JPS6279368A - Processing of waveform signal to be displayed on crt - Google Patents

Processing of waveform signal to be displayed on crt

Info

Publication number
JPS6279368A
JPS6279368A JP60218114A JP21811485A JPS6279368A JP S6279368 A JPS6279368 A JP S6279368A JP 60218114 A JP60218114 A JP 60218114A JP 21811485 A JP21811485 A JP 21811485A JP S6279368 A JPS6279368 A JP S6279368A
Authority
JP
Japan
Prior art keywords
signal
waveform
displayed
crt
waveform signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60218114A
Other languages
Japanese (ja)
Inventor
Yasuo Hayakawa
泰夫 早川
Toshio Nonaka
野中 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60218114A priority Critical patent/JPS6279368A/en
Publication of JPS6279368A publication Critical patent/JPS6279368A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan

Abstract

PURPOSE:To analyze a waveform signal at a high speed, by a method wherein the waveform signal is picked up with a TV camera, the video signal is converted into digital from analog while being transmitted to an image input/ output unit to store into an image memory and the data being stored is computed through a signal processor. CONSTITUTION:A detector 2 transmits or receives an ultrasonic wave with a probe 1 and amplifies a sound pressure signal of the waveform received to be displayed on a CRT of (A) scope display. The waveform displayed is picked up with a TV camera 3 and the video signal is transmitted to an image input/ output unit 4, which converts the video signal transmitted into digital from analog to memorize a signal level into an image memory. The data stored is transferred to a signal processor 5 for computation. Thus, the waveform signal can be analyzed at a high speed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はCRT上に表示される波形信号を解析するため
の処理方法に関し、特に超音波を利用して部材に含む欠
陥を自動的に検査する自動超音波探傷や、繰り返し周期
で発せられる高周波信号の解析に好適な処理方法に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a processing method for analyzing waveform signals displayed on a CRT, and in particular to automatically inspecting defects in a member using ultrasonic waves. The present invention relates to a processing method suitable for automatic ultrasonic flaw detection and analysis of high-frequency signals emitted in repeated cycles.

〔発明の背景〕[Background of the invention]

被検体の厚さが薄いいわゆる薄材、たとえば厚さが1鶴
あるいはそれ以下のものの内部欠陥や、セラミックスの
ようなぜい部材の表面に近い欠陥および微細な内部欠陥
等を検出する要請が、製品や工業材料の高品質を確保す
るため各種の技術分野において近年ますます高まってい
る。かかる要請に対して従来は、通常波長の関係から高
い周波数の探触子およびその探傷装置を使用して対応し
ていた。その自動超音波探傷の1例を第3図により説明
する。1は探触子で一般に液槽の液に浸漬され、該液槽
内の被検体に対し超音波を発射し被検体から反射する反
射波を受信する。2′は探傷器で探触子lと高周波ケー
ブルで接続されており、探触子1に前記超音波の送受信
を行わせ、受信された波形の音圧信号を増幅してAスコ
ープ表示のCRTに表示する。探傷器2′は前記CRT
に表示するとともに信号をディジタイザ6に送る。ディ
ジタイザ6は送られた信号をA/D変換してメモリにそ
れぞれ格納したのちそのデータを信号処理装置5へ転送
する。信号処理装置5には入力信号により被検体におけ
る欠陥の有無、形状2位置。
There is a need to detect internal defects in so-called thin materials, such as those with a thickness of 1 piece or less, as well as defects near the surface and minute internal defects of fragile materials such as ceramics. In recent years, it has become increasingly important in various technical fields to ensure the high quality of industrial materials. Conventionally, such a request has been met by using a high frequency probe and its flaw detection device due to the wavelength. An example of automatic ultrasonic flaw detection will be explained with reference to FIG. A probe 1 is generally immersed in a liquid in a liquid tank, emits ultrasonic waves to a subject in the liquid tank, and receives reflected waves reflected from the subject. 2' is a flaw detector connected to probe 1 by a high-frequency cable, which causes probe 1 to transmit and receive the ultrasonic waves, amplifies the received waveform sound pressure signal, and displays it on the CRT displayed on the A scope. to be displayed. The flaw detector 2' is the CRT
and sends the signal to the digitizer 6. The digitizer 6 A/D converts the sent signals, stores them in memory, and then transfers the data to the signal processing device 5. The signal processing device 5 inputs signals to determine the presence or absence of a defect in the object to be inspected, and the shape and position of the object.

寸法等を判定するソフトウェアが組み込まれており、そ
の判定結果を信号処理装置5内の表示装置に表示したり
、判定基準に合格しない場合は警告を発し検査者に知ら
せるなどの機能を持たせている。かかる自動超音波探傷
装置で高い周波数を使用して前記の微細な欠陥等を検査
すると、測定点が増加し信号数が多くなることからディ
ジタイザ6のA/D変換時間が短くなることが必要とな
り、データ量も増大するからディジタイザ6から信号処
理装置5への転送時間も長くかかることになる。
It has built-in software that judges dimensions, etc., and has functions such as displaying the judgment results on the display device in the signal processing device 5, and issuing a warning and notifying the inspector if the judgment criteria are not passed. There is. When such an automatic ultrasonic flaw detector uses a high frequency to inspect the above-mentioned minute defects, the number of measurement points increases and the number of signals increases, so it is necessary to shorten the A/D conversion time of the digitizer 6. Since the amount of data also increases, the time required for transfer from the digitizer 6 to the signal processing device 5 also increases.

A/D変換時間を高速にすることはディジタイザ6はも
ちろん他の装置全体が高価になる問題点を有し、しかも
前記問題点は周波数が高くなるほどその傾向が強まる。
Increasing the A/D conversion time has the problem that not only the digitizer 6 but also other devices become expensive, and this problem becomes more severe as the frequency becomes higher.

つぎに繰り返し周期で発せられる高周波信号によりオシ
ロスコープのCRT上に表示される波形信号の処理方法
の1例を、第4図および第5図により説明する。第4図
はオシロスコープのCRT上に表示された波形の1パタ
ーンを示す図で、横軸を等間隅に区切り、区切られた前
記波形上の点すなわち測定点を順にa、b、c・・・・
・・gとする。
Next, an example of a method for processing a waveform signal displayed on a CRT of an oscilloscope using a high frequency signal emitted in a repetitive period will be explained with reference to FIGS. 4 and 5. FIG. 4 is a diagram showing one pattern of a waveform displayed on the CRT of an oscilloscope. The horizontal axis is divided into equally spaced corners, and the points on the divided waveform, that is, the measurement points are sequentially a, b, c, . . .・・・
...g.

各測定点の波形レヘルをディジタイザ6でA/D変換し
メモリに格納すると第5図が得られる。この場合メモリ
への格納は、繰り返し周期1回につき1点づつ取り込ま
れるいわゆる等価サンプリング方式であるとディジタイ
ザ6は各測定点ごとに作動し測定点の数Nだけ取り込ま
なければならない。
When the waveform level at each measurement point is A/D converted by the digitizer 6 and stored in the memory, the result shown in FIG. 5 is obtained. In this case, the storage in the memory is carried out by the so-called equivalent sampling method in which one point is taken in each repetition period, and the digitizer 6 must operate for each measurement point and take in the number N of measurement points.

例えばNが100ならばディジタイザ6は100回作動
する。ちなみに5 KHzの繰り返し周期の高周波信号
を前記等価サンプリング方式で処理した場合、Nが1 
、000のときメモリへ格納終了するまでの所要時間は
約0.2〜0.3秒である。これは引き続き出現する他
の多くの波形信号の処理にも同様の時間を要することを
考慮すると、被検体1個の検査にかなりの長時間を要す
ることになり、さらに測定点数Nを多くすればそれだけ
要する時間も比例的に増加することになる。このことは
多数の被検体を自動的にかつ連続的に処理する場合など
において作業効率上大きい問題点となる。
For example, if N is 100, the digitizer 6 operates 100 times. By the way, when a high frequency signal with a repetition period of 5 KHz is processed using the equivalent sampling method described above, N is 1.
, 000, the time required to complete storage in the memory is approximately 0.2 to 0.3 seconds. Considering that the same amount of time is required to process many other waveform signals that appear subsequently, it will take a considerable amount of time to test a single object, and if the number of measurement points N is increased, The time required will increase proportionally. This poses a major problem in terms of work efficiency when a large number of subjects are automatically and continuously processed.

〔発明の目的] 本発明は上記従来技術の問題点を解消し、CRTに表示
される波形信号を、測定点数の増加の影響を一切受ける
ことなく、きわめて高速でしかも安価にかつ容易に解析
することができる処理方法を提供することを目的とする
[Object of the Invention] The present invention solves the problems of the prior art described above, and analyzes waveform signals displayed on a CRT easily and at extremely high speed, at low cost, without being affected by an increase in the number of measurement points. The purpose is to provide a processing method that can.

〔発明の概要〕[Summary of the invention]

本発明はCRT上に表示される波形信号がA/D変換さ
れ、そのA/D変換された信号を信号処理装置を介して
演算処理する前記波形信号の処理方法において、前記波
形信号をテレビカメラで撮影し、その映像信号をA/D
変換しかつ画像メモリに格納する画像入出力装置に伝送
し、その格納されたデータを前記信号処理装置を介して
演算処理することにより、CRTに表示される波形信号
を、測定点数の増加の影響を一切受けることなく、きわ
めて高速でしかも安価にかつ容易に解析することができ
るようにした処理方法である。
The present invention provides a waveform signal processing method in which a waveform signal displayed on a CRT is A/D converted, and the A/D converted signal is processed through a signal processing device. and convert the video signal into an A/D
By transmitting the data to an image input/output device that converts and stores it in an image memory, and arithmetic processing the stored data through the signal processing device, the waveform signal displayed on the CRT is This is a processing method that allows for extremely high-speed, low-cost, and easy analysis without undergoing any processing.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図および第2図により説明する。 Embodiments of the present invention will be described with reference to FIGS. 1 and 2.

図において第3図と同じ符号のものは同じものを示す。In the figure, the same reference numerals as in FIG. 3 indicate the same thing.

1は探触子、2は探傷器である。1 is a probe, and 2 is a flaw detector.

探傷器2は第3図に示す探傷器2′がディジタイザ6と
接続されているのと異なり、探触子1に超音波の送受信
を行わせ、受信された波形の音圧信号を増幅してAスフ
−1表示のCRTに表示させるだけである。表示された
波形はテレビカメラ3で撮影され、その映像信号は画像
入出力装置4に伝送される。画像入出力装置4は伝送さ
れた映像信号をA/D変換し、画像メモリに信号レベル
を記toする。記jfXされたデータは信号処理装置5
に転送され演算処理される。
Unlike the flaw detector 2' shown in FIG. 3, which is connected to the digitizer 6, the flaw detector 2 has the probe 1 transmit and receive ultrasonic waves, and amplifies the received waveform sound pressure signal. It is only necessary to display it on a CRT with an A-1 display. The displayed waveform is photographed by a television camera 3, and the video signal is transmitted to an image input/output device 4. The image input/output device 4 A/D converts the transmitted video signal and records the signal level in the image memory. The recorded data is sent to the signal processing device 5.
is transferred to and processed.

前記画像メモリに記憶されるデータは、テレビカメラ3
により撮影された映像信号をA/D変換したものである
から、画像メモリへの取り込みに要する時間は、テレビ
カメラの垂直同期時間1/30 (0,03)秒で済み
、しかも画面上の波形をそっくりそのまま取り込むこと
ができる。そして取り込まれた波形は映像信号であるか
ら波形の座標上の位置データはすでにメモリの番地その
ものであり、映像の輝度レベルが一定値以上の番地を見
い出すだけで信号処理が可能となる。また波形のメモリ
への取り込みは、前記従来技術が波形上の測定点ごとに
行い、測定点数が増加するとディジタイザのA/D変換
時間も比例的に増加していたが、本発明の方法ではCR
T上の1画面ごとに行うから、その画面に関して測定点
数の多寡に全く影響を受けることなく波形信号のA/D
変換時間は一定であり、かつ変化する各画面に関しても
不変である。
The data stored in the image memory is stored in the television camera 3.
Since the video signal is A/D converted from a video signal taken by can be imported in its entirety. Since the captured waveform is a video signal, the position data on the coordinates of the waveform is already the memory address itself, and signal processing can be performed simply by finding an address where the video brightness level is above a certain value. In addition, in the prior art, the waveform is loaded into the memory at each measurement point on the waveform, and as the number of measurement points increases, the A/D conversion time of the digitizer increases proportionally, but in the method of the present invention, the CR
Since it is performed for each screen on T, the A/D of the waveform signal is completely unaffected by the number of measurement points for that screen.
The conversion time is constant and unchanged for each changing screen.

このため前記従来の処理方法に比べ約1桁の差で高速化
され、さらにこの差は測定点数が増加するほど大きくな
る。なお本実施例は超音波探傷の場合について説明した
が、前記繰り返し周期で発せられる高周波信号の場合に
ついても同様に適用できることはもちろんである。
Therefore, the processing speed is increased by about one order of magnitude compared to the conventional processing method, and this difference becomes larger as the number of measurement points increases. Although this embodiment has been described in the case of ultrasonic flaw detection, it goes without saying that it can be similarly applied to the case of high frequency signals emitted at the above-mentioned repetition period.

つぎに前記映像の輝度レベルをA/D変換した場合の1
例を第2図に示す。図中の数字は第4図の波形に対応す
るA/D変換値を示しており、30は画面の輝度レベル
を、150は波形の測定点a、b。
Next, when the brightness level of the video is A/D converted, 1
An example is shown in FIG. The numbers in the figure indicate A/D conversion values corresponding to the waveform in FIG. 4, where 30 indicates the brightness level of the screen, and 150 indicates the measurement points a and b of the waveform.

・・・・・・gの輝度レヘルを示す値である。波形のデ
ータはこのような状態で画像メモリに格納されるから、
例えば波形のピーク値を検出する場合には、1行目から
各行ごとに輝度レベルが150の番地を検索し、1行目
にもっとも近い番地におけるものを検出すればよく、ま
た波形のピーク値の間隔を検出する場合には、1行目か
ら各行ごとに輝度レベルが150の番地を検索するとと
もに1列目から各列ごとにも検索し、いずれも1行目に
もっとも近い番地における輝度レベル150の番地にお
けるものを検出すればよい。この検索はきわめて容易で
かつ高速に行うことが可能であり、前記従来の高価なデ
ィジタイザと同様の処理を、テレビカメラ3と画像入出
力装置4との安価な組み合わせで実施することができる
. . . is a value indicating the luminance level of g. Since the waveform data is stored in the image memory in this state,
For example, when detecting the peak value of a waveform, it is sufficient to search for addresses with a brightness level of 150 for each row from the first row, and detect the one at the address closest to the first row. When detecting an interval, search for an address with a brightness level of 150 in each row from the first row, and also search in each column from the first column. It is sufficient to detect the object at the address. This search can be performed extremely easily and at high speed, and the same processing as that of the conventional expensive digitizer can be performed with an inexpensive combination of the television camera 3 and the image input/output device 4.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の方法は、CRTに表示され
る波形信号の処理方法において、前記波形信号をテレビ
カメラで撮影し、その映像信号をA/D変換しかつ画像
メモリに格納する画像入出力装置に伝送し、その格納さ
れたデータを信号処理装置を介して演算処理するように
したから、CRTに表示される波形信号を測定点数の増
加の影響を一切受けることなく、きわめて高速でしかも
安価にかつ容易に解析することができる優れた効果を有
する。
As explained above, the method of the present invention is a method for processing a waveform signal displayed on a CRT. Since the data is transmitted to the output device and the stored data is processed through the signal processing device, the waveform signal displayed on the CRT can be processed at extremely high speed without being affected by the increase in the number of measurement points. It has an excellent effect that it can be analyzed easily and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する図、第2図はテレビカ
メラにより撮影された映像の輝度レベルのA/D変換値
を示した図である。 第3図は従来の自動超音波探傷における波形信号の処理
方法を説明する図、第4図はオシロスコープのCRT上
に表示された波形の1パターンを示す図、第5図は第4
図に示す波形上の各測定点をディジタイザでA/D変換
したメモリ格納値を示す図である。 1・・・探触子、2,2′・・・探傷器、3・・・テレ
ビカメラ、4・・・画像入出力装置、5・・・信号処理
装置、6・・・ディジタイザ。 第1図 第2図 第3図
FIG. 1 is a diagram explaining the present invention in detail, and FIG. 2 is a diagram showing A/D conversion values of the brightness level of an image taken by a television camera. Figure 3 is a diagram explaining a waveform signal processing method in conventional automatic ultrasonic flaw detection, Figure 4 is a diagram showing one pattern of waveforms displayed on the CRT of an oscilloscope, and Figure 5 is a diagram explaining the waveform signal processing method in conventional automatic ultrasonic flaw detection.
It is a figure which shows the memory storage value which A/D-converted each measurement point on the waveform shown in the figure by the digitizer. DESCRIPTION OF SYMBOLS 1... Probe, 2, 2'... Flaw detector, 3... Television camera, 4... Image input/output device, 5... Signal processing device, 6... Digitizer. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、CRT上に表示される波形信号がA/D変換され、
そのA/D変換された信号を信号処理装置を介して演算
処理する前記波形信号の処理方法において、前記波形信
号をテレビカメラで撮影し、その映像信号をA/D変換
しかつ画像メモリに格納する画像入出力装置に伝送し、
その格納されたデータを前記信号処理装置を介して演算
処理することを特徴とする、CRTに表示される波形信
号の処理方法。
1. The waveform signal displayed on the CRT is A/D converted,
In the waveform signal processing method, the A/D-converted signal is subjected to arithmetic processing via a signal processing device, in which the waveform signal is photographed with a television camera, the video signal is A/D-converted, and stored in an image memory. image input/output device,
A method for processing a waveform signal displayed on a CRT, characterized in that the stored data is subjected to arithmetic processing via the signal processing device.
JP60218114A 1985-10-02 1985-10-02 Processing of waveform signal to be displayed on crt Pending JPS6279368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218114A JPS6279368A (en) 1985-10-02 1985-10-02 Processing of waveform signal to be displayed on crt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218114A JPS6279368A (en) 1985-10-02 1985-10-02 Processing of waveform signal to be displayed on crt

Publications (1)

Publication Number Publication Date
JPS6279368A true JPS6279368A (en) 1987-04-11

Family

ID=16714845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218114A Pending JPS6279368A (en) 1985-10-02 1985-10-02 Processing of waveform signal to be displayed on crt

Country Status (1)

Country Link
JP (1) JPS6279368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230042529A (en) * 2020-09-15 2023-03-28 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Use of Epoxy Resin Curing Agents, Epoxy Resin Compositions, and Amine Compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910857A (en) * 1982-07-09 1984-01-20 Hitachi Ltd Waveform measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910857A (en) * 1982-07-09 1984-01-20 Hitachi Ltd Waveform measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230042529A (en) * 2020-09-15 2023-03-28 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Use of Epoxy Resin Curing Agents, Epoxy Resin Compositions, and Amine Compositions

Similar Documents

Publication Publication Date Title
EP2177903B1 (en) Inspection apparatus
US20020172410A1 (en) System for generating thermographic images using thermographic signal reconstruction
US8421802B2 (en) Peak visualization enhancement display system for use with a compressed waveform display on a non-destructive inspection instrument
JPH0824678B2 (en) Ultrasonic diagnostic equipment
WO2002089042A1 (en) System for generating thermographic images using thermographic signal reconstruction
CN112014471A (en) Plate structure multi-mode lamb wave topological gradient imaging method based on virtual sensor
JPS6279368A (en) Processing of waveform signal to be displayed on crt
JPH0242355A (en) Ultrasonic inspecting device
JP2005274444A (en) Ultrasonic flaw detection image processor, and processing method therefor
JP2004045052A (en) Apparatus and method for inspecting image data
JPH0599840A (en) Method and device for evaluating performance of adhesion application products
JPS61138160A (en) Ultrasonic flaw detector
JPS5940268B2 (en) Acoustic emission signal detection sensitivity testing method and device
JP2006132987A (en) Ultrasonic flaw detector
JPS6229023B2 (en)
JPS6337902B2 (en)
JPH06213880A (en) Ultrasonic flaw-detection method and device
JPS61151458A (en) C-scanning ultrasonic flaw detection method and apparatus thereof
JPH0257967A (en) Ultrasonic wave inspecting apparatus
JPS61266907A (en) Detector for surface condition
JP2996265B2 (en) Ultrasonic measuring device
JPS6234101B2 (en)
JPS594662B2 (en) Ultrasonic probe position detection method and device
JPH0448258A (en) Ultrasonic measuring instrument
JPH03252553A (en) Ultrasonic flaw detector