JPS6274282A - Cultivation of obligatory anaerobic bacteria - Google Patents

Cultivation of obligatory anaerobic bacteria

Info

Publication number
JPS6274282A
JPS6274282A JP21407885A JP21407885A JPS6274282A JP S6274282 A JPS6274282 A JP S6274282A JP 21407885 A JP21407885 A JP 21407885A JP 21407885 A JP21407885 A JP 21407885A JP S6274282 A JPS6274282 A JP S6274282A
Authority
JP
Japan
Prior art keywords
bacteria
anaerobic bacteria
gel
natural polysaccharide
agar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21407885A
Other languages
Japanese (ja)
Inventor
Katsuya Miki
克哉 三木
Sadao Kageyama
蔭山 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP21407885A priority Critical patent/JPS6274282A/en
Publication of JPS6274282A publication Critical patent/JPS6274282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To rapidly cultivate obligatory anaerobic bacteria in a high concentration, by cultivating the bacteria in a liquid culture medium mixed with a gelatinized natural polysaccharide. CONSTITUTION:A natural polysaccharide, e.g. agar, carrageenan or alginic acid, capable of forming gel is gelatinized and obligatory anaerobic bacteria, e.g. bacteria of the genus Clostridium or Eubacterium or sulfuric acid reducing bacteria, are cultivated in a liquid culture medium while bringing the gelatinized natural polysaccharide into contact with the liquid culture medium. The growth rate of the obligatory anaerobic bacteria reaches about 1.2-2.5 times of that obtained by ordinary liquid cultivation and the maximum yield of the bacterial cells reaches about 5-17 times that obtained by ordinary liquid cultivation.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は、偏性嫌気性細菌の培養方法に関するものであ
る。詳しくは、ゲル化した天然多糖類と液体培地を混在
させ、液体培地中で微生物を培養し、迅速かつ高濃度に
偏性嫌気性細菌を培養する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for culturing obligate anaerobic bacteria. Specifically, the present invention relates to a method for rapidly culturing obligate anaerobic bacteria at a high concentration by mixing a gelled natural polysaccharide and a liquid medium, and culturing microorganisms in the liquid medium.

〔従来の技術及び問題点〕[Conventional technology and problems]

偏性嫌気性細菌は、酸素の存在下で生育出来ないため、
無酸素環境(嫌気的条件)の下で全ての培養操作を行わ
なければならない。このことに起因する培養の困難さに
加え、一般的に偏性嫌気性細菌は、好気性菌等、他の微
生物に比べ増殖速度、最大菌体濃度とも低いことが多く
、高濃度の偏性嫌気性細菌菌体を得ることは、しばしば
困難である。このため偏性嫌気性細菌は、好気性菌等、
他の微生物に比べ、生化学、生理学等の基礎分野及び醗
酵工学等の応用分野ともに研究が立ち遅れているのが現
状である。
Obligate anaerobic bacteria cannot grow in the presence of oxygen, so
All culture operations must be performed under anoxic environment (anaerobic conditions). In addition to the difficulty of culturing caused by this, obligate anaerobic bacteria generally have lower growth rates and lower maximum cell concentrations than other microorganisms such as aerobic bacteria, and obligate anaerobic bacteria at high concentrations Obtaining anaerobic bacterial cells is often difficult. For this reason, obligate anaerobic bacteria, aerobic bacteria, etc.
Compared to other microorganisms, research is currently lagging behind in both basic fields such as biochemistry and physiology, as well as applied fields such as fermentation engineering.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、偏性嫌気性細菌などの微生物の高濃度培
養に関する一連の研究を行ってきた。
The present inventors have conducted a series of studies on high-concentration culture of microorganisms such as obligate anaerobic bacteria.

この結果、天然多零唐類ゲルを液体培地に接触させ、液
体培地中で微生物を増殖させることにより、増殖速度や
最大菌体収量の向上に効果のあることを見出し、これに
基づき本発明を完成させるに至った。すなわち本発明は
、寒天、ガラギーナン、アルギン酸などに代表されるゲ
ル形成性の天然多糖類をゲル化し、通常用いられる液体
培地と接触させつつ、液体培地中で偏性嫌気性細菌を培
養する偏性嫌気性細菌の新規な培養方法を提供するもの
である。
As a result, it was discovered that by bringing the natural polymorph gel into contact with a liquid medium and growing microorganisms in the liquid medium, it is effective in improving the growth rate and maximum bacterial cell yield.Based on this, the present invention was developed. I ended up completing it. That is, the present invention is a method for cultivating obligate anaerobic bacteria in a liquid medium by gelling a gel-forming natural polysaccharide such as agar, galrageenan, or alginic acid, and contacting the gel with a commonly used liquid medium. The present invention provides a novel method for culturing anaerobic bacteria.

本発明において使用する偏性嫌気性細菌とは、無酸素条
件下で生育するいわゆる嫌気性細菌のうち、酸素の存在
下では生育できない細菌類を示し、たとえば、クロスト
リデュウム(C1ost−ridium)属、ユウバク
テリウム(E(11)3Cterium)属、アセトバ
クテリウム(Ace tobac ter ium)属
、セレノモナス(Selenomonus)属、ブチリ
バクテリウム(Butyribacterium)属な
どに属する細菌類や、メタン細菌、硫酸還元細菌、大部
分の光合成細菌などがあげられる。
The obligate anaerobic bacteria used in the present invention refers to bacteria that cannot grow in the presence of oxygen among so-called anaerobic bacteria that grow under anoxic conditions, such as Clostridium. Bacteria belonging to the genera Eubacterium (E(11)3Cterium), Acetobacterium, Selenomonus, Butyribacterium, etc., methanobacteria, sulfate reduction Examples include bacteria and most photosynthetic bacteria.

本発明において使用する天然多Pi類としては、寒天、
ガラギーナン、アルギン酸、ザンサンガム、ローカスト
ビーンガムなどゲル形成性を有する天然多糖類であれば
全て用いることができる。中でも、寒天、ガラギーナン
、アルギン酸が好ましい。これらの天然多糖類は、単一
で用いるほか、数種類を混合して用いることもできる。
The natural Pis used in the present invention include agar,
Any natural polysaccharide having gel-forming properties such as galrageenan, alginic acid, xanthan gum, and locust bean gum can be used. Among these, agar, galrageenan, and alginic acid are preferred. These natural polysaccharides can be used singly or in combination of several types.

本発明における天然多+)Inゲルの形成法は、使用す
る天然多vMRの種類に応じ、それぞれに公知の方法を
用いればよく、例えば寒天では、適当濃度の寒天含有溶
液を加熱後、成金凝固することにより、又、アルギン酸
では、適当?農度のアルギン酸含有溶液をカルシウム塩
、鉄塩、アルミニウム塩などの2価あるいは、3価の金
属塩溶液に接触させることにより、ゲルを得ることがで
きる。さらに、ゲル中に培地成分や、その他の特定成分
を添加して使用することにより増殖速度や最大菌体収量
に対する効果を更に向上させることができる。ゲルの天
然多糖類濃度は、ゲル形成可能な最低濃度以上であれば
任意に選択でき、使用する天然多IJ!iの種類によっ
て適切な濃度を選べばよい。ゲルと液体培地の体積比は
、任意に選択できるが、通常は液体培地に対しゲル体積
を1〜5倍とするのが好ましい。ゲルの形状は任意であ
り、培養器底部にゲル層を形成し、液体培地を積層させ
て培養する方法のほか球状、方形状等任意の形に成型し
たゲルを液体培地中に浮遊させて使用することもできる
The method for forming the natural poly(+)In gel in the present invention may be performed using any known method depending on the type of natural poly(vMR) used. For example, in the case of agar, after heating an agar-containing solution of an appropriate concentration, Also, is alginic acid suitable? A gel can be obtained by contacting a solution containing agricultural alginic acid with a solution of a divalent or trivalent metal salt such as a calcium salt, iron salt, or aluminum salt. Furthermore, by adding medium components and other specific components to the gel, the effect on the growth rate and maximum bacterial cell yield can be further improved. The natural polysaccharide concentration of the gel can be arbitrarily selected as long as it is at least the minimum concentration that allows gel formation. An appropriate concentration may be selected depending on the type of i. Although the volume ratio of the gel to the liquid medium can be selected arbitrarily, it is usually preferable that the volume of the gel is 1 to 5 times that of the liquid medium. The shape of the gel can be arbitrary, and in addition to forming a gel layer at the bottom of the culture vessel and culturing by layering the liquid medium, it is also possible to use gel molded into any shape such as spherical or rectangular and floating it in the liquid medium. You can also.

本発明において使用する液体培地は、偏性嫌気性細菌が
生育する液体培地であればどのような培地でも使用でき
る。例えば、アセトバクテリウム(Acetobact
erium)属、ユウハクテリウム(Eubac te
r ium)属、プチリバクリウム(Butyri−b
acterium)属などに属する細菌類では、公知の
培地、エム、ブラウン(M、Braun)  らによる
アーカイフ′スオフ゛マイクロバイオロジー(Arch
ivesof Microbiology)120L2
01−204(1979)記載の培地等が使用される。
The liquid medium used in the present invention may be any liquid medium in which obligate anaerobic bacteria can grow. For example, Acetobacterium
erium), Eubacterium
rium) genus, Butyri-b.
For bacteria belonging to the genus A.
ivesof Microbiology) 120L2
01-204 (1979) is used.

培養温度は、培養する細菌が生育できる温度であればど
のような温度でもよいが、それぞれの細菌の生育至適温
度を使用することが好ましい、培養は、無酸素条件下で
行わなければならないが、その他の条件については任意
であり、培養する細菌の種類に応し、各々の生育に好適
の条件で、静置、撹拌、ガス通気、振とう等の方法で培
養でき、連続培養を行うことも可能である。
The culture temperature may be any temperature as long as the bacteria to be cultured can grow, but it is preferable to use the optimal growth temperature for each bacteria.Culture must be performed under anoxic conditions. , Other conditions are optional, and depending on the type of bacteria to be cultured, cultivation can be done by methods such as standing still, stirring, gas aeration, shaking, etc. under conditions suitable for each type of growth, and continuous cultivation can be performed. is also possible.

なお、本発明は、ゲル中には菌体を存在させず、液体培
地中でのみ菌体を高濃度に増殖させる方法に関するもの
であり、ゲル中に菌体を包括する固定化法とは、目的・
方法とも異なるものである。
The present invention relates to a method for growing bacterial cells at a high concentration only in a liquid medium without the presence of bacterial cells in a gel, and the immobilization method of enclosing bacterial cells in a gel is the purpose·
The method is also different.

〔発明の効果〕〔Effect of the invention〕

本発明を用いることにより、液体培地中の偏性嫌気性細
菌の増殖速度は、通常の液体培養の約1.2〜2.5倍
量に、又最大菌体収量は、通常の液体培養の約5〜17
倍量に達し、非常に高濃度の偏性嫌気性細菌菌体を得る
ことができる。
By using the present invention, the growth rate of obligate anaerobic bacteria in liquid culture is about 1.2 to 2.5 times that of normal liquid culture, and the maximum bacterial cell yield is about 1.2 to 2.5 times that of normal liquid culture. Approximately 5-17
It is possible to double the amount and obtain extremely high concentrations of obligate anaerobic bacterial cells.

〔実施例〕〔Example〕

以下に実施例によって本発明を説明するが、本発明はこ
れらの実施例に限定させるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1表に示した“メタノール・D培地”に4gの寒天を
加えた溶液100m1を500m1フラスコに入れ、窒
素67%、二酸化炭素33%の雰囲気下で嫌気状態とし
、ブチルゴム栓で密封した後、120℃20分間加圧滅
菌し、室温で放冷凝固させ培地成分を含む寒天ゲル層を
フラスコ底部に形成させた。これに嫌気化操作及び、滅
菌操作を別に行った“メタノール・D液体培地”100
m1をグローブボックス中で加え、寒天ゲル層の上に液
体培地を重層させた。これに予め“メタノール・D液体
培地°中で3日間前培養をおこなった、アセトバクテリ
ウム ウツディ(Acetobacterrum wo
odii) DSM1030.アセトバクテリウム ウ
ツディ(Acetobacteriumwoodii)
 05M2396+ブチリバクテリウム メチロトロフ
ィカム(ButyribacteriuIIImeth
ylotro−phicum)八TCC33266、ユ
ウバクテリウム リモウサム(Eubacterium
 1imosum)05M20543.クロストリデュ
ウム フォルミコアセチカム(C1ost−ridiu
m formicoaceticu+w)05M205
43の4属4種5株の偏性嫌気性細菌株を約0.3〜l
嫌気条件下で接種し30℃、静置条件でそれぞれの培養
を開始した。なお、クロストリデュウム フォルミコア
セチカムの培養培地は、メタノールに代わりフラクトー
ス10gを添加して行った。また、対照実験として、寒
天ゲルを加えない液体培地のみによる培養を同じ条件で
同時に行った。
Example 1 100 ml of a solution prepared by adding 4 g of agar to the "methanol D medium" shown in Table 1 was placed in a 500 ml flask, brought to an anaerobic state in an atmosphere of 67% nitrogen and 33% carbon dioxide, and sealed with a butyl rubber stopper. Thereafter, the mixture was autoclaved at 120° C. for 20 minutes, and allowed to cool and solidify at room temperature to form an agar gel layer containing medium components on the bottom of the flask. "Methanol D liquid medium" 100 which was subjected to anaerobic operation and sterilization operation separately
m1 was added in a glove box, and the liquid medium was layered on top of the agar gel layer. This was supplemented with Acetobacterum wo, which had been precultured for 3 days in methanol/D liquid medium °.
odiii) DSM1030. Acetobacterium woodii
05M2396+Butyribacterium methylotrophicum (Butyribacterium IIImeth)
ylotro-phicum) 8TCC33266, Eubacterium limousum
1imosum)05M20543. Clostridium formicoaceticum (C1ost-ridiu)
m formicoaceticu+w)05M205
Approximately 0.3 to 1 liter of obligate anaerobic bacterial strains of 43 4 genera, 4 species, 5 strains
The cells were inoculated under anaerobic conditions and cultured at 30° C. under static conditions. The culture medium for Clostridium formicoaceticum was prepared by adding 10 g of fructose instead of methanol. In addition, as a control experiment, culture using only a liquid medium without the addition of agar gel was simultaneously conducted under the same conditions.

培養中の菌体濃度は、分光光度計を用い、610no+
の波長でICI+セルを用いた吸光度として測定した。
The bacterial cell concentration during the culture was measured using a spectrophotometer.
The absorbance was measured using an ICI+ cell at a wavelength of .

各菌株ごとの増殖速度及び最大菌体収量を第2表に示し
た。いずれの場合も増殖速度及び最大菌体収量とも、寒
天ゲルの存在によって通常の液体培養より明らかに高い
値が得られ、特にアセトバクテリウム ウツディDSM
1030では、増殖速度で約2.2倍、最大菌体収量で
約5.2倍に達した。
Table 2 shows the growth rate and maximum cell yield for each strain. In both cases, the presence of agar gel resulted in clearly higher growth rates and maximum bacterial cell yields than in normal liquid culture, especially for Acetobacterium utdii DSM.
1030, the growth rate reached approximately 2.2 times and the maximum bacterial cell yield reached approximately 5.2 times.

第2表 培養結果 実施例2 アセトバクテリウム ウツディDSM2396を用い、
ゲル化天然多糖類として寒天に代わり、k−ガラギーナ
ンを用いる以外は、実施例1と同様に実施した結果、増
殖速度及び最大菌体収量は、k−ガラギーナンゲルを含
む培地では、3.65および12.4となりそれぞれ通
常の液体培養の約1.9倍及び約6.7倍に達した。
Table 2 Culture results Example 2 Using Acetobacterium utsudi DSM2396,
The procedure was carried out in the same manner as in Example 1 except that k-garrageenan was used instead of agar as the gelled natural polysaccharide. As a result, the growth rate and maximum bacterial cell yield were 3.65 and 12 in the medium containing k-garrageenan gel. .4, about 1.9 times and about 6.7 times that of normal liquid culture, respectively.

実施例3 アセトバクテリウム ウツディDSM2396を用い、
培地成分を加えない寒天ゲルを用いる以外は、実施例1
と同様に実施した結果、増殖速度及び最大菌体収量は、
寒天ゲルを含む培地では、3.27及び4.05となり
それぞれ通常の液体培養の約1.7倍及び2.2倍に達
した。
Example 3 Using Acetobacterium utsudii DSM2396,
Example 1 except that agar gel without added medium components was used.
As a result of carrying out the same procedure as above, the growth rate and maximum bacterial cell yield were as follows.
In the medium containing agar gel, the values were 3.27 and 4.05, which were approximately 1.7 times and 2.2 times that of normal liquid culture, respectively.

実施例4 アセトバクテリウム ウツディDSM2396を用い、
培地成分を含む寒天ゲルと液体培地の体積比を5:1と
する以外は、実施例1と同様に実施した結果、増殖速度
及び最大菌体収量は、寒天ゲルを含む培地では、4.3
及び30.9となりそれぞれ通常の液体培養の約2.3
倍及び約16.6倍に達した。
Example 4 Using Acetobacterium utsudii DSM2396,
The procedure was carried out in the same manner as in Example 1, except that the volume ratio of the agar gel containing the medium components and the liquid medium was 5:1. As a result, the growth rate and maximum bacterial cell yield were 4.3 for the medium containing the agar gel.
and 30.9, respectively, which is about 2.3 of normal liquid culture.
This amount reached approximately 16.6 times.

Claims (1)

【特許請求の範囲】 1 ゲル化させたゲル形成性天然多糖類に液体培地を接
触させ、液体培地中で偏性嫌気性細菌を培養することを
特徴とする偏性嫌気性細菌の培養方法。 2 ゲル形成性天然多糖類が、寒天、ガラギーナン、ア
ルギン酸のうらから選ばれた少なくとも一種である特許
請求の範囲第1項に記載の偏性嫌気性細菌の培養方法。
[Scope of Claims] 1. A method for culturing obligate anaerobic bacteria, which comprises bringing a gelled natural polysaccharide into contact with a liquid medium and culturing obligate anaerobic bacteria in the liquid medium. 2. The method for culturing obligate anaerobic bacteria according to claim 1, wherein the gel-forming natural polysaccharide is at least one selected from agar, galrageenan, and alginic acid.
JP21407885A 1985-09-27 1985-09-27 Cultivation of obligatory anaerobic bacteria Pending JPS6274282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21407885A JPS6274282A (en) 1985-09-27 1985-09-27 Cultivation of obligatory anaerobic bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21407885A JPS6274282A (en) 1985-09-27 1985-09-27 Cultivation of obligatory anaerobic bacteria

Publications (1)

Publication Number Publication Date
JPS6274282A true JPS6274282A (en) 1987-04-06

Family

ID=16649879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21407885A Pending JPS6274282A (en) 1985-09-27 1985-09-27 Cultivation of obligatory anaerobic bacteria

Country Status (1)

Country Link
JP (1) JPS6274282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601962B1 (en) 1999-05-11 2003-08-05 Nichia Corporation Surface light emitting device
JP2008251372A (en) * 2007-03-30 2008-10-16 Nidec Copal Corp Surface light emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214077A (en) * 1984-04-06 1985-10-26 Omron Tateisi Electronics Co Ic card system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214077A (en) * 1984-04-06 1985-10-26 Omron Tateisi Electronics Co Ic card system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6601962B1 (en) 1999-05-11 2003-08-05 Nichia Corporation Surface light emitting device
US7063450B2 (en) 1999-05-11 2006-06-20 Nichia Corporation Surface light emitting device
JP2008251372A (en) * 2007-03-30 2008-10-16 Nidec Copal Corp Surface light emitting device

Similar Documents

Publication Publication Date Title
CN109321482A (en) A kind of environmental protection complex micro organism fungicide solid particulate product and preparation method thereof
CN105002110B (en) Complex microorganism preparations and its application in the processing of algal bloom water body
JPS6154292A (en) Two-phase mathane fermenting method by immobilized microbe
JPS6274282A (en) Cultivation of obligatory anaerobic bacteria
JP2002218970A (en) Method for producing liquid koji
Farid et al. Production of oxytetracycline by immobilized Streptomyces rimosus cells in calcium alginate gels
SU484696A3 (en) The method of obtaining biomass
CN106282073B (en) Culture method of alga-lysing vibrio brazilian H115
JPH0648977B2 (en) Method of culturing microorganisms
US3878045A (en) Process for the production of heteropolysaccharide by fermentation of methanol
JPS6279777A (en) Production of superoxide dismutase
JPS5942893A (en) Oxidation decomposition of dimethyl phosphate by microorganism
CN114426928B (en) Microalgae culture method for inhibiting mixed bacteria
CN108823132B (en) Method for prolonging preservation time of liquid photosynthetic bacteria product
JPH01108988A (en) Production of pyroracemic acid
Clarke The scientific study of bacteria, 1780–1980
SU1752767A1 (en) Strain of bacteria rhodococcus erythropolis - a producer of eropxydizing mono-oxygenase
CN113817646A (en) Simple photosynthetic bacteria culture medium and application thereof
CN116103345A (en) Biological nano selenium synthesized by preset lactic acid bacteria and synthesis preparation process thereof
KR0178085B1 (en) Mutant strains of the genus Tricosporonoides and preparation method of erythritol using the same
SU767196A1 (en) Method of culturing lithic enzyme producents
CN117126743A (en) Microalgae expanding culture mixed culture medium and application thereof
RU2098485C1 (en) Method of directed biosynthesis of citric acid
JPS60172281A (en) Clostridium sp. no.68-2
JPS59175875A (en) Cultivation of high-concentration respiratory-deficient yeast cell