JPS627709B2 - - Google Patents

Info

Publication number
JPS627709B2
JPS627709B2 JP53017165A JP1716578A JPS627709B2 JP S627709 B2 JPS627709 B2 JP S627709B2 JP 53017165 A JP53017165 A JP 53017165A JP 1716578 A JP1716578 A JP 1716578A JP S627709 B2 JPS627709 B2 JP S627709B2
Authority
JP
Japan
Prior art keywords
insulating film
diffusion layer
source
electrode
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53017165A
Other languages
Japanese (ja)
Other versions
JPS54109788A (en
Inventor
Kimyoshi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1716578A priority Critical patent/JPS54109788A/en
Publication of JPS54109788A publication Critical patent/JPS54109788A/en
Publication of JPS627709B2 publication Critical patent/JPS627709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、特に、絶縁制御電極(ゲ
ート)を持つ電界効果トランジスタに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to a field effect transistor having an insulated control electrode (gate).

本発明は複合型電界トランジスタで構成され
る、低電圧、高速動作高集積密度の半導体集積回
路装置を得るためのものである。
The present invention is directed to obtaining a low voltage, high speed operation, high integration density semiconductor integrated circuit device which is composed of composite field transistors.

従来、本発明と同様な効果を得るためには、相
補型トランジスタ(Complementary MOS
Trs)が一般に用いられていた。相補型トランジ
スタとはPチヤンネルMOSトランジスタとNチ
ヤンネルMOSトランジスタを同一半導体基板平
面上に分離し、各々の機能を確保させ、適切な配
線を形成して回路を構成するものである。
Conventionally, in order to obtain the same effect as the present invention, complementary transistors (Complementary MOS
Trs) were commonly used. A complementary transistor is a circuit in which a P-channel MOS transistor and an N-channel MOS transistor are separated on the same semiconductor substrate plane, their respective functions are ensured, and appropriate wiring is formed.

従来の相補型トランジスタはすでに、半導体集
積回路装置として一般に製造されている。一例と
してN型半導体基板を用いた基本的な構造を第1
図に示し、これを説明する。
Conventional complementary transistors are already commonly manufactured as semiconductor integrated circuit devices. As an example, the basic structure using an N-type semiconductor substrate is shown in the first example.
It is shown in the figure and explained.

N型シリコン半導体基板1にP型の拡散層であ
るP Well拡散層2、前記P Well拡散層2の
領域内にNチヤンネルMOSトランジスタのソー
ス拡散層3、ドレイン拡散層4、前記ソース拡散
層3とドレイン拡散層4間の前記P Well拡散
層2の表面にゲート絶縁膜5、前記ゲート絶縁膜
5上に設置されたゲート電極6、前記ソース拡散
層3、ドレイン拡散層4に接続するソース電極
7、ドレイン電極8で構成されたNチヤンネル
MOSトランジスタと、前記P Well拡散層2を
除く前記N型シリコン半導体基板1上にPチヤン
ネルMOSトランジスタのソース拡散層9、ドレ
イン拡散層10、前記ソース拡散層9とドレイン
拡散層10間の前記シリコン半導体基板1上にゲ
ート絶縁膜11、前記ゲート絶縁膜11上に設置
されたゲート電極12、前記ソース拡散層9、ド
レイン拡散層10に接続するソース電極13、ド
レイン電極14で構成されるPチヤンネルトラン
ジスタ、及び前記シリコン半導体基板1各拡散
層、各電極を絶縁分離するフイールド絶縁膜15
により、単位構造が完成する。
A P Well diffusion layer 2 which is a P type diffusion layer is formed on an N type silicon semiconductor substrate 1, and within the region of the P Well diffusion layer 2, a source diffusion layer 3, a drain diffusion layer 4, and the source diffusion layer 3 of an N channel MOS transistor are formed. A gate insulating film 5 is provided on the surface of the P Well diffusion layer 2 between the P well diffusion layer 2 and the drain diffusion layer 4, a gate electrode 6 is provided on the gate insulating film 5, and a source electrode is connected to the source diffusion layer 3 and the drain diffusion layer 4. 7. N channel composed of drain electrode 8
On the N-type silicon semiconductor substrate 1 excluding the MOS transistor and the P well diffusion layer 2, the source diffusion layer 9 and the drain diffusion layer 10 of the P channel MOS transistor, and the silicon between the source diffusion layer 9 and the drain diffusion layer 10 are formed. A P channel consisting of a gate insulating film 11 on a semiconductor substrate 1, a gate electrode 12 disposed on the gate insulating film 11, a source electrode 13 connected to the source diffusion layer 9, and a drain electrode 14 connected to the source diffusion layer 9 and the drain diffusion layer 10. a field insulating film 15 for insulating and separating the transistor, each diffusion layer, and each electrode of the silicon semiconductor substrate 1;
The unit structure is completed.

前記各電極を適切に接続することにより得られ
る論理素子、例えば最も基本的な回路構成である
インバーター回路の構成を示す回路図が第2図に
示される。第1図と第2図の関係は、第2図Tr1
が第1図NチヤンネルMOSトランジスタと対応
し、Tr2がPチヤンネルMOSトランジスタにそれ
ぞれ対応する。ゲート電極6と12が接続され、
入力となりNチヤンネルMOSのドレイン電極8
が電源VDDに接続され、NチヤンネルMOSのソ
ース電極7と、PチヤンネルMOSのドレイン電
極14とを接続し、これを出力とする。Pチヤン
ネルMOSのソース電極13は接地される。
FIG. 2 is a circuit diagram showing the configuration of a logic element, such as an inverter circuit, which is the most basic circuit configuration, obtained by appropriately connecting each of the electrodes. The relationship between Figure 1 and Figure 2 is Figure 2 Tr 1
corresponds to the N-channel MOS transistor in FIG. 1, and Tr 2 corresponds to the P-channel MOS transistor. Gate electrodes 6 and 12 are connected,
Drain electrode 8 of N-channel MOS becomes input
is connected to the power supply VDD , and connects the source electrode 7 of the N-channel MOS and the drain electrode 14 of the P-channel MOS, and outputs this. The source electrode 13 of the P-channel MOS is grounded.

NチヤンネルMOS、PチヤンネルMOSは共に
エンハンスメント型MOSである。前記相補型
MOSの利点として、(1)DC的な消費電力が小さ
い、(2)高速度動作が可能等が考えられるが、一
方、欠点として同一半導体基板表面上にPとNチ
ヤンネルMOSトランジスタを構成し、かつ、相
互に電気的に絶縁するための分離領域を必要とす
るので、単位ロジツク当りの面積が大きいことが
挙げられる。
Both N-channel MOS and P-channel MOS are enhancement type MOS. Complementary type
The advantages of MOS include (1) low DC power consumption, and (2) high-speed operation, but the disadvantage is that P and N channel MOS transistors are formed on the same semiconductor substrate surface. In addition, since separate regions are required to electrically insulate each other, the area per unit logic is large.

本発明の目的は前記の様に、相補型MOSトラ
ンジスタの利点を有し、かつ、素子面積の小さい
半導体集積回路装置を提供することである。
As described above, an object of the present invention is to provide a semiconductor integrated circuit device that has the advantages of complementary MOS transistors and has a small element area.

本発明の特徴は、一導電型の半導体基板の一主
面に逆導電型の第1のソース領域、第1のドレイ
ン領域を設け、この両領域間の一主面上に第1の
ゲート絶縁膜、この第1のゲート絶縁膜の少くと
も一部の上に半導体膜層を設け、この半導体膜上
に第2のゲート絶縁膜を設け、第1のゲート絶縁
膜、第2のゲート絶縁膜上に同一ゲート電極を設
け、さらに第1のソース、ドレイン領域ならびに
半導体膜の両端にそれぞれ引き出し電極を設けた
ことである。
A feature of the present invention is that a first source region and a first drain region of opposite conductivity type are provided on one main surface of a semiconductor substrate of one conductivity type, and a first gate insulating region is provided on one main surface between these two regions. a semiconductor film layer is provided on at least a portion of the first gate insulating film, a second gate insulating film is provided on the semiconductor film, the first gate insulating film, the second gate insulating film; The same gate electrode is provided on the semiconductor film, and extraction electrodes are provided in the first source and drain regions and at both ends of the semiconductor film.

以下に実施例を図面を用いて詳細に説明する。 Examples will be described in detail below with reference to the drawings.

第3図は本発明の一実施例を示すものである。 FIG. 3 shows an embodiment of the present invention.

P型シリコン半導体基板21上に、既知MOS
構造と同じN型ソース拡散層22、ドレイン拡散
層23が形成され、前記ソース拡散層22とドレ
イン拡散層23にそれぞれ接続するソース電極2
9、ドレイン電極30が厚いフイールド絶縁膜2
5上に設置されている。前記シリコン半導体基板
21の表面の前記ソース拡散層22、ドレイン拡
散層23間に第1ゲート絶縁膜24が形成され、
少くとも前記第1ゲート絶縁膜24の一部の上に
P型半導体膜26が設置され、前記P型半導体膜
26の両端に第2のソース電極31、第2のドレ
イン電極32が接続され、前記厚いフイールド絶
縁膜25上に設置されている。前記第2のソース
電極と接続される部分を除く前記P型半導体膜2
6が、第2ゲート絶縁膜27によつて被覆され、
前記第1ゲート絶縁膜24、前記第2ゲート絶縁
膜27上を覆うゲート電極28を形成する事によ
り完成する。
On the P-type silicon semiconductor substrate 21, a known MOS
An N-type source diffusion layer 22 and a drain diffusion layer 23 having the same structure are formed, and a source electrode 2 is connected to the source diffusion layer 22 and drain diffusion layer 23, respectively.
9. Field insulating film 2 with thick drain electrode 30
It is installed on 5. A first gate insulating film 24 is formed between the source diffusion layer 22 and the drain diffusion layer 23 on the surface of the silicon semiconductor substrate 21,
A P-type semiconductor film 26 is provided on at least a part of the first gate insulating film 24, and a second source electrode 31 and a second drain electrode 32 are connected to both ends of the P-type semiconductor film 26, It is placed on the thick field insulating film 25. The P-type semiconductor film 2 excluding the portion connected to the second source electrode
6 is covered with a second gate insulating film 27,
This is completed by forming a gate electrode 28 covering the first gate insulating film 24 and the second gate insulating film 27.

第4図A乃至Fはそれぞれ本発明による種々の
変形上面図である。
4A to 4F are top views of various modifications according to the present invention, respectively.

前記ソース拡散層22、ドレイン拡散層23、
にそれぞれ接続するソース電極29、ドレイン電
極30、前記P型半導体膜26に接続する第2の
ソース電極31、第2のドレイン電極32が示さ
れ、同時にP型半導体膜26と、ゲート電極28
の構成の関係が第4図Aから第4図F迄例として
示してある。
the source diffusion layer 22, the drain diffusion layer 23,
A source electrode 29, a drain electrode 30, a second source electrode 31, and a second drain electrode 32 connected to the P-type semiconductor film 26 are shown, and at the same time, the P-type semiconductor film 26 and the gate electrode 28 are shown.
The relationship between the configurations is shown as an example in FIGS. 4A to 4F.

すなわち、第4図Aは前記半導体膜26が前記
第1ゲート絶縁膜24を完全に覆い、前記ゲート
電極28が前記第1ゲート絶縁膜24、第2ゲー
ト絶縁膜27上に設置される図を示し、第4図B
は前記第1ゲート絶縁膜24、半導体膜26、第
2ゲート絶縁膜27、ゲート電極28が同じ巾の
長さで構成され、セルフアライメント構造を有す
る装置の構成を示し、第4図Cは、前記半導体膜
26の巾が前記ゲート電極28の巾より狭い構造
を示し、第4図Dは、前記半導体膜26が前記第
1ゲート絶縁膜24上の一部に設置される状態を
示し、第4図Eは第4図Dを更に誇張した様子が
示され、前記第1ゲート絶縁膜24からなる
MOSトランジスタの電流利得を大きくする構造
が示され、第4図Fは前記半導体膜26が前記第
1ゲート絶縁膜24上から、完全に分離したフイ
ールド絶縁膜25上に設置されている。しかしこ
の第4FFは、素子面積が大きくなる欠点を有す
る。
That is, FIG. 4A shows a diagram in which the semiconductor film 26 completely covers the first gate insulating film 24 and the gate electrode 28 is installed on the first gate insulating film 24 and the second gate insulating film 27. Figure 4B
4C shows the configuration of a device having a self-alignment structure in which the first gate insulating film 24, the semiconductor film 26, the second gate insulating film 27, and the gate electrode 28 have the same width and length, and FIG. FIG. 4D shows a structure in which the width of the semiconductor film 26 is narrower than the width of the gate electrode 28, and FIG. FIG. 4E shows a further exaggerated view of FIG. 4D, which is composed of the first gate insulating film 24.
A structure for increasing the current gain of a MOS transistor is shown, and in FIG. 4F, the semiconductor film 26 is placed on a field insulating film 25 completely separated from the first gate insulating film 24. However, this fourth FF has the disadvantage that the element area becomes large.

第5図は第3図に示す第1の実施例による装置
を、インバータとして用いる場合の結線方法を示
す。前記ソース拡散層22に接続するソース電極
29と、前記P型半導体膜26に接続する第2の
ソース電極31が結線され出力端子とし、前記ド
レイン拡散層に接続するドレイン電極30を電源
端子とし、前記ゲート電極28を入力端子とし、
前記P型半導体膜に接続する第2のドレイン電極
32をアース端子とする。
FIG. 5 shows a wiring method when the device according to the first embodiment shown in FIG. 3 is used as an inverter. A source electrode 29 connected to the source diffusion layer 22 and a second source electrode 31 connected to the P-type semiconductor film 26 are connected as an output terminal, and a drain electrode 30 connected to the drain diffusion layer is used as a power supply terminal, The gate electrode 28 is used as an input terminal,
The second drain electrode 32 connected to the P-type semiconductor film is used as a ground terminal.

第5図を簡略化し、実際の動作機構が第6図
A、第7図Aで示され、それぞれの回路図を第6
図A、第7図Bに示す。
Fig. 5 is simplified, and the actual operating mechanism is shown in Fig. 6A and Fig. 7A, and the respective circuit diagrams are shown in Fig. 6A and Fig. 7A.
It is shown in Figure A and Figure 7B.

前記P型半導体膜26は200〜1500Åの膜厚か
らなり、両端に接続する第2ソース電極31、第
2ドレイン電極32はP型半導体膜26とオーミ
ツクな接触をする金属膜又は、P型半導体膜が利
用される。
The P-type semiconductor film 26 has a thickness of 200 to 1500 Å, and the second source electrode 31 and second drain electrode 32 connected to both ends are metal films or P-type semiconductors that are in ohmic contact with the P-type semiconductor film 26. A membrane is utilized.

第6図A,Bに示すように前記ゲート電極28
に入力として、零〜負の電圧が印加されると前記
P型半導体膜26の表面、シリコン半導体板21
の表面に正孔が誘起され、P型半導体膜26とオ
ーミツクな接触をする第2ソース電極31、第2
ドレイン電極32は電気的導通状態となるが、他
方、シリコン半導体基板21に形成されたN型拡
散層のソース拡散層22、ドレイン拡散層23の
間には正孔が誘起されないため、ソース電極9と
ドレイン電極10間には電気的な径路は発生しな
い。従つて、第6図Bの回路図に示される様に出
力は接地状態であるLowレベルを示し、かつ、電
源端子は電気的に電力を消費しない。
As shown in FIGS. 6A and 6B, the gate electrode 28
When a zero to negative voltage is applied as an input to the surface of the P-type semiconductor film 26, the silicon semiconductor plate 21
Holes are induced on the surface of the second source electrode 31, which makes ohmic contact with the P-type semiconductor film 26.
The drain electrode 32 becomes electrically conductive, but on the other hand, holes are not induced between the source diffusion layer 22 and the drain diffusion layer 23, which are N-type diffusion layers formed in the silicon semiconductor substrate 21, so that the source electrode 9 No electrical path is generated between the drain electrode 10 and the drain electrode 10. Therefore, as shown in the circuit diagram of FIG. 6B, the output shows a low level, which is a grounded state, and the power supply terminal does not consume electrical power.

一方、第7図A,Bに示されるように前記ゲー
ト電極28に入力として正の電圧が印加される
と、前記P型半導体膜26に空乏層40が、前記
第1ゲート絶縁膜24方向に広がり空乏層が第1
ゲート絶縁膜24に達し、前記シリコン半導体基
板21表面にも空乏層が広がり、ついには、前記
シリコン半導体基板21の表面に電子の反転層が
形成され、前記シリコン半導体基板21に接続す
る前記ソース拡散層22、ドレイン拡散層23は
前記シリコン半導体基板1表面を通して電気的な
径路を構成する。従つて、前記ゲート電極28下
の前記P型半導体膜26は、空乏層によつて占め
られ電気的に高抵抗となり、第2のドレイン電極
31と第2のソース電極32間は電気的に分離さ
れる。
On the other hand, as shown in FIGS. 7A and 7B, when a positive voltage is applied as an input to the gate electrode 28, a depletion layer 40 is formed in the P-type semiconductor film 26 in the direction of the first gate insulating film 24. The expanding depletion layer is the first
The depletion layer reaches the gate insulating film 24 and spreads also on the surface of the silicon semiconductor substrate 21, and finally an electron inversion layer is formed on the surface of the silicon semiconductor substrate 21, and the source diffusion connected to the silicon semiconductor substrate 21. The layer 22 and the drain diffusion layer 23 constitute an electrical path through the surface of the silicon semiconductor substrate 1. Therefore, the P-type semiconductor film 26 under the gate electrode 28 is occupied by a depletion layer and has high electrical resistance, and the second drain electrode 31 and the second source electrode 32 are electrically isolated. be done.

第7図Bの回路図に前記動作機構が示され、出
力端子にはVDDに近い電圧があらわれHighレベ
ルとなる。
The operating mechanism is shown in the circuit diagram of FIG. 7B, where a voltage close to V DD appears at the output terminal and becomes High level.

出力端子に正電圧が発生するにもかかわらず、
前記P型半導体膜26に接続しているソース電極
31とドレイン電極32間は、電気的な径路が発
生しないためDC的な消費はない。
Despite the presence of a positive voltage at the output terminal,
Since no electrical path is generated between the source electrode 31 and the drain electrode 32 connected to the P-type semiconductor film 26, there is no DC consumption.

このように本発明によれば次の効果が期待でき
る。
As described above, according to the present invention, the following effects can be expected.

(1):従来の相補型トランジスタの利点である、低
電力消費、高速度動作が可能である。
(1): Low power consumption and high-speed operation are possible, which are the advantages of conventional complementary transistors.

(2):従来の相補型トランジスタより素子面積が少
くてすむ。
(2): Requires less element area than conventional complementary transistors.

(3):半導体膜を含むトランジスタは、多数キヤリ
ア動作機構のため利得が期待できる。
(3): Transistors containing semiconductor films can be expected to have a gain due to their multiple carrier operation mechanism.

又、本発明を説明するための一例を示したが、
前記例と反対の電気電導型を有する装置の場合も
同様な効果が得られる。
In addition, although an example was shown to explain the present invention,
A similar effect can be obtained in the case of a device having an electrical conductivity type opposite to that of the above example.

本発明は、同一ゲート電極で、少数キヤリアに
上るトランジスタ機能を制御する、特徴を有する
半導体集積回路装置である。
The present invention is a semiconductor integrated circuit device having the feature that transistor functions of a minority carrier can be controlled using the same gate electrode.

以上の説明により本発明によれば、低電力、高
速かつ素子面積の小さな半導体集積回路装置を得
る事ができる事は明らかである。
From the above description, it is clear that according to the present invention, it is possible to obtain a semiconductor integrated circuit device with low power consumption, high speed, and small element area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の相補型トランジスタを示す断面
図であり、第2図は相補型トランジスタによるイ
ンバータの回路図である。第3図は本発明の第1
の実施例の断面図である。第4図A,B,C,
D,EおよびFはそれぞれ本発明の第2、第3、
第4、第5、第6および第7の実施例を示す上面
図である。第5図は第3図に示す第1の実施例を
インバータとして用いた場合の結線状態を示す断
面図である。第6図Aは第5図のゲート電極に零
〜負電位を印加した状態を示す略断面図であり、
第6図Bはこの状態の回路図である。第7図Aは
第5図のゲート電極に正電位を印加した状態を示
す略断面図であり、第7図Bはこの状態の回路図
である。 尚、図において1は半導体基板、2は拡散層、
3,9はソース拡散層、4,10はドレイン拡散
層、5,11はゲート絶縁膜、6,12はゲート
電極、7,13はソース拡散層に接続するソース
電極、8,14はドレイン拡散層に接続するドレ
イン電極、15はフイールド絶縁膜、21はP型
シリコン基板、22はN型ソース拡散層、23は
N型ドレイン拡散層、24は第1のゲート絶縁
膜、25は厚いフイールド絶縁膜、26はP型半
導体膜、27は第2のゲート絶縁膜、28はゲー
ト電極、29はソース電極、30はドレイン電
極、31は第2のソース電極、32は第2のドレ
イン電極、40は空乏層、である。
FIG. 1 is a sectional view showing a conventional complementary transistor, and FIG. 2 is a circuit diagram of an inverter using complementary transistors. Figure 3 shows the first embodiment of the present invention.
FIG. Figure 4 A, B, C,
D, E, and F are the second, third, and
It is a top view which shows the 4th, 5th, 6th, and 7th Example. FIG. 5 is a sectional view showing a wiring state when the first embodiment shown in FIG. 3 is used as an inverter. FIG. 6A is a schematic cross-sectional view showing a state in which a zero to negative potential is applied to the gate electrode of FIG.
FIG. 6B is a circuit diagram of this state. FIG. 7A is a schematic cross-sectional view showing a state in which a positive potential is applied to the gate electrode in FIG. 5, and FIG. 7B is a circuit diagram in this state. In the figure, 1 is a semiconductor substrate, 2 is a diffusion layer,
3 and 9 are source diffusion layers, 4 and 10 are drain diffusion layers, 5 and 11 are gate insulating films, 6 and 12 are gate electrodes, 7 and 13 are source electrodes connected to the source diffusion layers, and 8 and 14 are drain diffusion layers. 15 is a field insulating film, 21 is a P-type silicon substrate, 22 is an N-type source diffusion layer, 23 is an N-type drain diffusion layer, 24 is a first gate insulating film, and 25 is a thick field insulation film. 26 is a P-type semiconductor film, 27 is a second gate insulating film, 28 is a gate electrode, 29 is a source electrode, 30 is a drain electrode, 31 is a second source electrode, 32 is a second drain electrode, 40 is a depletion layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板の一主面に逆導電型の
第1のソース領域および第1のドレイン領域を設
け、該第1のソース、ドレイン領域間の前記一主
面上に第1のゲート絶縁膜を設け、該第1のゲー
ト絶縁膜の少くとも一部の上に基板と同一導電型
の半導体膜を設け、該半導体膜上に第2のゲート
絶縁膜を設け、該第2ゲート絶縁膜上にゲート電
極を設け、更に前記第1のソース領域および第1
のドレイン領域ならびに前記半導体膜の両端には
それぞれソース、ドレインの引き出し電極を設け
たことを特徴とする半導体集積回路装置。
1. A first source region and a first drain region of opposite conductivity type are provided on one main surface of a semiconductor substrate of one conductivity type, and a first gate is provided on the one main surface between the first source and drain regions. an insulating film is provided, a semiconductor film of the same conductivity type as the substrate is provided on at least a portion of the first gate insulating film, a second gate insulating film is provided on the semiconductor film, and the second gate insulating film is provided with a semiconductor film having the same conductivity type as the substrate; A gate electrode is provided on the film, and the first source region and the first
A semiconductor integrated circuit device characterized in that source and drain extraction electrodes are provided in the drain region and both ends of the semiconductor film, respectively.
JP1716578A 1978-02-16 1978-02-16 Semiconductor integrated circuit device Granted JPS54109788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1716578A JPS54109788A (en) 1978-02-16 1978-02-16 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1716578A JPS54109788A (en) 1978-02-16 1978-02-16 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS54109788A JPS54109788A (en) 1979-08-28
JPS627709B2 true JPS627709B2 (en) 1987-02-18

Family

ID=11936338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1716578A Granted JPS54109788A (en) 1978-02-16 1978-02-16 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS54109788A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413759A (en) * 1977-07-01 1979-02-01 Nippon Telegr & Teleph Corp <Ntt> Logic circuit using complementary mis transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413759A (en) * 1977-07-01 1979-02-01 Nippon Telegr & Teleph Corp <Ntt> Logic circuit using complementary mis transistor

Also Published As

Publication number Publication date
JPS54109788A (en) 1979-08-28

Similar Documents

Publication Publication Date Title
JP2666928B2 (en) Output detector for charge transfer device
US6392277B1 (en) Semiconductor device
JPH0714009B2 (en) MOS type semiconductor memory circuit device
KR850007718A (en) Semiconductor devices
KR970003831A (en) Semiconductor device having another conductive semiconductor region insulated by field oxide and method of manufacturing the same
US5677550A (en) Integrated circuit devices including insulated-gate transistor device having two separately biasable gates
JPH0527267B2 (en)
JPS6247156A (en) Insulated gate type semiconductor device
JPH04216674A (en) Horizontal-type mos control-type thyristor
KR840000988A (en) Insulated Gate Field Effect Transistor
JP2825038B2 (en) Semiconductor device
JPH02246264A (en) Semiconductor device and manufacture thereof
KR900007904B1 (en) Method of manufacturing semiconductor device
JPS627709B2 (en)
JPS6129148B2 (en)
JP3248791B2 (en) Semiconductor device
JPS6110268A (en) Complementary mos semiconductor device and manufacture thereof
US5160990A (en) MIS-FET with small chip area and high strength against static electricity
JP2956181B2 (en) Semiconductor device having resistance element
JPH0560266B2 (en)
JP2601664B2 (en) Insulated gate field effect semiconductor device
JPS6276557A (en) Insulated gate type self-turn-off element
US3454795A (en) Semiconductive field-controlled diode device
JPS60124863A (en) Mos integrated circuit device
JP2668542B2 (en) Semiconductor device