JPS6279610A - Anode for electrolytic condenser - Google Patents

Anode for electrolytic condenser

Info

Publication number
JPS6279610A
JPS6279610A JP60219151A JP21915185A JPS6279610A JP S6279610 A JPS6279610 A JP S6279610A JP 60219151 A JP60219151 A JP 60219151A JP 21915185 A JP21915185 A JP 21915185A JP S6279610 A JPS6279610 A JP S6279610A
Authority
JP
Japan
Prior art keywords
aluminum
titanium
foil
film
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60219151A
Other languages
Japanese (ja)
Inventor
青山 勝美
賢次 玉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
Nitsuko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitsuko Corp filed Critical Nitsuko Corp
Priority to JP60219151A priority Critical patent/JPS6279610A/en
Publication of JPS6279610A publication Critical patent/JPS6279610A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解コンデンサ用陽極体の改良に係り、特に
、コンデンサの小型化に有利な陽極体の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in anode bodies for electrolytic capacitors, and particularly to a structure of anode bodies that is advantageous for downsizing capacitors.

〔従来の技術] コンデンサ°の小型化のためには、陽極体の陽極酸化皮
膜の幾何学的単位面積当たりの静電容量を増大すること
が必要である。その方法としては実効単位面積を増大す
ることと、高い誘電率の素材を使用することとが周知で
ある。
[Prior Art] In order to reduce the size of a capacitor, it is necessary to increase the capacitance per geometric unit area of the anodic oxide film of the anode body. As methods for this, it is well known to increase the effective unit area and to use a material with a high dielectric constant.

第1の方法として、たとえばアルミニウム電解コンデン
サでは、アルミニウムプレイン箔をエツチングによって
粗面化し、実効面積を増加している。第2図は模式的に
アルミニウム陽極体を示したもので、プレイン箔をエツ
チングすると、表面1は凹凸になり、実効面積が大きく
なる。したがって陽極酸化すると酸化膜2の実効面積が
大きくなり、幾何学的単位面積当たりの静電容量は大き
くなる。投影平面面積に対する実効面積比で粗面化度を
表わせば50〜80倍になる。
As a first method, for example, in the case of an aluminum electrolytic capacitor, the aluminum plain foil is roughened by etching to increase the effective area. FIG. 2 schematically shows an aluminum anode body. When a plain foil is etched, the surface 1 becomes uneven and the effective area increases. Therefore, when anodized, the effective area of the oxide film 2 increases, and the capacitance per geometric unit area increases. If the degree of roughness is expressed as the ratio of effective area to projected plane area, it will be 50 to 80 times.

第2の方法として、陽極酸化膜として材質上高誘電率の
素材、チタン、ニオブ、タンタルを使用するものである
A second method is to use a material with a high dielectric constant, such as titanium, niobium, or tantalum, as the anodic oxide film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

コストを考えない場合は、第2方法により素材として酸
化物が高誘電率を示すチタン、ニオブ。
If cost is not a consideration, use the second method to use titanium or niobium whose oxide has a high dielectric constant.

クンタルを用いればよい。単位面積当たりの誘電率を比
較すると、 TiOx : 2.66〜8.8511 F/cIIt
You can use Kuntal. Comparing the dielectric constant per unit area, TiOx: 2.66 to 8.8511 F/cIIt
.

Nb2O5: 3.63μF/cnl。Nb2O5: 3.63μF/cnl.

Ta2O、: 2.48 u F/cfflであって、
通常用いられるアルミニウムのAl2O2: 1.18
μF/cfflに対してきわめて大きい。
Ta2O: 2.48 uF/cffl,
Al2O2 of commonly used aluminum: 1.18
Very large compared to μF/cffl.

一方表面を粗面化する第1の方法は、アルミニウムの場
合には、前述のように粗面化度が50〜80倍であるが
、チタン・ニオブでは2〜5倍、タンタルでは10〜2
0倍である。
On the other hand, the first method of roughening the surface is that in the case of aluminum, the degree of roughening is 50 to 80 times as described above, but in the case of titanium and niobium, the degree of roughening is 2 to 5 times, and in the case of tantalum, it is 10 to 2 times.
It is 0 times.

このように単位面積当たりの静電容量の増大は使用する
材質によって、方法が限定される。すなわち第1の方法
と第2の方法とを重畳しようとしても材質にそれぞれ適
した方法かあり、静電容量の増大に限度があった。さら
に第2の方法は、一般に酸化物が高誘電率を示す金属の
価格が高いという現実も制限要素となる。
In this way, methods for increasing capacitance per unit area are limited depending on the material used. That is, even if the first method and the second method were to be combined, each method would be suitable for each material, and there would be a limit to the increase in capacitance. Furthermore, the second method is generally limited by the fact that metals whose oxides exhibit a high dielectric constant are expensive.

本発明の目的は、上記欠点を除去して、実質的に第1の
方法・第2の方法を兼用したと同様の効果をコスト的に
も有利に得ることのできる(I構造の陽極体を提供する
ことにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to obtain substantially the same effect as using both the first method and the second method at a cost advantage. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による陽極体は、導体箔の粗面化した表面上に、
弁作用がありその陽極酸化膜の誘電率が高い金属の薄膜
を形成し、該金属薄膜を陽極酸化して電解コンデンサの
陽極酸化膜とするものである。特に、導体箔がアルミニ
ウム箔であって、弁作用のある金属がチタン、ニオブ、
タンタルのうらの一種である場合に好適である。
In the anode body according to the present invention, on the roughened surface of the conductor foil,
A thin metal film having a valve action and a high dielectric constant as an anodic oxide film is formed, and the metal thin film is anodized to form an anodized film of an electrolytic capacitor. In particular, the conductor foil is aluminum foil, and the valve metal is titanium, niobium, etc.
It is suitable if it is a type of tantalum lining.

〔作用〕[Effect]

粗面化した導体箔表面上に、高誘電率の陽極酸化膜が形
成されるから、実効面積の増大と高誘電率とによって幾
何学的単位面積当たりの静電容量が、単一素材による場
合より格段と大きくなる。
Since a high dielectric constant anodic oxide film is formed on the roughened conductor foil surface, the effective area increases and the high dielectric constant increases the capacitance per geometric unit area compared to that of a single material. becomes significantly larger.

〔実施例〕〔Example〕

以下、本発明の一実施例として粗面化する金属としてア
ルミニウム、陽極酸化膜を形成する材質としてチタンを
用いる例につき詳しく説明する。
Hereinafter, as an embodiment of the present invention, an example in which aluminum is used as the metal to be roughened and titanium is used as the material for forming the anodic oxide film will be described in detail.

99、99%純度のアルミニウム箔をエツチング処理し
て、約20倍の粗面化度とし、次に蓚酸チタン酸カリウ
ム・2水塩10%(重量%)の水溶液中で、陽極に白金
、陰極に粗面化したアルミニウム箔を用い、液温40°
C1電流密度5 mA / cnlで電解を行なう。こ
れによって陰極のアルミニウム箔表面上にチタンが電着
する。このように形成された箔を充分洗浄した後、ホウ
酸4%、ホウ酸アンモニウム1%(いずれも重量%)の
混合溶液中で80℃で化成しチタン陽極酸化膜を形成さ
せる。第2図は、このようにして形成した陽極体の断面
を模式的に示したもので、10がアルミニウム箔、11
が酸化チタン膜である。
99. A 99% pure aluminum foil was etched to make the surface approximately 20 times rougher, and then platinum was etched on the anode and cathode in a 10% (wt%) aqueous solution of potassium oxalate titanate dihydrate. Using roughened aluminum foil, the liquid temperature was 40°.
Electrolysis is carried out at a C1 current density of 5 mA/cnl. This causes titanium to be electrodeposited on the surface of the aluminum foil of the cathode. After thoroughly washing the foil thus formed, it is chemically converted at 80° C. in a mixed solution of 4% boric acid and 1% ammonium borate (both weight %) to form a titanium anodic oxide film. FIG. 2 schematically shows the cross section of the anode body formed in this way, where 10 is an aluminum foil, 11 is an aluminum foil, and 11 is an aluminum foil.
is a titanium oxide film.

表面を粗面化する導体箔として、アルミニウムを用いて
、粗面化度は約20倍としている。アルミニウムとして
は粗面化度は50〜80倍になるが、あまり粗面化度を
増すと、チタンの電着の厚みが大きい場合、チタン膜の
形成がアルミニウム表面の凹凸に忠実に追随しなくなり
、実効面積がそれ程増加しなくなる。したがってチタン
膜の要求される膜厚に応してアルミニウムの粗面化度を
適応して選択すればよい。なお粗面化する導体箔は、か
ならずしも弁作用のある金属である必要がないが、現在
のところ粗面化の容易性・コンデンサにおけるいままで
の経験からアルミニウムが最適である。
Aluminum is used as the conductor foil to roughen the surface, and the degree of roughening is approximately 20 times. The degree of surface roughness is 50 to 80 times that of aluminum, but if the degree of roughness is increased too much, and the thickness of the titanium electrodeposition is large, the formation of the titanium film will not faithfully follow the unevenness of the aluminum surface. , the effective area will not increase as much. Therefore, the degree of roughness of the aluminum may be appropriately selected depending on the required thickness of the titanium film. Note that the conductor foil to be roughened does not necessarily have to be a metal with valve action, but aluminum is currently most suitable due to its ease of surface roughening and past experience with capacitors.

〔発明の効果〕〔Effect of the invention〕

以上、詳しく説明したように、電解コンデンサの陽極体
を複合膜構造とし、粗面化した導体箔上にチタン・ニオ
ブ・タンクルのようなその陽極酸化膜の誘電率が高い弁
作用金属の陽極酸化膜を形成することで、幾何学的単位
面積当たりの静電容量を増大し、コンデンサの小型化を
可能とした。
As explained above in detail, the anode body of an electrolytic capacitor has a composite film structure, and the anodization of a valve metal whose anodic oxide film has a high dielectric constant, such as titanium/niobium tanker, is carried out on a roughened conductor foil. Forming a film increases the capacitance per geometric unit area, making it possible to downsize the capacitor.

なお、前記チタン・ニオブ・タンクルなどはきわめて高
価な金属であるが、導体箔表面上に必要な膜厚だけ、電
着で形成することができ、コスト的に有利である。粗面
化導体箔としては安価なアルミニウムを用いるようにす
れば、小型化を低コストで実現できる。
Although the titanium, niobium, tanker, etc. are extremely expensive metals, they can be formed by electrodeposition on the surface of the conductor foil to a required thickness, which is advantageous in terms of cost. By using inexpensive aluminum as the roughened conductor foil, miniaturization can be achieved at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ本発明の一実施例、従来例の
陽極体の表面近傍の断面を模式的に示した図である。 1.10−−アルミニウム箔、 2−酸化アルミニウム膜、 11−酸化チタン膜。 特許出願人   日本通信工業株式会社代理人   弁
理士  佐藤秋比古 第1図 牙2図 7ルミニウム箔
FIGS. 1 and 2 are diagrams schematically showing cross sections near the surface of an anode body according to an embodiment of the present invention and a conventional example, respectively. 1.10--Aluminum foil, 2-Aluminum oxide film, 11-Titanium oxide film. Patent applicant Nippon Tsushin Kogyo Co., Ltd. Agent Patent attorney Akihiko Sato Figure 1 Fang 2 Figure 7 Luminium foil

Claims (2)

【特許請求の範囲】[Claims] (1)導体箔の粗面化した表面上に、弁作用がありその
陽極酸化膜の誘電率が高い金属の薄膜を形成し、該金属
薄膜を陽極酸化して電解コンデンサの陽極酸化膜とする
ことを特徴とする電解コンデンサ用陽極体。
(1) A thin metal film with valve action and a high dielectric constant of the anodic oxide film is formed on the roughened surface of the conductor foil, and the metal thin film is anodized to form the anodized film of the electrolytic capacitor. An anode body for an electrolytic capacitor characterized by:
(2)前記導体箔がアルミニウム箔であって、弁作用の
ある金属がチタン、ニオブ、タンタルのうちの一種であ
る前記特許請求の範囲の第1項記載の陽極体。
(2) The anode body according to claim 1, wherein the conductor foil is an aluminum foil, and the valve metal is one of titanium, niobium, and tantalum.
JP60219151A 1985-10-03 1985-10-03 Anode for electrolytic condenser Pending JPS6279610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219151A JPS6279610A (en) 1985-10-03 1985-10-03 Anode for electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219151A JPS6279610A (en) 1985-10-03 1985-10-03 Anode for electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS6279610A true JPS6279610A (en) 1987-04-13

Family

ID=16731003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219151A Pending JPS6279610A (en) 1985-10-03 1985-10-03 Anode for electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS6279610A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306614A (en) * 1987-06-08 1988-12-14 Nichicon Corp Manufacture of aluminum electrode for electrolytic capacitor
JPH054456U (en) * 1991-06-29 1993-01-22 日本ケミコン株式会社 Electrolytic capacitor
JP2006245588A (en) * 2005-03-02 2006-09-14 Samsung Electro Mech Co Ltd Built-in capacitor type printed circuit board and method of manufacturing same
JP2009071003A (en) * 2007-09-13 2009-04-02 Sanyo Electric Co Ltd Solid electrolytic capacitor and production method thereof
JP2011222689A (en) * 2010-04-08 2011-11-04 Fujitsu Ltd Electrolytic capacitor and manufacturing method thereof
JP2020141058A (en) * 2019-02-28 2020-09-03 株式会社村田製作所 Solid electrolytic capacitor element and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496762A (en) * 1977-12-27 1979-07-31 Siemens Ag Electrolytic capacitor and method of producing same
JPS55145335A (en) * 1979-04-28 1980-11-12 Nichicon Capacitor Ltd Method of fabricating electrode foil for electrolytic condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496762A (en) * 1977-12-27 1979-07-31 Siemens Ag Electrolytic capacitor and method of producing same
JPS55145335A (en) * 1979-04-28 1980-11-12 Nichicon Capacitor Ltd Method of fabricating electrode foil for electrolytic condenser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306614A (en) * 1987-06-08 1988-12-14 Nichicon Corp Manufacture of aluminum electrode for electrolytic capacitor
JPH054456U (en) * 1991-06-29 1993-01-22 日本ケミコン株式会社 Electrolytic capacitor
JP2006245588A (en) * 2005-03-02 2006-09-14 Samsung Electro Mech Co Ltd Built-in capacitor type printed circuit board and method of manufacturing same
US7564116B2 (en) 2005-03-02 2009-07-21 Samsung Electro-Mechanics Co., Ltd. Printed circuit board with embedded capacitors therein and manufacturing process thereof
JP2009071003A (en) * 2007-09-13 2009-04-02 Sanyo Electric Co Ltd Solid electrolytic capacitor and production method thereof
JP2011222689A (en) * 2010-04-08 2011-11-04 Fujitsu Ltd Electrolytic capacitor and manufacturing method thereof
JP2020141058A (en) * 2019-02-28 2020-09-03 株式会社村田製作所 Solid electrolytic capacitor element and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US4131520A (en) Two-stage anodization of capacitor electrodes
GB1313400A (en) Cathode for wet electrolyte capacitors
US4582574A (en) Preparation of capacitor electrodes
JPS6279610A (en) Anode for electrolytic condenser
JP3032570B2 (en) Electrode foil for aluminum electrolytic capacitor and method of manufacturing the same
JPS6057693B2 (en) metal oxide capacitor
JPS61210191A (en) Method for etching aluminium electrolytic condenser
JP3198518B2 (en) Method for manufacturing solid electrolytic capacitor
JPS59167009A (en) Method of producing electrode material for electrolytic condenser
JPS57131399A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JPH05299309A (en) Manufacture of electrode for chip type solid electrolytic capacitor
JPH02111007A (en) Formation of aluminum electrode foil for electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP2638038B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3467827B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2745520B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH1187186A (en) Etching method for electrode foil for aluminum electrolytic capacitor
JPS61145817A (en) Manufacture of aluminum solid electrolytic capacitor
JP2000012402A (en) Electrode foil for aluminium electrolytic capacitor
JPS60115215A (en) Aluminum electrolytic condenser
JP2696882B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS61113799A (en) Etching method of metallic foil
JPS61121419A (en) Chemical synthesis of electrode foil for aluminum electrolytic capacitor
JPS59115517A (en) Method of producing electrolytic condenser
JPS62188215A (en) Manufacture of electrolytic capacitor