundary point. The concentration measurement range is divided into multiple concentration areas, a correction coefficient and a constant are determined for each concentration area, and the measured concentration of the sample is calibrated using the correction coefficient and constant according to this concentration area. be.

以下、図面を参照して本発明の一実施例について詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

〔実施例〕〔Example〕

濃度計の概略を示す第1図において、光源10から放出
された白色光は、集光レンズ1)により透明なステージ
12に集光される。このステージ12には、試料13が
載置されており、この試料13がスポット状に照明され
る。試料13を透過したスポット光は、集光レンズ14
で受光器15に集光される。
In FIG. 1, which schematically shows a densitometer, white light emitted from a light source 10 is focused onto a transparent stage 12 by a condensing lens 1). A sample 13 is placed on this stage 12, and this sample 13 is illuminated in a spot shape. The spot light transmitted through the sample 13 is passed through the condensing lens 14
The light is focused on the light receiver 15.

前記集光レンズ14と受光器15との間には、モータ1
70回転軸18に連結したターレフト19が配置されて
いる。このターレット19は、第2図に示すように、1
個の穴20と、濃度が既知の3個の標準板21〜23と
が等間隔に設けられており、測定準備モードでは穴20
及び3個の標準板21〜23とが測定光路24に挿入さ
れ、そして測定モードでは穴20だけが測定光路24に
挿入される。前記標準板21の濃度はDS、であり、標
準板22はDS、であり、標準板23はDS3であり、
これらはDSI <DSI <DS3になっており、濃
度測定範囲をほぼ3等分するような値のものが選ばれて
いる。位置検出器25は、ターレット19に設けたマー
ク等を光学的に検出して、標準板21〜23.穴20が
測定光路24に入っていることを検出する。
A motor 1 is provided between the condenser lens 14 and the light receiver 15.
A turret 19 connected to the 70 rotary shaft 18 is arranged. As shown in FIG.
holes 20 and three standard plates 21 to 23 with known concentrations are provided at equal intervals, and in the measurement preparation mode, the holes 20
and three standard plates 21 to 23 are inserted into the measurement optical path 24, and only the hole 20 is inserted into the measurement optical path 24 in the measurement mode. The concentration of the standard plate 21 is DS, the standard plate 22 is DS, and the standard plate 23 is DS3,
These values satisfy the relationship DSI < DSI < DS3, and values that divide the concentration measurement range into approximately three equal parts are selected. The position detector 25 optically detects marks and the like provided on the turret 19 and detects the standard plates 21 to 23 . It is detected that the hole 20 enters the measurement optical path 24.

前記受光器15は、入射した光を電気信号に変換してこ
れを増幅器26に送る。この増幅器26で増幅された信
号は、A/D変換器27に送られ、位置検出器25から
の位置信号に同期したタインミングでデジタル信号に変
換される。このデジタル信号は、対数変換器28で濃度
値に変換されてから、演算部29に送られる。この演算
部29は、試料の測定、濃度を校正してから、これを表
示器30に送って表示する。
The light receiver 15 converts the incident light into an electrical signal and sends it to the amplifier 26. The signal amplified by this amplifier 26 is sent to an A/D converter 27 and converted into a digital signal at a timing synchronized with the position signal from the position detector 25. This digital signal is converted into a density value by a logarithmic converter 28 and then sent to a calculation section 29. The calculation unit 29 measures the sample and calibrates the concentration, and then sends this to the display 30 for display.

測定準備モードでは、モータ17によりターレット19
を回転させて、第1番目から第3番目の標準板21〜2
3及び穴20を撮影光路24に挿入し、かつ試料13が
ない状態で濃度を測定する。
In the measurement preparation mode, the motor 17 moves the turret 19
Rotate the first to third standard plates 21 to 2.
3 and the hole 20 are inserted into the photographing optical path 24, and the density is measured without the sample 13.

なお、穴20は、測定準備モードでは、濃度がDSoの
標準板であると見なした方が説明に便利であるので、θ
番目の標準板として取り扱う。第O番〜第3番目の標準
板20〜23の測定濃度(標準板測定濃度)Dmxは、
演算部29に送られ、ここで補正係数Aと定数にとが算
出され、メモリに記憶される。ここで、nは標準板の番
号を示すものである。前記補正係数Aと定数には、隣接
された2つの標準板測定濃度で囲まれた濃度エリヤ毎に
算出されるものである。
In addition, in the measurement preparation mode, it is more convenient to explain that the hole 20 is a standard plate with a concentration of DSo, so θ
Treated as the second standard plate. The measured densities of the O-th to third standard plates 20 to 23 (standard plate measured densities) Dmx are:
It is sent to the arithmetic unit 29, where the correction coefficient A and the constant are calculated and stored in the memory. Here, n indicates the number of the standard plate. The correction coefficient A and the constant are calculated for each density area surrounded by two adjacent standard plate measurement densities.

測定モードでは、ステージ12に試料13を載置すると
ともに、穴20を測定光路24に挿入した状態で測定し
、得られた試料測定濃度DmXが演算部29に送られる
。この演算部29は、試料測定濃度DmXが属している
濃度エリヤを判定し、この濃度エリヤに対して決められ
た補正係数Aと定数にとを用いて演算式(1)を演算し
て、試料校正濃度Dm1を算出する。この試料校正濃度
Dm3は、表示器30に送られて表示され、あるいはプ
リンタ等でプリントアウトされる。
In the measurement mode, the sample 13 is placed on the stage 12 and measured with the hole 20 inserted into the measurement optical path 24, and the obtained measured sample concentration DmX is sent to the calculation section 29. This calculation unit 29 determines the concentration area to which the sample measured concentration DmX belongs, and calculates the calculation formula (1) using the correction coefficient A determined for this concentration area and the constant. A calibration concentration Dm1 is calculated. This sample calibration concentration Dm3 is sent to the display 30 and displayed, or printed out using a printer or the like.

DmI=(AxDmX)十 K・・・(1)次に、直線
近似により補正係数Aを決定する実施例について説明す
る。第3図は、縦軸に測定濃度をとり、横軸に校正濃度
をとったグラフである。
DmI=(AxDmX) K (1) Next, an example in which the correction coefficient A is determined by linear approximation will be described. FIG. 3 is a graph in which the vertical axis represents the measured concentration and the horizontal axis represents the calibration concentration.

ここで、DS、〜DS3は、標準板20〜23の濃度で
あり、pmo〜Dmxは実際に測定して得た標準板測定
濃度である。また、DHo〜DH3は画濃度の差(誤差
)であり、例えばD Htは(DS! −1)rn、 
)で求められる。このグラフで、黒丸を付した標準板濃
度を結ぶ直線は実線で示してあり、これは45度のf頃
きをもっている。また、x印を付した標準板測定濃度D
mo〜D Tn sは点線で示す直線で結んである。
Here, DS to DS3 are the concentrations of the standard plates 20 to 23, and pmo to Dmx are the measured concentrations of the standard plates actually measured. In addition, DHo to DH3 are differences (errors) in image density; for example, D Ht is (DS! -1)rn,
). In this graph, the straight line connecting the standard plate densities marked with black circles is shown as a solid line, and has an f angle of 45 degrees. In addition, the standard plate measurement density D with an x mark
mo to D Tn s are connected by straight lines indicated by dotted lines.

前記標準板測定濃度pmo〜Dmxにより、濃度エリヤ
が3個に分割される。この各濃度エリヤ毎に直線近似で
補正係数Aを求めると、前記演算式(1)は、次のよう
な一般式で表される。ここで、試料測定濃度Dmxは、
Dm(1)−1) <Dmx <l)m、lを満足する
濃度エリヤに属しているものとする。
The density area is divided into three areas based on the standard plate measured densities pmo to Dmx. When the correction coefficient A is determined for each density area by linear approximation, the above-mentioned arithmetic expression (1) is expressed by the following general expression. Here, the sample measurement concentration Dmx is
Dm(1)-1) <Dmx <l) It is assumed that the image belongs to a density area that satisfies m and l.

+  DH(21−□ ・・(2) 例えば、DmI<l)m、<Dmlであるとすると、演
算式(2)は次のようになる。
+ DH(21-□...(2) For example, assuming that DmI<l)m and <Dml, the arithmetic expression (2) becomes as follows.

上記実施例は、透過形の濃度計を示しであるが、本発明
は反射形の濃度計に対しても利用することができるもの
である。
Although the above embodiment shows a transmission type densitometer, the present invention can also be applied to a reflection type densitometer.

〔発明の効果〕〔Effect of the invention〕

本発明は、濃度が異なった複数の標準板を用い、この標
準板を測定光路に順番に挿入してその濃度を求め、得ら
れた標準板測定濃度を境界点として濃度測定範囲を複数
の濃度エリヤに分割するとともに、各濃度エリヤ毎に、
既知の標準板濃度と標準板測定濃度とを用いて、補正係
数及び定数を算出し、試料の測定濃度が属している濃度
エリヤの補正係数及び定数を用いてこれを校正するよう
にしたから、従来の濃度校正方法に比べて濃度測定範囲
の全域において、測定濃度値を正しく校正することがで
きる。
The present invention uses a plurality of standard plates with different densities, inserts the standard plates into the measurement optical path in order to determine the concentration, and divides the concentration measurement range into multiple densities using the obtained standard plate measured concentration as a boundary point. In addition to dividing into areas, for each concentration area,
Since the correction coefficient and constant are calculated using the known standard plate concentration and the standard plate measured concentration, and this is calibrated using the correction coefficient and constant of the concentration area to which the measured concentration of the sample belongs, Compared to conventional concentration calibration methods, it is possible to calibrate measured concentration values more accurately over the entire concentration measurement range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した透過形濃度計を示す概略図で
ある。 第2図はターレットの平面図である。 第3図は測定濃度と校正濃度の関係を示すグラフである
。 10・・光源     13・・試料 19・・ターレット  20・・穴 21〜23・・標準板 26・・増幅器。 □ 【
FIG. 1 is a schematic diagram showing a transmission type densitometer in which the present invention is implemented. FIG. 2 is a plan view of the turret. FIG. 3 is a graph showing the relationship between measured concentration and calibration concentration. 10... Light source 13... Sample 19... Turret 20... Holes 21-23... Standard plate 26... Amplifier. □ [

Claims (3)

【特許請求の範囲】[Claims] (1)光源と受光器との間に測定光路を形成し、この測
定光路に試料を配置しない状態で、濃度値が既知の複数
の標準板を順番に挿入してその濃度値を測定し、得られ
た複数の標準板測定濃度から濃度測定範囲を複数の濃度
エリヤに分割するとともに、標準板測定濃度と、既知の
標準板濃度とから各濃度エリヤ毎に補正係数Aと定数K
を求め、この濃度エリヤに応じた補正係数Aと定数Kを
用いて試料の測定濃度を校正するようにしたことを特徴
とする濃度校正方法。
(1) A measurement optical path is formed between a light source and a light receiver, and with no sample placed in this measurement optical path, a plurality of standard plates with known concentration values are inserted in order and the concentration values are measured; The concentration measurement range is divided into a plurality of concentration areas from the obtained multiple standard plate measured densities, and a correction coefficient A and a constant K are calculated for each density area from the standard plate measured densities and the known standard plate densities.
A concentration calibration method characterized in that the measured concentration of a sample is calibrated using a correction coefficient A and a constant K corresponding to the concentration area.
(2)前記試料の測定濃度Dm_xが、 Dm_(n_−_1_)<Dm_x<Dm_nで定めら
れた濃度エリヤに属している場合には、前記補正係数A
は、次式から表されることを特徴とする特許請求の範囲
第1項記載の濃度校正方法。 A=[DS_n−DS_(_n_−_1_)]/[Dm
_n−Dm_(_n_−_1_)] DS_n:n番目の標準板濃度 Dm_n:n番目の標準板測定濃度 DS_(_n_−_1_):(n−1)番目の標準板濃
度 Dm_(_n_−_1_):(n−1)番目の標準板測
定濃度
(2) If the measured concentration Dm_x of the sample belongs to the concentration area defined by Dm_(n_-_1_)<Dm_x<Dm_n, the correction coefficient A
2. The concentration calibration method according to claim 1, wherein: is expressed by the following equation. A=[DS_n-DS_(_n_-_1_)]/[Dm
_n-Dm_(_n_-_1_)] DS_n: n-th standard plate density Dm_n: n-th standard plate measured density DS_(_n_-_1_): (n-1)-th standard plate density Dm_(_n_-_1_): (n-1)th standard plate measurement concentration
(3)前記定数Kは、次式から表されることを特徴とす
る特許請求の範囲第2項記載の濃度校正方法。 K=DS_(_n_−_1)−Dm_(_n_−_1_
(3) The concentration calibration method according to claim 2, wherein the constant K is expressed by the following equation. K=DS_(_n_-_1)-Dm_(_n_-_1_
)
JP14638585A 1985-07-03 1985-07-03 Method for correcting dencity Pending JPS628043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14638585A JPS628043A (en) 1985-07-03 1985-07-03 Method for correcting dencity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14638585A JPS628043A (en) 1985-07-03 1985-07-03 Method for correcting dencity

Publications (1)

Publication Number Publication Date
JPS628043A true JPS628043A (en) 1987-01-16

Family

ID=15406504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14638585A Pending JPS628043A (en) 1985-07-03 1985-07-03 Method for correcting dencity

Country Status (1)

Country Link
JP (1) JPS628043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165560U (en) * 1987-04-16 1988-10-27

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108195A (en) * 1976-03-08 1977-09-10 Fuji Photo Film Co Ltd Optical density measurement
JPS5729931A (en) * 1980-07-30 1982-02-18 Yokogawa Hokushin Electric Corp Method and device for measuring moisture quantity and moisture percentage and so on of paper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108195A (en) * 1976-03-08 1977-09-10 Fuji Photo Film Co Ltd Optical density measurement
JPS5729931A (en) * 1980-07-30 1982-02-18 Yokogawa Hokushin Electric Corp Method and device for measuring moisture quantity and moisture percentage and so on of paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165560U (en) * 1987-04-16 1988-10-27

Similar Documents

Publication Publication Date Title
CA1059338A (en) Textile color analyzer calibration
JPS6339908B2 (en)
JPH10508698A (en) Calibrable optical distance sensing system and method
US4659936A (en) Line width measuring device and method
JPS628043A (en) Method for correcting dencity
JPS6244201B2 (en)
US6853438B2 (en) Test apparatus and method to check the exposure quality of exposed film
JPS55154402A (en) Shape measuring apparatus
JPS6366020B2 (en)
US4355902A (en) Arrangement for determining the errors the vertical axis of a surveying device
JP4104789B2 (en) Gloss sensor
JP3319666B2 (en) Edge detection device
US4375031A (en) Method and device for measuring a degree of exhaustion of photographic processing solutions
JPH0854214A (en) Gap measuring method
RU2059201C1 (en) Device for check of dials
JPS5852512A (en) Optical shape measuring device
JPH0446371B2 (en)
JPS647309Y2 (en)
JPH0263162B2 (en)
SU1408414A1 (en) Device for identifying deformation of cine and photo materials
JPS623609A (en) Range finder
GB2143700A (en) Object location
RU2180733C2 (en) Procedure measuring concentration of optically active substances in solutions
JPH04313042A (en) Otf measuring apparatus
JPS60100710A (en) Measuring device for pattern area rate of print plate of offset printing machine