JPS6278557A - Photomask - Google Patents
PhotomaskInfo
- Publication number
- JPS6278557A JPS6278557A JP60220605A JP22060585A JPS6278557A JP S6278557 A JPS6278557 A JP S6278557A JP 60220605 A JP60220605 A JP 60220605A JP 22060585 A JP22060585 A JP 22060585A JP S6278557 A JPS6278557 A JP S6278557A
- Authority
- JP
- Japan
- Prior art keywords
- film
- photomask
- transparent substrate
- carbonized
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/54—Absorbers, e.g. of opaque materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、半導体装置の製造に使用するフォトマスク
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photomask used for manufacturing semiconductor devices.
[従来の技術」
半導体装置の製造に使用するマスクは、初期においては
ガラス基板を用いた写真乳剤乾板を利用していたが、高
集積化、微細化が進むつ八で、現在では透明ガラス基板
上にクロム(Cr)などの金属薄膜が形成されたハード
マスクが広く使用されている(たとえば、特開昭57−
1572478公報、特開昭57−157249号公報
)。[Conventional technology] In the early days, masks used in the manufacture of semiconductor devices used photographic emulsion plates with glass substrates, but with the advancement of higher integration and miniaturization, transparent glass substrates are now used. Hard masks on which a thin film of metal such as chromium (Cr) is formed are widely used (for example, Japanese Patent Application Laid-Open No.
1572478, Japanese Unexamined Patent Publication No. 157249/1983).
第2図は、従来のフォトマスク材料の断面図である。図
において、石英などの透明ガラス基板1上にクロムなど
の金属膜2が形成されている。このようなOrなどの金
属膜2は、透明ガラス基板1上に蒸着またはスパッタ法
により約600〜800Aの膜厚で形成される。半導体
相フォトマスクは、金属膜2上に7オトレジストまたは
電子ビーム(以下、EBと称す)用レジストを塗布し、
光またはgBによりパターンを描画した後、現像、エツ
チングなどの工程を経て作られる。エツチングは金属膜
2がCrの場合、クエント法では硝酸第二セリクムアン
チモンと過塩素酸を行ない、ドライ法では四塩化炭素(
CC14)と酸素(02)の混合ガスで行なう。半導体
装置、特にVLSIなど、高集積、微細パターンを有す
るデバイス用マスクの製造では、サイドエッチ効果が少
ないドライエツチング法が有利である。FIG. 2 is a cross-sectional view of a conventional photomask material. In the figure, a metal film 2 made of chromium or the like is formed on a transparent glass substrate 1 made of quartz or the like. The metal film 2, such as Or, is formed on the transparent glass substrate 1 by vapor deposition or sputtering to a thickness of about 600 to 800 Å. The semiconductor phase photomask is made by applying a photoresist or an electron beam (hereinafter referred to as EB) resist on the metal film 2,
After drawing a pattern with light or gB, it is created through processes such as development and etching. When the metal film 2 is made of Cr, etching is performed using sericum antimony nitrate and perchloric acid in the Quent method, and carbon tetrachloride (etching is performed in the dry method).
A mixed gas of CC14) and oxygen (02) is used. In the production of masks for semiconductor devices, particularly devices with high integration and fine patterns such as VLSI, dry etching is advantageous because it has less side etching effect.
従来の半導体装置製造用マスクに使用されるCrマスク
の製造VCはクエットエッチングが一般的であるが、サ
イドエッチ効果などにより高精度マスクの製造が内錐で
あり、またドライエツチングではCrのエツチング速度
が約1i)OA/min以ドであり、レジストとの選択
比も悪くフォトマスクの量産に適していなかった。また
、Crの場合、石英基板との接着性が悪く、微細パター
ンがマスク洗浄のときに剥がれるという問題もあった。Couette etching is commonly used to manufacture Cr masks used in conventional masks for manufacturing semiconductor devices, but due to side etching effects, high-precision masks can only be manufactured using internal etching. was less than about 1i) OA/min, and the selectivity with the resist was also poor, making it unsuitable for mass production of photomasks. Further, in the case of Cr, there was a problem that the adhesion to the quartz substrate was poor, and the fine pattern was peeled off during mask cleaning.
上記問題点を解決する手段として、モリブデン(MO)
l タンタル(1”a)+ タングステン(W)等
の遷移金属をシリサイド化した金属シリサイド膜をマス
ク材料として用いる方法が考えられる(たとえば、特題
昭59−61372号)。つまり、石英ガラス基放中の
シリコン(Sl)とマスク材料としての金属シリサイド
中の81とが有効に結合して接着強度の強いものが得ら
れる。また、エツチングは四フフ化炭素(CF4)と酸
素(02)の混合ガスプラズマにより、クロム(Or)
に比べて容易にドライエツチングができる(〜1000
′A/minのエツチング速度)。As a means to solve the above problems, molybdenum (MO)
One possible method is to use a metal silicide film obtained by siliciding transition metals such as tantalum (1"a) + tungsten (W) as a mask material (for example, Special Issue No. 1983-61372). In other words, silica glass base material The silicon (Sl) inside and the 81 in the metal silicide as the mask material combine effectively to obtain a strong adhesive.In addition, etching is performed using a mixture of carbon tetrafluoride (CF4) and oxygen (02). Chromium (Or) by gas plasma
Dry etching is easier compared to (~1000
'A/min etching rate).
しかしながら1.上記遷移金属のシリサイド膜は光に対
する反射率が50%前後と高く、クエハヘノハターン転
写の際にパターンの解像性ヲクエハとマスク間の光の多
重散乱で低下させることになり、サブミクロンパターン
分有する超LSIデバイスの製造に固唾を来たすことに
なる。However, 1. The above-mentioned transition metal silicide film has a high reflectance of around 50% for light, and during wafer pattern transfer, the resolution of the pattern is reduced due to multiple scattering of light between the wafer and the mask, resulting in a submicron pattern. This will put pressure on the manufacturing of ultra-LSI devices that will be developed in the near future.
この発明は、上記のように従来のものの欠点を解消する
ためになされたもので、ドライエンチングが容易で、か
つ透明基&七の接着性も優れており、さらにはマスクの
反射率も低い、高品質なフォトマスク材料を提供するこ
とを目的とする。This invention was made in order to eliminate the drawbacks of the conventional ones as mentioned above, and it is easy to dry-etch, has excellent adhesion of transparent base & 7, and has low reflectance of the mask. The purpose is to provide high quality photomask materials.
[問題点分解決するための手段]
この発りJに係るフォトマスク材料は、透り1全板と、
この透明基板上に形成される炭化さ八た金属とで構成し
たものである。[Means for solving the problem] The photomask material according to this starting point J is transparent 1 whole plate,
It is composed of carbide metal formed on this transparent substrate.
この発明においては、炭化された遷移金属膜は、低反射
特性を有しており、高い解像性が七られるばかりでなく
、容易にドライエツチングができ、かつ透明基板との接
着性が良いので、マスク洗浄のときに微細パターンが剥
がれにくい。In this invention, the carbonized transition metal film not only has low reflection characteristics and high resolution, but also can be easily dry etched and has good adhesion to transparent substrates. , the fine pattern is difficult to peel off when cleaning the mask.
第1図は、この発明の一実施例であるフォトマスク材料
の断面図である。図において、石英などの透明ガラス基
板1上には、炭化されたモリブデン(MO)l タン
グステン(wL タンタル(Ta)などの遷移金属膜
3が約1000λ程度の膜厚で形成されている。このよ
うな炭化された遷移金属膜(以ド、炭化金属膜と称す)
3は、スパッタ法などによって容易に形成できる。たと
えば;モリブデン(Mo)をターゲットとして、アルゴ
ン(Ar)と−酸化炭素(CO)ガスを任意の比率で混
合したプラズマでスパッタすると、 MoとCが適当な
比率で化合された炭化モリブデン膜(MoCx )が形
成できる。また、予め適当な比率で作成した炭化モリブ
デンのターゲットをArプラズマでスパッタして形成し
てもよい。FIG. 1 is a sectional view of a photomask material that is an embodiment of the present invention. In the figure, a transition metal film 3 such as carbide molybdenum (MO), tungsten (wL), and tantalum (Ta) is formed on a transparent glass substrate 1 made of quartz or the like to a thickness of about 1000λ. Carbonized transition metal film (hereinafter referred to as metal carbide film)
3 can be easily formed by sputtering or the like. For example, when molybdenum (Mo) is used as a target and sputtered with a plasma containing a mixture of argon (Ar) and -carbon oxide (CO) gas at an arbitrary ratio, a molybdenum carbide film (MoCx) is formed, in which Mo and C are combined at an appropriate ratio. ) can be formed. Alternatively, a molybdenum carbide target prepared in advance at an appropriate ratio may be sputtered using Ar plasma.
MoCxのXの値は大きいほど、低反射率は増すが、徐
々に絶縁性と帯びてくる。電子ビーム(FB)でマスク
を製作するには、チャージアップの問題があり、改にΩ
以ドになるようにXを制御する必要がある。たとえば、
Xが0.1以Fであると、反射率は30%以ドになり、
抵抗も改にΩ程度になり好ましい。また、光の反射は層
表面で特に大きいため、表面近傍に近づくにつhxの濃
度が大きくなるようにCを制御してもよい。The larger the value of X of MoCx, the lower the reflectance, but it gradually becomes more insulating. When manufacturing masks using electron beams (FB), there is the problem of charge-up, which increases the
It is necessary to control X so that for example,
When X is 0.1 or more F, the reflectance is 30% or more,
The resistance also becomes approximately Ω, which is preferable. Furthermore, since the reflection of light is particularly large at the layer surface, C may be controlled so that the concentration of hx increases as it approaches the surface.
上記のごとく、炭化金属膜tマスク材料として用いると
、通常の金属シリサイド膜をマスク材料として用い念場
合に比べて、反射率が低下するので、多重反射によるパ
ターンの解像性の低下を避けることができる。また、炭
化された金属は、透明基板(sto2. A/203な
ど)特に石英カラス基板上の接着性が良く、フォトマス
クとしての彎命が長くなる(マスク洗浄による微細パタ
ーンの剥がれがなくなる)という利点がある。As mentioned above, when a metal carbide film is used as a mask material, the reflectance is lower than when a normal metal silicide film is used as a mask material, so it is necessary to avoid deterioration of pattern resolution due to multiple reflections. I can do it. In addition, carbonized metal has good adhesion on transparent substrates (such as STO2. A/203), especially quartz glass substrates, and has a longer life as a photomask (no peeling of fine patterns due to mask cleaning). There are advantages.
さらに%炭化金属膜3のエツチングは、ドライエツチン
グ法で容易に行なうことができる。たとえば、炭化モリ
ブデンの場合、CF4+02 (2%)まfc P′
iCC/4+02の混合ガスを使用し、0.2Torr
の真空度、 300Wの条件下では、約500X/mi
nの工ツチングスピードでエツチングが終rする。この
とき、炭化モリブデン膜(MoCx)ld Mo0Ct
aやCO2等の反応生成物と作って揮発する。このエツ
チングスピードは、従来のCrのドライエツチングスピ
ードに比べ約5倍になりフォトマスクの量産に適してい
ることがわかる。なお、ドライエツチングと行なう前に
、炭化された金属膜3上に7オトレジストまたはEBレ
ジストを4000〜6000^の膜厚で塗布した後、光
またはEBで透明ガラス基板1上にパターンと描画する
が、前述のように、炭化金属シリサイド膜3は&にΩの
導電性を持たせであるため、EB描画の場合であっても
チャージアップの問題は生じない。Further, the etching of the metal carbide film 3 can be easily performed by dry etching. For example, in the case of molybdenum carbide, CF4+02 (2%) or fc P'
Using iCC/4+02 mixed gas, 0.2 Torr
Under the condition of vacuum degree of 300W, approximately 500X/mi
Etching is completed at a processing speed of n. At this time, molybdenum carbide film (MoCx)ldMo0Ct
It forms with reaction products such as a and CO2 and evaporates. It can be seen that this etching speed is about five times as high as the conventional dry etching speed for Cr, making it suitable for mass production of photomasks. Note that before performing dry etching, a 7-photoresist or EB resist is applied to a film thickness of 4000 to 6000^ on the carbonized metal film 3, and then a pattern is drawn on the transparent glass substrate 1 using light or EB. As described above, since the metal carbide silicide film 3 has a conductivity of &Omega, the problem of charge-up does not occur even in the case of EB writing.
〔発明の効果]
以上のように、この発明によれば、透明基板上に炭化さ
れた遷移金属膜を形成したので、高解像度のパターン形
成が0J能となり、ドライエツチングが容易でエツチン
グスピードが上がり、かつ信頼性の高いフォトマスクを
得ることができる。[Effects of the Invention] As described above, according to the present invention, since a carbonized transition metal film is formed on a transparent substrate, high-resolution pattern formation is possible at 0J, dry etching is easy, and etching speed is increased. , and a highly reliable photomask can be obtained.
第1図はこの発明の一実施例であるフォトマスクの断面
図である。第2図は従来のフォトマスクの断面図である
。
図において、1は透明ガラス基板、2は金属膜、3は炭
化金属膜である。
なお、各図中同一符号は同一ま之は相当部分を示す。FIG. 1 is a sectional view of a photomask that is an embodiment of the present invention. FIG. 2 is a cross-sectional view of a conventional photomask. In the figure, 1 is a transparent glass substrate, 2 is a metal film, and 3 is a metal carbide film. Note that the same reference numerals in each figure indicate corresponding parts.
Claims (3)
て透明基板と、前記透明基板上に形成される炭化金属膜
とを備えたフォトマスク。(1) A photomask used in the manufacture of semiconductor devices, which includes a transparent substrate and a metal carbide film formed on the transparent substrate.
項に記載のフォトマスク。(2) The transparent substrate is quartz glass.Claim 1
Photomask as described in section.
許請求の範囲第1項に記載のフォトマスク。(3) The photomask according to claim 1, wherein the transparent substrate is sapphire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60220605A JPS6278557A (en) | 1985-10-01 | 1985-10-01 | Photomask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60220605A JPS6278557A (en) | 1985-10-01 | 1985-10-01 | Photomask |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6278557A true JPS6278557A (en) | 1987-04-10 |
Family
ID=16753593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60220605A Pending JPS6278557A (en) | 1985-10-01 | 1985-10-01 | Photomask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6278557A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60182442A (en) * | 1984-02-29 | 1985-09-18 | Konishiroku Photo Ind Co Ltd | Photomask material |
-
1985
- 1985-10-01 JP JP60220605A patent/JPS6278557A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60182442A (en) * | 1984-02-29 | 1985-09-18 | Konishiroku Photo Ind Co Ltd | Photomask material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4722878A (en) | Photomask material | |
US4873163A (en) | Photomask material | |
JPS61272746A (en) | Photomask blank and photomask | |
US4876164A (en) | Process for manufacturing a photomask | |
JPH0435743B2 (en) | ||
US4792461A (en) | Method of forming a photomask material | |
JPH09321023A (en) | Method for forming metallic wire | |
JPH0434144B2 (en) | ||
JPS63214755A (en) | Photomask | |
JPS61273546A (en) | Production of metal silicide photomask | |
JP6903878B2 (en) | Phase shift mask blank and phase shift mask | |
JP4641086B2 (en) | Blank for halftone phase shift photomask, halftone phase shift photomask, and manufacturing method thereof | |
JPS6278557A (en) | Photomask | |
WO2004017140A1 (en) | Mask blank manufacturing method, transfer mask manufacturing method, sputtering target for manufacturing mask blank | |
JPH0463349A (en) | Photomask blank and photomask | |
JPS63214754A (en) | Photomask | |
JPH061366B2 (en) | Photo mask material | |
JP3995784B2 (en) | Dry etching method and X-ray mask manufacturing method | |
JPS60202441A (en) | Mask for forming pattern for semiconductor device | |
JP2004053662A (en) | Photomask blank, photomask and method of selecting photomask blank | |
EP0213693B1 (en) | Photomask material | |
JPH1048808A (en) | Production of photomask | |
JPH0936099A (en) | Dry etching | |
JPH0915831A (en) | Manufacture of exposing mask | |
TW202041965A (en) | Blankmask and photomask |