JPS6366020B2 - - Google Patents

Info

Publication number
JPS6366020B2
JPS6366020B2 JP6707979A JP6707979A JPS6366020B2 JP S6366020 B2 JPS6366020 B2 JP S6366020B2 JP 6707979 A JP6707979 A JP 6707979A JP 6707979 A JP6707979 A JP 6707979A JP S6366020 B2 JPS6366020 B2 JP S6366020B2
Authority
JP
Japan
Prior art keywords
light source
light
image
optical sensor
exposure table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6707979A
Other languages
Japanese (ja)
Other versions
JPS55159539A (en
Inventor
Yukitaka Myata
Seiji Goshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6707979A priority Critical patent/JPS55159539A/en
Publication of JPS55159539A publication Critical patent/JPS55159539A/en
Publication of JPS6366020B2 publication Critical patent/JPS6366020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 本発明は陰極線管の螢光面形成工程で使用され
る露光台の光源位置を調整するための露光台光源
位置測定方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exposure table light source position measuring method and apparatus for adjusting the light source position of an exposure table used in a fluorescent surface forming process of a cathode ray tube.

一般に、陰極線管の螢光面形成工程で使用され
る露光台は、筐体よりなる露光台本体1と、この
露光台本体1内に設けられた光源2及びレンズ3
より構成される。この種の露光台は、生産数と露
光時間の関係から複数台設けられているのが普通
であり、高精度の螢光面を製作するに当つては、
各露光台の露光条件を同一の最適条件にしておく
必要がある。
In general, an exposure table used in the process of forming a fluorescent surface of a cathode ray tube includes an exposure table main body 1 consisting of a casing, a light source 2 and a lens 3 provided in the exposure table main body 1.
It consists of Usually, multiple exposure stands of this type are installed due to production volume and exposure time, and when producing high-precision fluorescent surfaces,
It is necessary to set the exposure conditions of each exposure platform to the same optimum conditions.

従来、この露光台の光源位置の調整にあたつて
は、光源2、レンズ3及び露光台本体1のパネル
取付位置が最適に設定されている露光台を基準と
し、この基準露光台上に、シヤドウマスク4の取
り付けられたパネル5を取付け、このパネル5の
内面にあたるシヤドウマスク4通過後の光の像の
位置を顕微鏡6で測定する。
Conventionally, when adjusting the light source position of this exposure table, the exposure table in which the panel mounting positions of the light source 2, lens 3, and exposure table main body 1 are optimally set is used as a reference, and on this reference exposure table, A panel 5 with a shadow mask 4 attached is attached, and the position of the image of light after passing through the shadow mask 4 on the inner surface of the panel 5 is measured with a microscope 6.

次に、前記パネル5を他の調整すべき露光台に
移し、同様な方法で光の像の位置を測定し、この
位置が基準露光台と一致するように光源とレンズ
の位置調整を行なう。このようにして、パネルの
すべての点で基準露光台と同一の像が出来るよう
に調整する必要があるため、パネル上の数点で同
様の測定を行ないながら調整する。このため、多
くの時間を要し、また調整後の再測定や、ずれ量
が無視できない場合の再度の調整など数回もこの
手順を繰り返さなくてはならなかつた。また、こ
のような光学的な測定方法では、パネル面上での
測定の誤差が10μm以上であり、しかも前述のよ
うに測定時間が長くなるために、作業の途中でシ
ヤドウマスクの熱変形が起き、調整誤差が生じや
すい。更に、調整用パネル及びシヤドウマスクの
経時変化もあるため、調整用パネル及びシヤドウ
マスクの管理や更新が必要である。
Next, the panel 5 is moved to another exposure table to be adjusted, the position of the light image is measured in the same manner, and the positions of the light source and lens are adjusted so that this position coincides with the reference exposure table. In this way, since it is necessary to make adjustments so that the same image as that of the reference exposure stage is produced at all points on the panel, the adjustment is made while performing similar measurements at several points on the panel. This requires a lot of time, and it is necessary to repeat this procedure several times, including re-measurement after adjustment and re-adjustment when the amount of deviation cannot be ignored. In addition, with this optical measurement method, the measurement error on the panel surface is 10 μm or more, and as mentioned above, the measurement time is long, so thermal deformation of the shadow mask occurs during the work. Adjustment errors are likely to occur. Furthermore, since the adjustment panel and shadow mask change over time, it is necessary to manage and update the adjustment panel and shadow mask.

本発明は上記の事情に鑑みてなされたもので、
光学センサを有する受光器を用いて露光台の光源
位置を検出することにより、自動的に短時間で数
点での光源の像の位置を高精度で測定し得る露光
台光源位置測定方法及びその装置を提供すること
を目的とする。
The present invention was made in view of the above circumstances, and
An exposure table light source position measuring method that can automatically measure the position of a light source image at several points in a short time with high precision by detecting the light source position on an exposure table using a light receiver having an optical sensor, and the method thereof. The purpose is to provide equipment.

以下図面を参照して本発明の実施例を詳細に説
明する。第2図は本実施例の原理を示すもので、
光源11及びレンズ12が内蔵された露光台本体
13上のパネル取付面上には受光器14が取付け
られる。この受光器14は光源11と対向して小
孔15が設けられ、この小孔15と対向した受光
器14内部には光学センサ例えば半導体ラインセ
ンサ16が設けられる。この半導体ラインセンサ
16の出力端はデイジタル表示部17に接続され
る。前記半導体ラインセンサ16は例えば25μm
のピツチでフオトダイオードが並んだもので、各
素子毎の出力をみることができるものである。
Embodiments of the present invention will be described in detail below with reference to the drawings. Figure 2 shows the principle of this embodiment.
A light receiver 14 is mounted on a panel mounting surface on an exposure stage main body 13 in which a light source 11 and a lens 12 are built-in. The light receiver 14 is provided with a small hole 15 facing the light source 11, and an optical sensor, such as a semiconductor line sensor 16, is provided inside the light receiver 14 facing the small hole 15. The output end of this semiconductor line sensor 16 is connected to a digital display section 17. The semiconductor line sensor 16 has a diameter of 25 μm, for example.
Photodiodes are lined up at a pitch of , and the output of each element can be seen.

即ち、光源11から発する光は、レンズで屈折
されて進み、受光器14に備えられている小孔1
5を通過し、ピンホールカメラの原理で反対側の
半導体ラインセンサ16上に光源11の像を結
ぶ。半導体ラインセンサ16の各半導体素子は光
量に応じて出力を発生するので、この出力をデイ
ジタル表示部17のマイクロコンピユータで処理
して半導体ラインセンサ16上のどの半導体素子
上に光源11の像が存在するかを演算し、その位
置をデイジタル表示部17に表示する。
That is, the light emitted from the light source 11 is refracted by the lens and travels through the small hole 1 provided in the light receiver 14.
5, and forms an image of the light source 11 on the semiconductor line sensor 16 on the opposite side using the principle of a pinhole camera. Since each semiconductor element of the semiconductor line sensor 16 generates an output according to the amount of light, this output is processed by the microcomputer of the digital display section 17 to determine which semiconductor element on the semiconductor line sensor 16 the image of the light source 11 is present on. The position is calculated and displayed on the digital display section 17.

次に、露光台光源位置の調整方法について第3
図a,bを参照して述べる。即ち、一般に、レン
ズ12の精度が悪い為、9箇所で測定し、そのす
べての位置で測定位置がある範囲内になるように
光源11の位置を調整する。したがつて、9個の
受光器141,142…148,149が用意さ
れ、それぞれ外形が陰極線管パネルと同じ形状の
固定枠15の所定位置に配設される。その後、前
記固定枠15をパネルの場合と同じようにストツ
パ16により位置決めして基準露光台本体13上
に取付け、各受光器141,142…148,1
49で、光源11の像の位置を測定しデイジタル
表示部に電気的に記憶する。次に、9個の受光器
141,142…148,149が取付けられた
固定枠15を調整すべき露光台本体上にストツパ
により位置決めして取付け、各受光器141,1
42…148,149で、光源の像の位置を測定
しデイジタル表示部に入力する。デイジタル表示
部では記憶されていた基準露光台13の光源11
の像の位置との正逆のずれ量を表示する。作業者
は、このずれ量が小さくなるように光源、レンズ
の位置を調整する。
Next, see the third section on how to adjust the exposure table light source position.
This will be explained with reference to Figures a and b. That is, since the accuracy of the lens 12 is generally poor, measurements are taken at nine locations, and the position of the light source 11 is adjusted so that the measurement position is within a certain range at all of the locations. Therefore, nine light receivers 141, 142, . Thereafter, the fixed frame 15 is positioned using the stopper 16 in the same way as the panel, and mounted on the reference exposure table main body 13, and each of the light receivers 141, 142...148, 1
At 49, the position of the image of the light source 11 is measured and electrically stored on the digital display. Next, the fixed frame 15 to which the nine light receivers 141, 142...148, 149 are attached is positioned and mounted on the exposure table body to be adjusted using a stopper, and each of the light receivers 141, 1
42...148, 149 measure the position of the image of the light source and input it to the digital display section. On the digital display section, the light source 11 of the reference exposure table 13 that has been stored is displayed.
Displays the amount of forward and reverse deviation from the image position. The operator adjusts the positions of the light source and lens so that this amount of deviation becomes small.

次に、信号処理方法及び調整方法について説明
する。即ち、第5図に示すように、ラインセンサ
16には複数個の画素がのつており、例えば51
2の画素のあるラインセンサ16を使用した場
合、タイミング発生回路31よりタイミングクロ
ツクを与えると、第6図に示すような出力が得ら
れる。この出力図で山になつている部分はその画
素に光が強く照射された事を示している。
Next, a signal processing method and an adjustment method will be explained. That is, as shown in FIG. 5, the line sensor 16 has a plurality of pixels, for example, 51 pixels.
When a line sensor 16 with 2 pixels is used, when a timing clock is applied from the timing generation circuit 31, an output as shown in FIG. 6 is obtained. In this output diagram, the mountainous portion indicates that that pixel was strongly irradiated with light.

この信号はA/D変換器32を用いてメモリ3
3に数値データとして書込まれる。
This signal is sent to the memory 3 using an A/D converter 32.
3 is written as numerical data.

メモリ33上のデータを演算器34を用い演算
し、山の中心位置“a”(第6図上)を求める。
求められた値aを各センサ毎に表示する。
The data on the memory 33 is calculated using the calculator 34 to find the center position "a" of the mountain (upper part of FIG. 6).
The obtained value a is displayed for each sensor.

第7図は、光源11が正規の位置Aにある時と
下方Bにある時の光線の軌道の違いを示し、第8
図は、光源11が正規の位置A′にある時と右方
B′にずれている時の差を表示している。この時、
ラインセンサ16上に出来る光源の像は、正規の
時a及びa′、ずれている時b及びb′で示してある
が、下方Bにずれている時の像位置bは、aより
内側にできるのに対し右方B′にずれている時は
像位置b′はa′よりいずれも左へずれる事となる。
FIG. 7 shows the difference in the trajectory of the light ray when the light source 11 is at the normal position A and when it is at the downward position B.
The figure shows when the light source 11 is at the normal position A' and when the light source 11 is at the right position.
The difference when it deviates to B′ is displayed. At this time,
The images of the light source formed on the line sensor 16 are shown as a and a' when they are normal, and b and b' when they are out of alignment. However, if it is shifted to the right B', the image position b' will be shifted to the left from a'.

従つて2つのセンサ16の出力値が、正規の値
からどれだけどちらの方向へずれているかわかれ
ば、上下方向,左右方向に合わせる事が可能とな
る。実際には、光源11の上に曲面レンズ12が
あり、その設計誤差のため、各所での光線軌道が
レンズ精度の影響を受けて各露光台毎に異なるた
め、測定はなるべく多くの箇所に対して行なう方
がよい。
Therefore, if it is known how much and in which direction the output values of the two sensors 16 deviate from the normal values, it becomes possible to match them in the vertical and horizontal directions. In reality, there is a curved lens 12 on top of the light source 11, and due to design errors, the ray trajectory at each location is affected by lens precision and differs for each exposure table. Therefore, measurements should be made at as many locations as possible. It's better to do it.

次に、カラー陰極線管の螢光面形成工程で使用
される露光台光源位置測定装置の原理を第4図を
参照して説明する。露光台本体21内の光源22
は赤、緑、青3色の螢光面を形成するため、5mm
程度の間隔で3位置に移動する。一方、受光器2
3には3色に対応して2.5mmの間隔で3箇所に小
孔241,242,243を設ける。而して、あ
る位置にある光源22を観測する場合には、1つ
の小孔242を用い、他の2つの小孔241,2
43を遮光板25を用いて塞ぐ。このようにすれ
ば、半導体ラインセンサ26のほぼ中央に光源2
2の像を結ばせることができ、長い半導体ライン
センサを使用したり、受光器23を傾けたりせず
に、かなりの範囲に渡り測定を行うことができ
る。27はレンズであり、28はデイジタル表示
部である。
Next, the principle of an exposure table light source position measuring device used in the process of forming a fluorescent surface of a color cathode ray tube will be explained with reference to FIG. Light source 22 inside the exposure table main body 21
5mm to form a fluorescent surface in three colors: red, green, and blue.
Move to 3 positions at regular intervals. On the other hand, receiver 2
3, small holes 241, 242, and 243 are provided at three locations at intervals of 2.5 mm corresponding to the three colors. Therefore, when observing the light source 22 at a certain position, one small hole 242 is used and the other two small holes 241 and 2
43 using a light shielding plate 25. In this way, the light source 2 is placed approximately in the center of the semiconductor line sensor 26.
2 images can be formed, and measurements can be made over a considerable range without using a long semiconductor line sensor or tilting the light receiver 23. 27 is a lens, and 28 is a digital display section.

このようにすれば、数個所における光源の像の
測定は、数秒で行えるため、調整時間はきわめて
短く、ずれ量がたえず表示されているため、調整
は極めて容易である。
In this way, the images of the light source at several locations can be measured in a few seconds, so the adjustment time is extremely short, and since the amount of deviation is constantly displayed, the adjustment is extremely easy.

以上述べたように本発明によれば、自動的に短
時間で数点での露光台光源の像の位置を検出する
ことができ、また、光源の位置測定装置精度は±
1μmと極めて高精度であり、陰極線管パネルや
シヤドウマスクを使用しないため、熱変形や経年
変化の防止の効果がある。
As described above, according to the present invention, the position of the image of the exposure table light source can be automatically detected at several points in a short time, and the accuracy of the light source position measuring device is ±
It has an extremely high precision of 1 μm, and does not use a cathode ray tube panel or shadow mask, which helps prevent thermal deformation and aging.

また、上記実施例では長方形小孔を有するシヤ
ドウマスクを想定し、半導体ラインセンサを光学
センサとして使用した例について説明したが、円
形小孔を有するシヤドウマスク用露光台の光源位
置測定は2次元で行う必要があり、この場合はい
わゆるマトリツクス型センサ等を用いる必要があ
る。
In addition, in the above embodiment, a shadow mask with rectangular holes is assumed, and an example in which a semiconductor line sensor is used as an optical sensor is explained. However, the light source position measurement of an exposure stage for a shadow mask with circular holes needs to be performed in two dimensions. In this case, it is necessary to use a so-called matrix type sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の露光台光源位置測定器を示す断
面図、第2図は本発明の一実施例の原理を示す断
面図、第3図a,bは本発明の一実施例を示す平
面図及び断面図、第4図は本発明の他の実施例の
原理を示す断面図、第5〜第8図は本発明に係る
信号処理方法及び調整方法の一例を説明するため
の説明図である。 11……光源、12……レンズ、13……露光
台本体、14……受光器、15……小孔、16…
…半導体ラインセンサ、17……デイジタル表示
部。
Fig. 1 is a cross-sectional view showing a conventional exposure table light source position measuring device, Fig. 2 is a cross-sectional view showing the principle of an embodiment of the present invention, and Fig. 3 a and b are plan views showing an embodiment of the present invention. FIG. 4 is a sectional view showing the principle of another embodiment of the present invention, and FIGS. 5 to 8 are explanatory diagrams for explaining an example of the signal processing method and adjustment method according to the present invention. be. 11... Light source, 12... Lens, 13... Exposure table main body, 14... Light receiver, 15... Small hole, 16...
...Semiconductor line sensor, 17...Digital display section.

Claims (1)

【特許請求の範囲】 1 上部に陰極線管パネル取付部が設けられ内部
に光源及びレンズが収容された露光台本体と、前
記陰極線管パネル取付部に取り付けられ前記光源
に対して小孔が設けられる受光器と、この受光器
に設けられ前記光源の位置移動に対応した小孔以
外の小孔を遮光する遮光板と、前記受光器内に設
けられ前記小孔によつて結ばれる前記光源の像を
検出する光学センサと、この光学センサからの出
力を処理してこの光学センサのどの位置に光源の
像が存在するかを演算しその位置を表示する表示
部とを有する露光台光源位置測定装置を用い、数
ケ所にて、前記光源の像の位置を測定し、あらか
じめ決定されている理想的な場合の光源の像の位
置との差より前記光源及び前記レンズの位置を調
整することを特徴とする露光台光源位置測定方
法。 2 上部に陰極線パネル取付部が設けられ内部に
光源及びレンズが収容された露光台本体と、前記
陰極線管パネル取付部に取り付けられ前記光源に
対して小孔が設けられる受光器と、この受光器に
設けられ前記光源の位置移動に対応した小孔以外
の小孔を遮光する遮光板と、前記受光器内に設け
られ前記小孔によつて結ばれる前記光源の像を検
出する光学センサと、この光学センサからの出力
を処理してこの光学センサのどの位置に光源の像
が存在するかを演算しその位置を表示する表示部
とを具備することを特徴とする露光台光源位置測
定装置。
[Scope of Claims] 1. An exposure table main body having a cathode ray tube panel mounting section on its upper part and housing a light source and a lens therein, and a small hole attached to the cathode ray tube panel mounting section for the light source. a light receiver, a light shielding plate provided in the light receiver to block light from small holes other than the small holes corresponding to the positional movement of the light source, and an image of the light source provided in the light receiver and linked by the small hole; An exposure table light source position measuring device that has an optical sensor that detects the image of the light source, and a display unit that processes the output from the optical sensor to calculate where the image of the light source is on the optical sensor and displays the position. is used to measure the position of the image of the light source at several locations, and the positions of the light source and the lens are adjusted based on the difference from the position of the image of the light source in an ideal case determined in advance. A method for measuring the exposure table light source position. 2. An exposure stage main body having a cathode ray panel mounting section on the top and housing a light source and a lens therein, a light receiver mounted on the cathode ray tube panel mounting section and having a small hole for the light source, and this light receiver. a light-shielding plate provided in the light receiver to block light from small holes other than the small hole corresponding to the positional movement of the light source; an optical sensor provided in the light receiver to detect an image of the light source connected by the small hole; An exposure table light source position measuring device characterized by comprising a display unit that processes the output from the optical sensor, calculates where on the optical sensor the image of the light source is located, and displays the position.
JP6707979A 1979-05-30 1979-05-30 Source position meter for exposure base Granted JPS55159539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6707979A JPS55159539A (en) 1979-05-30 1979-05-30 Source position meter for exposure base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6707979A JPS55159539A (en) 1979-05-30 1979-05-30 Source position meter for exposure base

Publications (2)

Publication Number Publication Date
JPS55159539A JPS55159539A (en) 1980-12-11
JPS6366020B2 true JPS6366020B2 (en) 1988-12-19

Family

ID=13334498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6707979A Granted JPS55159539A (en) 1979-05-30 1979-05-30 Source position meter for exposure base

Country Status (1)

Country Link
JP (1) JPS55159539A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778126A (en) * 1980-10-31 1982-05-15 Matsushita Electric Ind Co Ltd Metallized film condenser
JPS58223701A (en) * 1982-06-23 1983-12-26 Toshiba Corp Measuring device of position for light source
JPS5911047U (en) * 1982-07-14 1984-01-24 河西工業株式会社 Side trim with telephone stand
JP2602206B2 (en) * 1986-01-14 1997-04-23 松下電工株式会社 Circuit breaker for wiring
JP2782668B2 (en) * 1994-05-18 1998-08-06 関西日本電気株式会社 Exposure equipment
JPH08264122A (en) * 1995-03-28 1996-10-11 Nec Kansai Ltd Alignment measuring device, and its usage

Also Published As

Publication number Publication date
JPS55159539A (en) 1980-12-11

Similar Documents

Publication Publication Date Title
EP0231382B1 (en) Apparatus and method of adjusting registration of solid-state image pickup elements
JP2002116013A (en) Noncontact outer-shape measuring apparatus
JPH02174492A (en) Convergence measuring instrument for color crt
CN110501026B (en) Camera internal orientation element calibration device and method based on array star points
US6219442B1 (en) Apparatus and method for measuring distortion of a visible pattern on a substrate by viewing predetermined portions thereof
KR880010457A (en) Convergence measurement and calibration determination method and apparatus
JPS6366020B2 (en)
US3678192A (en) Method and apparatus for digital measurement with an industrial television
GB2064102A (en) Improvements in electro- optical dimension measurement
US4917488A (en) Photocell distance measurement
US6853438B2 (en) Test apparatus and method to check the exposure quality of exposed film
JPH03236699A (en) Method and instrument for measuring display characteristic of video device
JPH1040815A (en) Inspection instrument for stripe pattern
JPH07229736A (en) Device for calibrating three-dimensional measuring instrument
JP2008256455A (en) Method and apparatus for measuring light
US5434429A (en) Image sensing device with circuit layout alignment pattern
JPH10136410A (en) Crt convergence measuring method
JP2615659B2 (en) Raster position measuring device
US10944944B2 (en) Automatically producing an optical blend mask individually adapted to a projector and its position to a projection surface of the projection system
JPS60228904A (en) Measuring device for position of light source in exposure device
RU2079923C1 (en) Device for measurement of light source position in photographic exposure installations
JPS61250923A (en) Television screen distortion measuring device
JPH08264122A (en) Alignment measuring device, and its usage
KR0167772B1 (en) The convergence measurement apparatus
JPS63116339A (en) Convergence measuring method for color cathode-ray tube