JPH0648977B2 - Method of culturing microorganisms - Google Patents

Method of culturing microorganisms

Info

Publication number
JPH0648977B2
JPH0648977B2 JP60214077A JP21407785A JPH0648977B2 JP H0648977 B2 JPH0648977 B2 JP H0648977B2 JP 60214077 A JP60214077 A JP 60214077A JP 21407785 A JP21407785 A JP 21407785A JP H0648977 B2 JPH0648977 B2 JP H0648977B2
Authority
JP
Japan
Prior art keywords
gel
bacteria
liquid medium
agar
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60214077A
Other languages
Japanese (ja)
Other versions
JPS6274278A (en
Inventor
克哉 三木
貞夫 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP60214077A priority Critical patent/JPH0648977B2/en
Publication of JPS6274278A publication Critical patent/JPS6274278A/en
Publication of JPH0648977B2 publication Critical patent/JPH0648977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、細菌および酵母の培養方法に関するものであ
る。詳しくは、ゲル化した天然多糖類と液体培地を混在
させ、液体培地中で微生物を培養し、微生物菌体や、そ
の代謝産物を高濃度かつ効率よく生産する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for culturing bacteria and yeast. More specifically, the present invention relates to a method for producing a high concentration and efficient production of microbial cells and their metabolites by mixing gelled natural polysaccharides with a liquid medium and culturing a microorganism in the liquid medium.

〔従来の技術及び問題点〕[Conventional technology and problems]

細菌、酵母などを用い、代謝産物や酵素、あるいは菌体
を工業的に生産する際には、利用する微生物をいかに高
濃度に培養するかが重要な要素となる。このため、透析
培養や硫加培養などの方法が開発され、高い効果をあげ
ている。しかしながら、これらの方法は特別な装置を必
要とし、高い設備投資と複雑な制御が要求される点で不
利である。
When industrially producing metabolites, enzymes, or bacterial cells using bacteria, yeast, etc., how high the concentration of the microorganism to be used is cultivated is an important factor. For this reason, methods such as dialysis culture and sulphation culture have been developed and are highly effective. However, these methods are disadvantageous in that they require special equipment and require high equipment investment and complicated control.

また、偏性嫌気性菌は、酸素の存在下で生育できないた
め、無酸素環境(嫌気的条件)の下で全ての培養操作を
行わなければならない。このことに起因する培養の困難
さに加え、一般的に偏性嫌気性菌は、好気性菌等、他の
微生物に比べ増殖速度、最大菌体濃度とも低いことが多
く、高濃度の偏性嫌気性菌菌体を得ることは、しばしば
困難である。このため、偏性嫌気性菌は、好気性菌等、
他の微生物に比べ、生化学的、生理学的等の基礎分野及
び発酵工学等の応用分野ともに研究が立ち遅れているの
が現状である。
Further, since the obligate anaerobic bacterium cannot grow in the presence of oxygen, it is necessary to perform all the culture operations under anoxic environment (anaerobic condition). In addition to the difficulty of culturing due to this, in general, obligate anaerobic bacteria are often lower in growth rate and maximum bacterial cell concentration than other microorganisms such as aerobic bacteria, and thus high concentration of obligate anaerobic bacteria Obtaining anaerobic bacterial cells is often difficult. For this reason, obligate anaerobic bacteria, aerobic bacteria,
The current situation is that research is lagging behind in other basic fields such as biochemistry and physiology and in applied fields such as fermentation engineering, compared to other microorganisms.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、細菌、酵母などの微生物の高濃度培養に
関する一連の研究を行ってきた。この結果、天然多糖類
ゲルを液体培地に接触させ、液体培地中で微生物を増殖
させることにより、増殖速度や最大菌体収量の向上に効
果のあることを見出し、これに基づき本発明を完成させ
るに至った。すなわち本発明は、寒天、カラギーナン、
アルギン酸などに代表されるゲル形成性の天然多糖類を
ゲル化し、通常用いられる液体培地と接触させつつ、液
体培地中で細菌、酵母などの別生物を培養する微生物の
新規な培養方法を提供するものである。
The present inventors have conducted a series of studies on high-concentration culture of microorganisms such as bacteria and yeast. As a result, by contacting the natural polysaccharide gel with a liquid medium and growing the microorganism in the liquid medium, it was found that it is effective in improving the growth rate and the maximum cell yield, and based on this, the present invention is completed. Came to. That is, the present invention is agar, carrageenan,
Provided is a novel method for culturing a microorganism that gels a gel-forming natural polysaccharide typified by alginic acid or the like and cultivates another organism such as bacteria or yeast in a liquid medium while contacting with a commonly used liquid medium. It is a thing.

本発明において使用する細菌には好気性細菌及び嫌気性
細菌があり、無酸素条件下で生育する嫌気性細菌には酸
素の存在下で生育し得る通性嫌気性細菌と、酸素の存在
下では生育できない偏性嫌気性細菌とがある。
Bacteria used in the present invention include aerobic bacteria and anaerobic bacteria, anaerobic bacteria that grow under anoxic conditions are facultative anaerobic bacteria that can grow in the presence of oxygen, and in the presence of oxygen. There are obligate anaerobic bacteria that cannot grow.

前記偏性嫌気性菌とは、無酸素条件下で生育するいわゆ
る嫌気性細菌のうち、酸素の存在下では生育できない細
菌類を示し、例えばクロストリデュウム(Clostridium)
属、ユウバクテリウム(Eubacterium)属、アセトバクテ
リウム(Acetobacterium)属、セレノモナス(Selenomonu
s)属、ブチリバクテリウム(Butyribacterium)属などに
属する細菌類や、メタン細菌、硫酸還元細菌、大部分の
光合成細菌などがあげられる。
The obligate anaerobic bacterium, among so-called anaerobic bacteria that grow under anoxic conditions, indicates bacteria that cannot grow in the presence of oxygen, for example, Clostridium (Clostridium).
Genus, Eubacterium, Acetobacterium, Selenomonu
s) genus, bacteria belonging to the genus Butyribacterium, methane bacteria, sulfate-reducing bacteria, and most photosynthetic bacteria.

本発明において使用される天然多糖類としては、寒天、
カラギーナン、アルギル酸、ザンサンガム、ローカスト
ビーンガムなどゲル形成性を有する天然多糖類であれば
全て用いることができる。中でも、寒天、カラギーナ
ン、アルギン酸が好ましい。これらの天然多糖類は、単
一で用いるほか、数種類を混合して用いることもでき
る。さらに、ゲル中に培地成分や、その他の特定成分を
添加して使用することにより増殖速度や最大菌体収量に
対する効果を更に向上させることができる。本発明にお
ける天然多糖類ゲルの形成法は、使用する天然多糖類の
種類に応じ、それぞれに公知の方法を用いればよく、例
えば寒天では、適当濃度の寒天含有溶液を加熱後、放令
凝固することにより、又、アルギン酸では、適当濃度の
アルギン酸含有溶液をカルシウム塩、鉄塩、アルミニウ
ム塩などの2価あるいは、3価の金属塩溶液に接触させ
ることにより、ゲルを得ることができる。ゲルの天然多
糖類濃度は、ゲル形成可能な最低濃度以上であれば任意
に選択でき、使用する天然多糖類の種類によって適切な
濃度を選べばよい。ゲルと液体培地の体積比は、任意に
選択できるが、通常は液体培地に対しゲル体積を1〜5
倍とするのが好ましい。ゲルの形状は任意であり、培養
器底部にゲル層を形成し、液体培地を積層させて培養す
る方法のほか球状、方形状等任意の形に成型したゲルを
液体培地中に浮遊させて使用することもできる。
The natural polysaccharides used in the present invention include agar,
Any natural polysaccharide having a gel-forming property such as carrageenan, alginic acid, xanthan gum and locust bean gum can be used. Of these, agar, carrageenan and alginic acid are preferable. These natural polysaccharides can be used alone or in combination of several kinds. Furthermore, the effect on the growth rate and maximum cell yield can be further improved by adding and using a medium component and other specific components in the gel. The method for forming the natural polysaccharide gel in the present invention may be a known method depending on the type of natural polysaccharide to be used. For agar, for example, after heating an agar-containing solution having an appropriate concentration, coagulation is carried out. Thus, in the case of alginic acid, a gel can be obtained by bringing an alginic acid-containing solution having an appropriate concentration into contact with a divalent or trivalent metal salt solution such as a calcium salt, an iron salt or an aluminum salt. The natural polysaccharide concentration of the gel can be arbitrarily selected as long as it is at least the minimum concentration capable of forming a gel, and an appropriate concentration may be selected depending on the type of natural polysaccharide used. The volume ratio of the gel and the liquid medium can be arbitrarily selected, but usually the gel volume is 1 to 5 with respect to the liquid medium.
It is preferably doubled. The shape of the gel is arbitrary, and in addition to the method of forming a gel layer at the bottom of the incubator and stacking the liquid medium, it is used by suspending the gel molded in any shape such as spherical or rectangular shape in the liquid medium. You can also do it.

本発明において使用する液体培地は、培養しようとする
細菌、あるいは酵母が生育できる液体培地であればどの
ような培地でも使用できる。例えば、偏性嫌気性菌に分
類されるもののうち、アセトバクテリウム(Acetobacter
ium)属、ユウバクテリウム(Eubacterium)属、ブチリバ
クテリウム(Butyribacterium)属などに属する細菌類で
は、公知の培地、エム.ブラウン(M.Braun)らによるア
ーカイブスオブマイクロバイオロジー(A-rchives of Mi
crobiology)120,201-204(1979)記載の培地等が使用され
る。培養温度は培養する細菌、酵母が生育できる温度で
あればどのような温度でもよいが、それぞれの細菌、酵
母の生育至適温度を使用することが好ましい。又、他の
培養条件についても任意であり、培養する細菌、酵母の
種類に応じ、各々の生育に好適の条件で、静置、撹拌、
ガス通気、振とう等の方法で培養でき、連続培養を行う
ことも可能である。
The liquid medium used in the present invention may be any medium as long as it can grow the bacteria or yeast to be cultured. For example, among those classified as obligate anaerobes, acetobacterium (Acetobacter
bacterium, genus Eubacterium, genus Butyribacterium, and the like, known media such as M. Archives of Microbiology by M. Braun et al.
Crobiology) 120, 201-204 (1979) and the like are used. The culturing temperature may be any temperature as long as the bacterium and yeast to be cultivated can grow, but it is preferable to use the optimum growth temperature for each bacterium and yeast. Further, other culture conditions are also arbitrary, depending on the type of bacteria to be cultured, yeast, under conditions suitable for each growth, standing, stirring,
Culture can be performed by a method such as gas aeration and shaking, and continuous culture can also be performed.

なお、本発明は、ゲル中には菌体を存在させず、液体培
地中でのみ菌体を高濃度に増殖させる方法に関するもの
であり、ゲル中に菌体を包括する固定化法とは、目的・
方法とも異なるものである。
The present invention does not allow the cells to exist in the gel, and relates to a method of growing the cells to a high concentration only in a liquid medium, and the immobilization method of encapsulating the cells in the gel, Purpose·
It is also different from the method.

〔発明の効果〕〔The invention's effect〕

本発明を用いることにより、液体培地中の最大菌体収量
は、通常の液体培養の約1.5〜13倍量に達する。ま
た、本法によれば、特別な装置を必要とせず従来の高濃
度培養法に比し、簡便かつ安価に菌体の高濃度培養が可
能である。
By using the present invention, the maximum cell yield in a liquid medium reaches about 1.5 to 13 times that in a normal liquid culture. Further, according to the present method, it is possible to easily and inexpensively perform high-concentration culturing of bacterial cells as compared with the conventional high-concentration culturing method without requiring a special device.

〔実施例〕〔Example〕

以下に実施例によって本発明を説明するが、本発明はこ
れらの実施例に限定させるものではない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例1 バチルス サブチリス(Bacillus subtilis)IFO3007,ス
タフィロコッカス、オウレウス(Staphylococcus aureu
s)IFO3060,ラクトバチルス ライヒマニ(Lactobacillus
leichmannii)IFO3376,エッシュリヒア コリ(Escheric
hia coli)IFO3301,プロピオニバクテリウム シャーマ
ニ(Propionibacterium shermanii)IFO12391,アセトバ
クテリウム ウッディ(Acetobacterium woodii)DSM2396
の6属6種の細菌及びサッカロミセス セレビシェ(Sac
charomyces cerevisiae)IFO0203の1属1種の酵母を用
い、第1表に示した培地の組み合わせで培養した。各培
地の培地成分組成を第2表、第3表、第4表、第5表に
示した。
Example 1 Bacillus subtilis IFO3007, Staphylococcus aureu (Staphylococcus aureu)
s) IFO3060, Lactobacillus
leichmannii) IFO3376, Escherichia coli
hia coli) IFO3301, Propionibacterium shermanii IFO12391, Acetobacterium woody DSM2396
6 genera and 6 species of bacteria and Saccharomyces cerevisiae (Sac
Charomyces cerevisiae) IFO0203, one genus and one yeast, was used and cultured in the combination of the media shown in Table 1. The composition of the medium components of each medium is shown in Tables 2, 3, 4, and 5.

各培地100mlを500ml三角フラスコに入れ、4gの
寒天を添加し、発泡シリコン栓を施し、120℃で20
間加熱滅菌した後室温で放冷・凝固させ、培地成分を含
む寒天ゲル層をフラスコ底部に形成させた。これに12
0℃で20間加熱滅菌した液体培地100mlを加え、寒
天ゲル層の上に液体培地を重層させた。これに予めそれ
ぞれの培養条件で適当な期間前培養した前記の細菌及び
酵母を液体培地に約0.3ml接種し、第1表に示した条
件で培養を行った。なお、偏性嫌気性細菌のアセトバク
テリウムウッディイについては、以上の操作は全て嫌気
的条件下で行った。また、対照実験として、寒天ゲルを
加えない液体培地のみによる培養を同じ条件で同時に行
った。培養中の菌体濃度は、分光光度計を用い、610
nmの波長で1cmセルを用いた吸光度として測定した。各
菌株ごとの最大菌体収量を第6表に示した。いずれの場
合も最大菌体収量は、寒天ゲルの存在によって通常の液
体培養より高い値が得られ、バチルス サブチリスで約
1.5倍、ラクトバチルス ライヒマニで約1.9倍、
エシェリヒア コリで約1.6倍、プロピオニバクテリ
ウム シャーマニで約2.8倍、サッカロミセス セレ
ビシェで約2.3倍、アセトバクテリウム ウッディで
約5.2倍に達した。
Put 100 ml of each medium in a 500 ml Erlenmeyer flask, add 4 g of agar, cap with silicone foam, and heat at 120 ° C for 20 minutes.
After heat sterilization for a while, the mixture was allowed to cool and solidify at room temperature to form an agar gel layer containing medium components on the bottom of the flask. 12 to this
100 ml of a liquid medium heat-sterilized at 0 ° C. for 20 minutes was added, and the liquid medium was overlaid on the agar gel layer. About 0.3 ml of the above-mentioned bacteria and yeast, which had been pre-cultured for a suitable period under each culture condition, was inoculated into the liquid medium, and the culture was performed under the conditions shown in Table 1. All the above operations were performed under anaerobic conditions for the obligate anaerobic bacterium Acetobacterium woody. In addition, as a control experiment, culturing with only a liquid medium containing no agar gel was simultaneously performed under the same conditions. The cell concentration in the culture was measured with a spectrophotometer at 610
The absorbance was measured using a 1 cm cell at a wavelength of nm. The maximum cell yield for each strain is shown in Table 6. In each case, the maximum cell yield was higher than that in normal liquid culture due to the presence of the agar gel, which was about 1.5 times higher for Bacillus subtilis and about 1.9 times higher for Lactobacillus reichmannii.
Escherichia coli increased about 1.6 times, Propionibacterium shermani increased about 2.8 times, Saccharomyces cerevisiae about 2.3 times, and Acetobacterium Woody about 5.2 times.

実施例2 プロピオニバクテリウム シャーマニを用い、ゲル化天
然多糖類として寒天に代わり、k−カラギ−ナンを用い
る以外は、実施例1と同様に実施した結果、最大菌体収
量は、k−カラギーナンゲルを含む培地では、13.2
となり通常の液体培養の約3.8倍に達した。
Example 2 As a result of performing in the same manner as in Example 1 except that Propionibacterium shamani was used and k-carrageenan was used instead of agar as the gelling natural polysaccharide, the maximum cell yield was k-carrageenan. 13.2 in medium containing gel
This was about 3.8 times that of ordinary liquid culture.

実施例3 プロピオニバクテリウム、シャーマニを用い、培地成分
を加えない寒天ゲルを用いる以外は、実施例1と同様に
実施した結果、最大菌体収量は、寒天ゲルを含む培地で
は、5.35となり通常の液培養の約1.4倍に達し
た。
Example 3 As a result of the same procedure as in Example 1 except that Propionibacterium and Shamani were used and an agar gel containing no medium components was used, the maximum cell yield was 5.35 in the medium containing the agar gel. This is about 1.4 times that of normal liquid culture.

実施例4 プロピオニバクテリウム シャーマニを用い、培地成分
を含む寒天ゲルと液体培地の体積比を4:1とする以外
は、実施例1と同様に実施した結果、最大菌体収量は、
寒天ゲルを含む培地では、47.6となり通常の液体培
養の約12.4倍に達した。
Example 4 As a result of carrying out in the same manner as in Example 1 except that Propionibacterium shermani was used and the volume ratio of the agar gel containing the medium components and the liquid medium was 4: 1, the maximum cell yield was
In the medium containing the agar gel, it was 47.6, which was about 12.4 times that of the normal liquid culture.

実施例5 第5表に示した“メタノール・D培地”に4gの寒天を
加えた溶液100mlを500mlフラスコに入れ、窒素6
7%、二酸化炭素33%の雰囲気下で嫌気状態とし、ブ
チルゴム栓で密封した後、120℃20分間加圧減菌
し、室温で放冷凝固させ培地成分を含む寒天ゲル層をフ
ラスコ底部に形成させた。これに嫌気化操作及び、減菌
操作を別に行った“メタノール・D液体培地”100ml
をグローブボックス中で加え、寒天ゲル層の上に液体培
地を重層させた。これに予め“メタノール・D液体培
地”中で3日間前培養を行った、アセトバクテリウム
ウッディ(Acetobacterim woodii)DSM1030,アセトバク
テリウム ウッディ(Acetobacterium wood-ii)DSM239
6,ブチリバクテリウムメチロトロフィカム(Butyribact
erium methylotrophicum)ATCC33266,ユウバクテリウム
リモウサム(Euba-cterium limosum)DSM20543,クロス
トリデュウム フォルミコアセチカム(Clostridium for
mico-aceticum)DSM92の4属4種5株の偏性嫌気性細菌
株を約0.3ml嫌気条件下で接種し、30℃、静置条件
でそれぞれの培養を開始した。なお、クロストリデュウ
ム フォルミコアセチカムの培養培地は、メタノールに
代わりフラクトース10gを添加して行った。また、対
照実験として、寒天ゲルを加えない液体培地のみによる
培養を同じ条件で同時に行った。培養中の菌体濃度は、
分光光度計を用い、610nmの波長で1cmセルを用い
た吸光度として測定した。各菌株ごとの増殖速度及び最
大菌体収量を第7表に示した。いずれの場合も増殖速度
及び最大菌体収量とも、寒天ゲルの存在によって通常の
液体培養より明らかに高い値が得られ、特にアセトバク
テリウム ウッディDSM1030では、増殖速度で約2.2
倍、最大菌体収量で約5.2倍に達した。
Example 5 100 ml of a solution prepared by adding 4 g of agar to "methanol / D medium" shown in Table 5 was placed in a 500 ml flask, and nitrogen 6 was added.
After being anaerobic in an atmosphere of 7% and carbon dioxide 33%, sealed with a butyl rubber stopper, sterilized under pressure for 20 minutes at 120 ° C., and allowed to cool and solidify at room temperature to form an agar gel layer containing medium components on the bottom of the flask. Let 100 ml of "Methanol / D liquid medium" which was separately anaerobized and sterilized.
Was added in the glove box, and the liquid medium was overlaid on the agar gel layer. This was pre-cultured for 3 days in "methanol / D liquid medium" beforehand.
Woody (Acetobacter im woodii) DSM1030, Acetobacter woody (Acetobacterium wood-ii) DSM239
6, Butyribacterium methylotrophicum (Butyribact
erium methylotrophicum) ATCC33266, Euba-cterium limosum DSM20543, Clostridium formicoaceticum (Clostridium for
About 0.3 ml of obligate anaerobic bacterial strain of 4 genera, 4 species and 5 strains of mico-aceticum) DSM92 was inoculated under anaerobic conditions of about 0.3 ml, and each culture was started at 30 ° C. under static conditions. The culture medium for Clostridium formicoaceticum was prepared by adding 10 g of fructose instead of methanol. In addition, as a control experiment, culturing with only a liquid medium containing no agar gel was simultaneously performed under the same conditions. The cell concentration in the culture is
Absorbance was measured using a 1 cm cell at a wavelength of 610 nm using a spectrophotometer. Table 7 shows the growth rate and maximum cell yield of each strain. In both cases, the growth rate and the maximum cell yield were clearly higher than those in the normal liquid culture due to the presence of the agar gel. Particularly, in the case of Acetobacterium Woody DSM1030, the growth rate was about 2.2.
The maximum cell yield reached about 5.2 times.

実施例6 アセトバクテリウム ウッディDSM2396を用い、ゲル化
天然多糖類として寒天に代わり、k−カラギーナンを用
いる以外は、実施例5と同様に実施した結果、増殖速度
及び最大菌体収量は、k−カラギーナンゲルを含む培地
では、3.65及び12.4となりそれぞれの通常の液
体培養の約1.9倍及び約6.7倍に達した。
Example 6 Acetobacterium Woody DSM2396 was used, and except that k-carrageenan was used instead of agar as the gelling natural polysaccharide, the same procedure as in Example 5 was performed. As a result, the growth rate and the maximum cell yield were k- In the medium containing carrageenan gel, the amounts were 3.65 and 12.4, which were about 1.9 times and about 6.7 times that of the normal liquid culture, respectively.

実施例7 アセトバクテリウム ウッディDSM2396を用い、培地成
分を加えない寒天ゲルを用いる以外は、実施例5と同様
に実施した結果、増殖速度及び最大菌体収量は、寒天ゲ
ルを含む培地では、3.27及び4.05となりそれぞ
れの通常の液体培養の約1.7倍及び2.2倍に達し
た。
Example 7 Acetobacterium Woody DSM2396 was used and the same procedure as in Example 5 was performed except that an agar gel containing no medium components was used. As a result, the growth rate and the maximum cell yield were 3 in the medium containing the agar gel. The values were 0.27 and 4.05, which were about 1.7 times and 2.2 times that of the usual liquid culture, respectively.

実施例8 アセトバクテリウム ウッディDSM2396を用い、培地成
分を含む寒天ゲルと液体培地の体積比を5:1とする以
外は、実施例5と同様に実施した結果、増殖速度及び最
大菌体収量は、寒天ゲルを含む培地では、4.3及び3
0.9となりそれぞれ通常の液培養の約2.3倍及び約
16.6倍に達した。
Example 8 Acetobacterium Woody DSM2396 was used, except that the volume ratio of the agar gel containing the medium components to the liquid medium was 5: 1. As a result, the growth rate and the maximum cell yield were the same. , 4.3 and 3 for medium containing agar gel
It was 0.9, which was about 2.3 times and about 16.6 times that of the normal liquid culture, respectively.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/20 C12R 1:125) (C12N 1/20 C12R 1:01) (C12N 1/20 C12R 1:445) (C12N 1/20 C12R 1:225) (C12N 1/20 C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location (C12N 1/20 C12R 1: 125) (C12N 1/20 C12R 1:01) (C12N 1/20 C12R 1: 445) (C12N 1/20 C12R 1: 225) (C12N 1/20 C12R 1:19)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ゲル化させたゲル形成性天然多糖類に液体
培地を接触させ、液体培地中で細菌または酵母を培養す
ることを特徴とする微生物の培養方法。
1. A method for culturing a microorganism, which comprises contacting a gelled natural gel-forming polysaccharide with a liquid medium and culturing bacteria or yeast in the liquid medium.
【請求項2】細菌または酵母が、偏性嫌気性菌である特
許請求の範囲第1項に記載の微生物の培養方法。
2. The method for culturing a microorganism according to claim 1, wherein the bacterium or yeast is an obligate anaerobic bacterium.
【請求項3】ゲル形成性天然多糖類が、寒天、カラギー
ナン、アルギン酸のうちから選ばれた少なくとも一種で
ある特許請求の範囲第1項に記載の微生物の培養方法。
3. The method for culturing a microorganism according to claim 1, wherein the gel-forming natural polysaccharide is at least one selected from agar, carrageenan and alginic acid.
JP60214077A 1985-09-27 1985-09-27 Method of culturing microorganisms Expired - Lifetime JPH0648977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214077A JPH0648977B2 (en) 1985-09-27 1985-09-27 Method of culturing microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214077A JPH0648977B2 (en) 1985-09-27 1985-09-27 Method of culturing microorganisms

Publications (2)

Publication Number Publication Date
JPS6274278A JPS6274278A (en) 1987-04-06
JPH0648977B2 true JPH0648977B2 (en) 1994-06-29

Family

ID=16649864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214077A Expired - Lifetime JPH0648977B2 (en) 1985-09-27 1985-09-27 Method of culturing microorganisms

Country Status (1)

Country Link
JP (1) JPH0648977B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214078A (en) * 1984-04-06 1985-10-26 Omron Tateisi Electronics Co Ic card system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214078A (en) * 1984-04-06 1985-10-26 Omron Tateisi Electronics Co Ic card system

Also Published As

Publication number Publication date
JPS6274278A (en) 1987-04-06

Similar Documents

Publication Publication Date Title
Zeikus et al. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile
US4393136A (en) Bacterial ethanol production
CN111996136A (en) Pseudomonas fluorescens fermentation medium, culture method and application
CN103289912A (en) Solid fermentation method of bacillus coagulans
JPH0648977B2 (en) Method of culturing microorganisms
US3594284A (en) Lysostaphin fermentation with accelerated time cycle
JPS6274282A (en) Cultivation of obligatory anaerobic bacteria
JP3252927B2 (en) Levan saccharase enzyme, method for producing the same, microorganism producing the same, and composition containing the same
JPH01225487A (en) Method for utilizing cellulose in bioreactor carrier aiming at production of citric or gluconic acid with aspergillus niger
Farid et al. Production of oxytetracycline by immobilized Streptomyces rimosus cells in calcium alginate gels
CN110734873B (en) Method for increasing number of bacillus coagulans spores and application
JP7319405B2 (en) Method for producing natural N-acetylglucosamine
Clarke The scientific study of bacteria, 1780–1980
CN113430144B (en) Preparation method and application of acid-resistant and strong-fertility lactobacillus casei
JPS5925596B2 (en) Oxidative decomposition method of dimethyl phosphate using microorganisms
GB2081305A (en) Bacterial ethanol production
Bharati et al. Degradation of cellulose by mixed cultures of fermentative bacteria and anaerobic sulfur bacteria
RU2113478C1 (en) Method of superoxide dismutase preparing
JPS6250114B2 (en)
JPS63105677A (en) Production of particle carrying immobilized thermophilic bacterium
CN117305113A (en) Preservation method of liquid microbial preparation
JPS6349997B2 (en)
CN113969244A (en) Preparation method and application of bacillus mojavensis
CA1047425A (en) Glucose isomerase from curtobacterium and its use
Stern et al. Physiological Characteristics of Lactic Acid Bacteria Near the Maximum Growth Temperature: II. Studies on Respiration