JPS627417A - Semipermeable polymer membrane for drying gas to high degree and gas drying method using the same - Google Patents

Semipermeable polymer membrane for drying gas to high degree and gas drying method using the same

Info

Publication number
JPS627417A
JPS627417A JP61023977A JP2397786A JPS627417A JP S627417 A JPS627417 A JP S627417A JP 61023977 A JP61023977 A JP 61023977A JP 2397786 A JP2397786 A JP 2397786A JP S627417 A JPS627417 A JP S627417A
Authority
JP
Japan
Prior art keywords
gas
formula
membrane
ion exchange
semipermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61023977A
Other languages
Japanese (ja)
Other versions
JPH0761431B2 (en
Inventor
Yoshiaki Kageura
能章 影浦
Hiroshi Kobayashi
小林 ▲紘▼
Eigo Terada
寺田 栄吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2397786A priority Critical patent/JPH0761431B2/en
Publication of JPS627417A publication Critical patent/JPS627417A/en
Publication of JPH0761431B2 publication Critical patent/JPH0761431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To obtain a semipermeable polymer membrane for drying gas to a high degree not damaged by acidic gas and requiring no regeneration, by using a semipermeable membrane comprising a fluorocarbon type copolymer ion exchange resin wherein the relation between a water absorbing ratio and ion exchange capacity is fallen within a specific range. CONSTITUTION:A fluorocarbon type copolymer containing a repeating unit represented by formula I (wherein m is 0 or 1 and n is an integer of 2-5) is used. Further, it is especially necessary that the relation between the water absorbing ratio W and ion exchange capacity Q of this fluorocarbon type polymer membrane is fallen within a range represented by formula II (wherein W1 is a dry wt., W2 is a pure water immersion equilibrium wt. at 25 deg.C and Q is meg/g H-form dry resin). The sulfonic acid group of the fluorocarbon type polymer is pref. introduced into the copolymer in quantity of 0.5-2.5meg/g H-form dry resin as ion exchange capacity. When said copolymer is formed into a hollow yarn shape, an inner diameter is set to 400-500mum and a membrane thickness to 40-60mum. By this method the moisture content of gas can be reduced to 5ppm or less.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はシリコンウニ/\−のような半導体素材製造プ
ロセス用ガス、半導体デノくイス製造用力′ス、及びフ
ァインセラミックス、太陽電池、光ファイバーのような
新素材製造プロセス用ガスの高度乾燥に適した改良され
たフッ素系高分子半透膜に関する。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to gases for manufacturing processes of semiconductor materials such as silicone urchins, gases for manufacturing semiconductor devices, fine ceramics, solar cells, and optical fibers. This invention relates to an improved fluoropolymer semipermeable membrane suitable for high-level drying of gases used in new material manufacturing processes such as.

[従来の技術] たとえば、現在エレクトロニクス分野のめざましい発展
の先導役をつとめているのがLSI 、超LSIと呼ば
れている半導体デバイスであるが、これらの素材の製造
やデバイス製造プロセスにおいては窒素等の汎用ガスに
加えて、アルゴン、ヘリウム等の希ガス、塩化水素、塩
素等の腐食性ガス、さらにはシラン、アルシン、ポラン
ガス等の特殊ガスが使われている。更に現在半導体デバ
イス製造プロセスは高集積化(超微細化)が急激に進ん
でいる。
[Prior Art] For example, semiconductor devices called LSI and VLSI are currently leading the remarkable development in the electronics field, but in the manufacturing of these materials and device manufacturing processes, nitrogen and other substances are used. In addition to general-purpose gases, rare gases such as argon and helium, corrosive gases such as hydrogen chloride and chlorine, and special gases such as silane, arsine, and poran gas are used. Furthermore, semiconductor device manufacturing processes are currently rapidly becoming highly integrated (ultra-fine).

LSIの集積度があがり、現状の256にビットから1
メガビツト、4メガビツトになるに従い、微小パターン
の線幅がますますせまくなり、従って、いままであまり
問題にならなかった微粒子さえ収率への影響が出てきた
The degree of integration of LSI has increased, and the number of bits has increased from 1 to 256 at present.
As the number of megabits increases to 4 megabits, the line width of the fine pattern becomes narrower and narrower, and therefore even fine particles, which had not been a problem until now, are starting to affect the yield.

そこで上述の半導体製造に関するガスも例えばLSI 
3板となるシリコンウェハー用やデバイス製造プロセス
におけるエピタキシャル用、ドーピング用、エツチング
用、洗浄用等のガスについても4〜5ナイン以上の純度
が要求され、これに加えて水分含有率1 ppm以下の
乾燥度でしかも浮遊塵のないものが要求されるようにな
った。これらのガス中の水分は例えば下記に示すような
様々な障害を起こすため、特に厳しく管理しなければな
らない。
Therefore, the above-mentioned gases related to semiconductor manufacturing are also used for example in LSI.
Purity of 4 to 5 nines or more is required for gases used for silicon wafers, which are the third substrate, and for epitaxial, doping, etching, and cleaning gases in the device manufacturing process. Dryness and no floating dust were now required. Moisture in these gases must be particularly strictly controlled because it causes various problems, such as those shown below.

■ 半導体製造の配管バルブ流量計のような金属部の腐
食が起こり、微細金属不純物、微粉末の発生が起こる(
例えばNCRガスのような腐食性ガス)。
■ Corrosion occurs in metal parts such as piping valve flowmeters used in semiconductor manufacturing, resulting in the generation of fine metal impurities and fine powder (
corrosive gases such as NCR gas).

■ 製造炉での水の分解によりH2と02が発生し、特
にこの02により予期せぬ酸化不純物が発生する。
(2) Water decomposition in the production furnace generates H2 and 02, and especially 02 generates unexpected oxidized impurities.

■ ガスそのものと水との化学反応を起こし、複製不純
物が生じる。
■ A chemical reaction occurs between the gas itself and water, producing replicative impurities.

現在たとえば半導体デバイス製造プロセスにおけるガス
の乾燥には−・部モレキュラシーブによる吸着法が使わ
れている。モレキュラシーブは五酸化リンにつぐ吸着能
力をもつ乾燥剤で一般のガスを水分含有率1 ppm以
下に乾燥させることは比較的容易である。
Currently, for example, an adsorption method using molecular sieves is used to dry gases in semiconductor device manufacturing processes. Molecular sieve is a desiccant with adsorption capacity second only to phosphorus pentoxide, and it is relatively easy to dry common gases to a moisture content of 1 ppm or less.

又この乾燥剤は崩壊や膨潤等の障害を起こさない物理的
乾燥剤としての利点をもつため広く利用されている。し
かしながら欠点は一般に行なわれる加熱再生に200〜
400℃の高温を必要とし、又加熱再生のくりかえし使
用により浮遊塵が発生する。
Furthermore, this desiccant is widely used because it has the advantage of being a physical desiccant that does not cause problems such as disintegration or swelling. However, the drawback is that the heat regeneration that is generally performed
It requires a high temperature of 400°C, and repeated heating and regeneration generates floating dust.

また塩酸ガス等の酸性ガスにより、モレキュラシーブの
破砕も起こる。
In addition, the molecular sieve may be crushed by acidic gas such as hydrochloric acid gas.

耐酸グレードもあるが浮遊塵の発生も無視することは出
来ず、除塵フィルターの取付けを余儀なくされる。又モ
レキュラシーブの再生も不可能である。
Although acid-resistant grades are available, the generation of floating dust cannot be ignored, and a dust filter must be installed. It is also impossible to regenerate molecular sieves.

一方気体の乾燥方法として高分子膜を用いる方法が米国
特許3735558号公報及び特開昭53−[5B3号
公報等に記載されている。これら膜透過法はモレキュラ
シーブ等による吸着法と異なり、再生が不要なので、長
時間の連続使用も可能であり優れた方法である。
On the other hand, a method using a polymer membrane as a gas drying method is described in U.S. Pat. Unlike adsorption methods using molecular sieves, these membrane permeation methods do not require regeneration, so they are excellent methods that can be used continuously for long periods of time.

前者については特にフッ素系スルホン酸基を有する重合
体を用いており腐食性ガスについても使用可能である。
For the former, a polymer having a fluorine-based sulfonic acid group is particularly used, and can be used even with corrosive gases.

しかしながら両者とも半導体製造のプロセスに用いられ
るような水分含有率1 ppm以Fの高い乾燥度のもの
は得られていない。
However, in both cases, it has not been possible to obtain a highly dry product with a moisture content of 1 ppm or more, which is used in semiconductor manufacturing processes.

[発明が解決しようとする問題点] 使い捨て方式のモレギュラシーブ吸着法がランニングコ
ストの高価なこともあってランニングコストが廉価でし
かも浮遊塵がなく水分含有率1 ppm以下という高い
乾燥度の気体を容易に得る方法を見出すことは解決され
ねばならぬ重要な課題である。
[Problems to be solved by the invention] Since the running cost of the disposable molecular sieve adsorption method is high, the running cost is low, and the gas has a high dryness with no floating dust and a moisture content of 1 ppm or less. Finding a way to easily obtain this is an important problem that must be solved.

[問題点を解決するための手段及び作用]本発明はまさ
に上記課題を解決する新規な方法を開発すべく鋭意検討
を重ねた結果、以下に述べる特定のフッ素系共重合体よ
りなる高分子半透膜が上記目的に適合していることを見
出し本発明を完成するに至った。
[Means and effects for solving the problems] As a result of intensive studies aimed at developing a new method to solve the above problems, the present invention has developed a polymer semicontainer made of a specific fluorine-based copolymer as described below. The inventors have discovered that a permeable membrane is suitable for the above purpose and have completed the present invention.

すなわち、本発明によれば第1に一般式(式中m=0ま
たは1;n=2〜5の整数)で表わされる繰返し単位を
含むフッ素系共重合体よりなり、吸水率Wとイオン交換
容iQの関係が次式 %式% を有する高分子半透膜が提供される。
That is, according to the present invention, first, it is made of a fluorine-based copolymer containing a repeating unit represented by the general formula (in the formula, m = 0 or 1; n = an integer of 2 to 5), and has a water absorption rate W and an ion exchange rate. A polymeric semipermeable membrane having a volume iQ relationship expressed by the following formula % is provided.

また、本発明によれば、第2に 古F3 (式中m=0または1;n=2〜5の整数)で表わされ
る繰返し単位を含むフッ素系共重合体を加熱して、吸水
率Wとイオン交換容量Qの関係が次式 %式% を有する高分子半透膜を得ることを特徴とする高分子半
透膜の製造方法が提供される。
According to the present invention, secondly, a fluorine-based copolymer containing a repeating unit represented by old F3 (in the formula, m = 0 or 1; n = an integer of 2 to 5) is heated, and the water absorption rate W A method for producing a semipermeable polymer membrane is provided, which is characterized in that a semipermeable polymer membrane is obtained in which the relationship between Q and ion exchange capacity Q is expressed by the following formula: %.

また、本発明によれば、第3に、水分を含有する気体を
一般式 %式%) (式中m=oまたはl;n=2〜5の整数)で表わされ
る繰返し中位を含むフッ素系共重合体よりなり、吸水率
Wとイオン交換容量Qの関係が次式 %式% を有する高分子半透1模の一方の側に接触させ、他方の
側に乾燥したパージガスを接触させるか又は他方の側を
減圧することにより、上記水分を含有する気体の除湿を
行うことを特徴とする気体の高度乾燥方法が提供される
According to the present invention, thirdly, a gas containing moisture is a fluorine containing a repeating center represented by the general formula % (where m = o or l; n = an integer from 2 to 5). It is made of a semi-transparent polymeric copolymer and has the relationship between water absorption rate W and ion exchange capacity Q as follows: Alternatively, there is provided a method for highly drying a gas, characterized in that the moisture-containing gas is dehumidified by reducing the pressure on the other side.

さらに、本発明によれば、第4に一般式%式%) (式中m=0または1;n=2〜5の整数)で表わされ
る繰返し単位を含むフッ素系共重合体よりなり、吸水率
Wとイオン交換容量Qの関係が次式 %式% を有する中空糸状の高分子半透膜が多数本ケーシングに
挿入され、両端が樹脂で固定され、中空糸状膜の内側及
び外側を別種の気体が通過可能に形成されたことを特徴
とする気体の乾燥装置が提供される。
Furthermore, according to the present invention, fourthly, the water absorption A large number of hollow fiber semipermeable membranes having the relationship between the ratio W and the ion exchange capacity Q of the following formula % are inserted into this casing, both ends are fixed with resin, and the inside and outside of the hollow fiber membranes are A gas drying device is provided, which is configured to allow gas to pass therethrough.

L記フッ素系共重合体としてはテトラフルオロエチレン
、トリフルオロエチレン、パーフルオロビニルエーテル
、ビニリデンフロライド、フッ化ビニル等のフッ素化オ
レフィンと ?F3 CF2 =CF(OCF20F)mO(C:F2)ns
02F(m=0又は1、n=2〜5の整数) であられされるパーフルオロビニルエーテルモノマーを
共重合して得られるものが好ましい。これらの共重合体
はUSP 4329434. USP 4329435
゜USP 3909373に記載しである。
Examples of fluorine-based copolymers listed in L include fluorinated olefins such as tetrafluoroethylene, trifluoroethylene, perfluorovinyl ether, vinylidene fluoride, and vinyl fluoride. F3 CF2 = CF(OCF20F)mO(C:F2)ns
Preferably, those obtained by copolymerizing perfluorovinyl ether monomers having the following formula: 02F (m=0 or 1, n=an integer of 2 to 5). These copolymers are USP 4329434. USP 4329435
It is described in USP 3909373.

本発明者らは上記一般式で表わされる繰り返し単位を含
むフッ素系重合体の膜のうち特に吸水率とイオン交換容
量の関係が次式 %式% である高分子半透膜が気体の高度乾燥は優れていること
を発見した。
The present inventors have found that among fluoropolymer membranes containing repeating units represented by the above general formula, a polymer semipermeable membrane in which the relationship between water absorption rate and ion exchange capacity is as follows: I found it to be excellent.

上記フッ素系共重合体のスルホン酸基はイオン交換容量
として共重合体中0.5〜2.5ミリ当量/グラムH型
乾燥樹脂となる量として導入されているのが好ましい。
The sulfonic acid groups in the fluorine-based copolymer are preferably introduced in an amount that provides an ion exchange capacity of 0.5 to 2.5 milliequivalents/gram H-type dry resin in the copolymer.

フッ素系共重合体のイオン交換容量が0.5〜2.5ミ
リ当量/グラムH型乾燥樹脂の範囲内にすることにより
、水蒸気の透過速度は著しく低下したすせず、また、共
重合体の融点が高くなり過ぎず、高分子薄膜の製造が容
易であり、かつ、物理的強度が低下することなく、高分
子薄膜の形状保持も確保される。
By setting the ion exchange capacity of the fluorine-based copolymer within the range of 0.5 to 2.5 milliequivalents/g H-type dry resin, the water vapor permeation rate is significantly reduced. The melting point of the polymer thin film does not become too high, the production of the polymer thin film is easy, and the shape retention of the polymer thin film is ensured without decreasing the physical strength.

特にイオン交換容量が0.8ないし1.8 ミリ当量/
グラムH型乾燥樹脂であることが好ましい。
In particular, the ion exchange capacity is 0.8 to 1.8 milliequivalent/
A Gram H dry resin is preferred.

本発明に用いるフッ素系共重合体のスルホン酸基の塩型
としては金属塩、アンモニア塩型を用いることも可能で
あるが、SO3H型が最も含水率が高く、水蒸気の透過
速度が大きく、熱安定性も十分あり好ましい。
As the salt type of the sulfonic acid group of the fluorine-based copolymer used in the present invention, it is also possible to use metal salts and ammonia salt types, but the SO3H type has the highest water content, high water vapor transmission rate, and heat resistance. It is also preferable since it has sufficient stability.

フッ素系共重合体の形状としては、平膜、チューブ状、
中空糸状膜いずれでもよいが特に単位体積あたりの膜面
積が大きく、処理能力の高い中空糸状膜が好ましい。
The shapes of fluorine-based copolymers include flat membranes, tubes,
Although any hollow fiber membrane may be used, a hollow fiber membrane having a large membrane area per unit volume and high throughput is particularly preferred.

特に、高い乾燥度を達成するには装置の気密性も重要で
その点からも中空糸状膜は好ましい。
In particular, the airtightness of the apparatus is important in achieving a high degree of dryness, and hollow fiber membranes are preferred from this point of view as well.

中空糸の膜厚については薄ければ薄い捏水蒸気の透過性
が大きくなり、性能が向上し好ましいが、成形性、耐圧
性から制限を受ける。中空糸の径にもよるが内径400
〜500gmのものについては、膜厚40〜60鉢】が
好ましい。
Regarding the membrane thickness of the hollow fibers, the thinner the membrane, the greater the permeability of water vapor and the improved performance, which is preferable, but there are limitations from moldability and pressure resistance. Although it depends on the diameter of the hollow fiber, the inner diameter is 400 mm.
For ~500 gm, a film thickness of 40~60 gm is preferred.

本発明の膜を製造するには上記フッ素系共重合体を薄膜
に成形後アルカリで加水分解し、強酸で処理することに
より末端基502FをS(h l(に変換した後、該共
重合体を加熱処理することである。
To produce the membrane of the present invention, the above fluorine-based copolymer is formed into a thin film, hydrolyzed with an alkali, and treated with a strong acid to convert the terminal group 502F into S(h l(). This is done by heat treating.

該加熱処理は必要に応じてドライガス、例えば水分含有
率2.5Pl)DI以下の窒素ガス等をパージしながら
、あるいは減圧下で実施できる。加熱処理温度は70〜
250℃が適当である。温度が高すぎるとイオン交換基
の脱離が生じ性能が低下する恐れがある。加熱処理温度
は70〜200℃が特に好ましい。
The heat treatment can be carried out, if necessary, while purging with a dry gas, such as nitrogen gas having a water content of 2.5 Pl) DI or less, or under reduced pressure. Heat treatment temperature is 70~
250°C is suitable. If the temperature is too high, the ion exchange group may be removed, leading to a decrease in performance. The heat treatment temperature is particularly preferably 70 to 200°C.

−に記共重合体は上記加熱処理により数十、%の収縮を
起こし、又吸水率も低下する。その結果吸水率と交換容
量の関係が 1.20Q −1,984< RogW < 1.20
Q −1,742のものがつくられる。
- The copolymer described above shrinks by several tens of percent by the above heat treatment, and its water absorption rate also decreases. As a result, the relationship between water absorption rate and exchange capacity is 1.20Q -1,984<RogW<1.20
Q -1,742 items will be made.

上記加熱処理膜を用いることにより気体を水分含有率5
 ppm以下、常温において水分含有率1 ppm以下
という高度な除湿が可能となる。この意味で、上記共重
合体膜は従来の膜の常識では考えられない極限的な値ま
で除湿する性能を有するものであるといえる。
By using the above heat-treated membrane, the moisture content of gas is 5.
It is possible to perform high-level dehumidification with a moisture content of 1 ppm or less at room temperature. In this sense, it can be said that the above-mentioned copolymer membrane has the ability to dehumidify to an extreme level that is unimaginable under the common knowledge of conventional membranes.

被乾燥ガスは該フッ素系共重合体の薄膜のいずれの側に
供給してもよい。膜をへだてて水分の透過側に水分含有
率の低い乾燥したパージガスを流したり、真空ポンプ等
で減圧することによって膜透過の駆動力である分圧差を
生じさせ、除湿の目的を達成する。
The gas to be dried may be supplied to either side of the fluorocopolymer thin film. The purpose of dehumidification is achieved by separating the membrane and flowing a dry purge gas with a low moisture content on the moisture permeation side, or by reducing the pressure with a vacuum pump, etc., to create a partial pressure difference that is the driving force for membrane permeation.

水分含有率の低い乾燥したパージガスとは、被乾燥ガス
に含まれる水分を膜をへだてて除去する為に供給される
ガスで、不活性で温度が上っても、出来るだけ反応し難
いガスが好ましい、減圧とは、供給する原料ガスの圧力
にもよるが大気圧より低い圧力を意味する。
Dry purge gas with a low moisture content is a gas that is supplied to remove moisture contained in the gas to be dried through a membrane, and is an inert gas that does not react as much as possible even when the temperature rises. Preferably, reduced pressure means a pressure lower than atmospheric pressure, although it depends on the pressure of the raw material gas to be supplied.

本発明の膜は加熱処理により作られるが、平膜の場合は
加熱処理により作られたか否かは、吸水率を測定すれば
簡単に判定できる。
The membrane of the present invention is made by heat treatment, but in the case of a flat membrane, whether or not it was made by heat treatment can be easily determined by measuring the water absorption rate.

しかし、膜が細い中空糸状の場合は、吸水率は測定しに
くいので、その判定は以下に説明する熱収縮開始温度を
測定することによって行うことができる。
However, if the membrane is in the form of a thin hollow fiber, it is difficult to measure the water absorption rate, so the determination can be made by measuring the temperature at which thermal contraction starts, as described below.

中空糸膜に、軽いおもり(糸が真直ぐになるに充分だが
、糸が伸びてしまわない程度の重量)をつけて、空気槽
中につるす。その状態で空気槽の温度を徐々に上昇させ
、糸の長さの変化を読取り望遠鏡で測定する。測定結果
の一例を、横軸に温度、縦軸に長さをとりグラフに書く
と第4図のようになる。L25は25℃の長さ、LLは
温度t’0における長さである。第4図において矢印の
温度即ち、昇温により寸法変化のない最高温度を「熱収
縮のない最高温度」と定義する。熱処理温度(1)を変
化させた中空糸を数点用意し、その「熱収縮のない最高
温度(T)」を測定し、その結果をグラフにブロンドし
たところ第5図のようになった。即ち、 ”17=t    ・・・・・・(1)となり、中空糸
膜の熱処理温度(1)は熱収縮のない最高温度(T)を
測定することにより知ることが出来る。
Attach a light weight to the hollow fiber membrane (enough weight to keep the fibers straight, but not enough to stretch them) and suspend them in an air tank. In this state, the temperature of the air tank is gradually increased, and changes in the length of the thread are measured using a reading telescope. An example of the measurement results is plotted in a graph with temperature on the horizontal axis and length on the vertical axis, as shown in Figure 4. L25 is the length at 25° C., and LL is the length at temperature t'0. In FIG. 4, the temperature indicated by the arrow, that is, the maximum temperature at which there is no dimensional change due to temperature increase, is defined as "the maximum temperature at which no thermal contraction occurs." Several hollow fibers with different heat treatment temperatures (1) were prepared, and their "maximum temperature (T) without thermal contraction" was measured, and the results were plotted in a graph as shown in Figure 5. That is, ``17=t'' (1), and the heat treatment temperature (1) of the hollow fiber membrane can be determined by measuring the maximum temperature (T) at which no thermal contraction occurs.

本発明の方法において、乾燥の対象となるガスは、通常
は一般に市場で得られるボンベに充填されたガスであり
、水蒸気濃度はそれ程高くないガスである。ボンベに充
填されているガスについては通常数ppm〜数十ppm
程度であるが場合により1100pp以りのものもある
。対象ガスの濃度に応じて気体の乾燥装置の膜面積を変
えたり多段にしたりしてr1的の除湿レベルのものを得
ることができる。
In the method of the present invention, the gas to be dried is usually a commercially available gas filled in a cylinder, and the water vapor concentration is not so high. The gas filled in the cylinder is usually several ppm to several tens of ppm.
In some cases, it may exceed 1100 pp. Depending on the concentration of the target gas, the membrane area of the gas drying device can be changed or it can be multistaged to obtain a dehumidification level of r1.

本発明の方法は半導体素材製造プロセス用ガス、半導体
デバイス製造用ガス及び太陽電池、アモルファスシリコ
ン等の新素材製造プロセス用ガスを高度に乾燥するのに
殊に適している。
The method of the present invention is particularly suitable for highly drying process gases for semiconductor material production, semiconductor device production gases, and new material production process gases such as solar cells and amorphous silicon.

新素材製造プロセス用ガスとして、半導体プロセスガス
の代表例として、ASHa 、 H2S、 GeH4゜
SeH2,5b)I:+、 AsCl2. (C2H5
)27a、 (C:H+)2cd。
Typical examples of semiconductor process gases for the new material manufacturing process include ASHa, H2S, GeH4°SeH2,5b)I:+, AsCl2. (C2H5
)27a, (C:H+)2cd.

(C2H5)2cd、  AgF2.  PH3,PC
,h、  82H5,8F3.  BCI!3゜(CH
3)2 Te等のドーピングガス; 5IH4+ 5I
H2C22。
(C2H5)2cd, AgF2. PH3, PC
, h, 82H5, 8F3. BCI! 3゜(CH
3) Doping gas such as 2Te; 5IH4+ 5I
H2C22.

5iHCjh、 5iCjl’n、 B2O2,BBr
3. BI3. A3H3,PH3゜GeH3,TeH
z、 (CH3)3AS、 (C2Hs):+Aj’、
 (C:H3)3Sb。
5iHCjh, 5iCjl'n, B2O2,BBr
3. BI3. A3H3, PH3゜GeH3, TeH
z, (CH3)3AS, (C2Hs):+Aj',
(C:H3)3Sb.

(C2H5)3Sb、 (CH3)3Ga、 (C2H
5)3Ga、 (CH3)3AS。
(C2H5)3Sb, (CH3)3Ga, (C2H
5) 3Ga, (CH3)3AS.

(C:2H5hAs、 (CH3)2Hg、 (C2H
5)zHg、 (CH3hP。
(C:2H5hAs, (CH3)2Hg, (C2H
5)zHg, (CH3hP.

(C2)+5)3P、 SnC:j)4. GeCj)
4.5bCj!5. AffC1’s等のエビタギシャ
ルガス; AsF5. PF5. PH3,Bh、 B
C43゜SiF4. SF6等のイオン注入用ガス; 
AsH3、PH3。
(C2)+5)3P, SnC:j)4. GeCj)
4.5bCj! 5. Evitar gas such as AffC1's; AsF5. PF5. PH3, Bh, B
C43°SiF4. Ion implantation gas such as SF6;
AsH3, PH3.

HCR,SeH2,(CO3)2↑e、 ((:2H5
)7Te等の発光ダイオード用ガス; Ch、 H(1
’、 )IF、 HBr、 SFb等ノエッチングガス
; SiF4. CFa、 03F8. C7F6. 
C)IF+。
HCR, SeH2, (CO3)2↑e, ((:2H5
)7Te gas for light emitting diode; Ch, H(1
) Etching gas such as IF, HBr, SFb; SiF4. CFa, 03F8. C7F6.
C) IF+.

CClF2.02等のプラズマエツチングガス;C:3
F8゜(JF3 、 CClF2. CFa等のイオン
ビームエツチングガス;Ar、02の如き反応性スパッ
タリングガス;SiH4,5IH2CR2,5iCfn
 、 NO,02等の化学蒸着用(CVD)ガス; N
2. Ar、 He、 N2. CO2,N70等のバ
ランスガスが挙げられる。
Plasma etching gas such as CClF2.02; C:3
F8° (Ion beam etching gas such as JF3, CClF2. CFa; reactive sputtering gas such as Ar, 02; SiH4,5IH2CR2,5iCfn
, chemical vapor deposition (CVD) gas such as NO,02; N
2. Ar, He, N2. Examples include balance gases such as CO2 and N70.

[実施例1 以下実験実施例によって本発明を更に詳細に説明するが
、本発明は実施例に限られるものではない。
[Example 1] The present invention will be explained in more detail with reference to experimental examples below, but the present invention is not limited to these examples.

なお、実施例及び比較例の気体の水分含有率の測定は露
点計又は水分計、ガスによってはカールフィッシャー法
で行なった。
The moisture content of the gases in Examples and Comparative Examples was measured using a dew point meter or a moisture meter, or depending on the gas, the Karl Fischer method.

実施例1 テトラフルオロエチレンと ?F3 GF2=GFOCF2CF−C](CF2)3〜SO2
Fを共重合してイオン交換容量が0.94 ミリ当量/
グラムH型乾燥樹脂を得た。得られた樹脂を成形温度2
50℃で500 p−mのフィルムを作成し、このフィ
ルムをアルカリ性アルコール溶液で加水分Hした後、塩
酸水溶液でイオン交換を行ない側鎖の末端をスルホン酸
型(H型)にし風乾した。得られたフィルムを真空で乾
湿処理後25℃で平衡吸水率を求めた(第1図)。
Example 1 Tetrafluoroethylene? F3 GF2=GFOCF2CF-C] (CF2)3~SO2
By copolymerizing F, the ion exchange capacity is 0.94 meq/
A Gram H type dry resin was obtained. The resulting resin was molded at a temperature of 2.
A film of 500 p-m was prepared at 50°C, and after hydrolyzing the film with an alkaline alcohol solution, ion exchange was performed with an aqueous hydrochloric acid solution to convert the end of the side chain into a sulfonic acid type (H type), and the film was air-dried. The obtained film was subjected to dry-wet treatment in a vacuum, and then the equilibrium water absorption rate was determined at 25°C (Fig. 1).

第1図に示すように乾熱処理温度が約70℃以上では吸
水率が大幅に低下した。それ以上の温度でも吸水率はほ
ぼ一定であった。
As shown in FIG. 1, when the dry heat treatment temperature was about 70° C. or higher, the water absorption rate decreased significantly. The water absorption rate remained almost constant even at higher temperatures.

同様にして表−Aに示すようにモノマ一種を変え、イオ
ン交換容量0.8〜! 、 1meq/gのポリマーフ
ィルムを作成し、表−Aに示す吸水率を示すものをつく
った0表−Aの結果より本発明の膜のイオン交換容量と
吸水率の関係は第2図の斜線部分となる。
In the same way, one type of monomer was changed as shown in Table A, and the ion exchange capacity was 0.8~! , 1 meq/g polymer film was prepared and the water absorption rate shown in Table A was made.From the results of Table A, the relationship between the ion exchange capacity and water absorption rate of the membrane of the present invention is shown by the diagonal line in Figure 2. become a part.

実施例2 テトラフルオロエチレンと F3 CF2 =CFOCF2CF−0(CF2)3−502
 Fを共重合して、イオン交換容量が0.9 ミリ当量
/グラムH型乾燥樹脂を得た。得られた樹脂を中空糸製
造用口金を備えた成形機で紡糸温度250℃、紡速88
mmにて溶融紡糸し、内径500ILm、膜厚60川m
の中空糸膜を得た。
Example 2 Tetrafluoroethylene and F3 CF2 = CFOCF2CF-0(CF2)3-502
F was copolymerized to obtain an H-type dry resin with an ion exchange capacity of 0.9 meq/g. The obtained resin was spun at a spinning temperature of 250°C and a spinning speed of 88°C using a molding machine equipped with a spinneret for producing hollow fibers.
Melt-spun at mm, inner diameter 500ILm, film thickness 60mm
A hollow fiber membrane was obtained.

この中空糸をアルカリ性アルコール溶液で加水分解した
後、塩酸水溶液でイオン交換を行ない側鎖の末端をスル
ホン酸型(H型)にし風乾した。
This hollow fiber was hydrolyzed with an alkaline alcohol solution, and then ion-exchanged with an aqueous hydrochloric acid solution to convert the end of the side chain into a sulfonic acid type (H type) and air-dried.

得られた糸を長さ40cmにしたものを400本束ね、
SUS製の分離器に両端エボギシ樹脂で固定し、第3図
のような気体乾燥装置をつくった。該乾燥装置に水分含
有率1ppm(8点−76℃)以下に調整したN2ガス
を5 kg/am2Gに加圧して、0.57)/sin
の流量(流量は大気圧換算、以下同じ)で中空糸の内側
に流した。
Bundle 400 pieces of the obtained thread to a length of 40 cm,
It was fixed to a SUS separator with ebogishi resin at both ends to create a gas drying device as shown in Figure 3. N2 gas adjusted to a moisture content of 1 ppm (8 points - 76°C) or less was applied to the drying device at a pressure of 5 kg/am2G, and the drying rate was 0.57)/sin.
It was flowed inside the hollow fiber at a flow rate of (flow rate is equivalent to atmospheric pressure, the same applies hereinafter).

外側には同じく水分含有率1ppm(露点−76℃)以
下に調整したN2ガスを0.75j)/win流した。
N2 gas, which was also adjusted to have a moisture content of 1 ppm (dew point -76°C) or less, was flowed to the outside at a flow rate of 0.75j)/win.

これを70℃の恒温槽に入れ3時間加熱処理後、該乾燥
装置を室温にもどし、水分含有率31ppm  (露点
−52℃)、圧力5 kg/cm2Gに調整したN2ガ
ス(サンプルガス)を0.54’7m1n中空糸の内側
に流し、中空糸の外側には水分含有率ippm(露点−
76℃)以下に調整したN2ガスを0.751’/si
n流した。該乾燥装置サンプルガス出口露点を測定した
ところ水分含有率1ppm(露点〜76℃)以下であっ
た。そのまま連続運転し、24時間後もサンプルガス出
口水分含有率i pp層(露点−76℃)以下のままで
あった。
This was placed in a constant temperature bath at 70°C and heated for 3 hours, after which the drying device was returned to room temperature and N2 gas (sample gas) adjusted to a moisture content of 31 ppm (dew point -52°C) and a pressure of 5 kg/cm2G was added to 0. .54'7m1n inside the hollow fiber, and the outside of the hollow fiber has a water content of ippm (dew point -
N2 gas adjusted to below 76℃) at 0.751'/si
n flowed. When the dew point of the sample gas outlet of the drying device was measured, it was found that the water content was 1 ppm (dew point ~76°C) or less. Continuous operation was continued, and even after 24 hours, the water content at the sample gas outlet remained below the ipp layer (dew point -76°C).

一方、中空糸の外側のパージガスについても該乾燥装置
出口露点を24時間後測定したところ水分含有率4.6
ppm (露点−66℃)であった。その後同−条件で
約1000時間連続運転後のサンプルガスの出口水分含
有率1ppm(露点−76℃)以下のままで、しかもサ
ンプリングガスの該乾燥装置で減少した水分量とパージ
ガスの該乾燥装置で増加した水分量の比率は1.2 :
 1でほぼ測定誤差内で一致していた。
On the other hand, when the dew point at the outlet of the dryer was measured for the purge gas outside the hollow fibers after 24 hours, the water content was 4.6.
ppm (dew point -66°C). After approximately 1000 hours of continuous operation under the same conditions, the moisture content at the outlet of the sample gas remained below 1 ppm (dew point -76°C), and the moisture content decreased in the drying device for the sampling gas and the drying device for the purge gas. The ratio of increased water content is 1.2:
1, it was almost consistent within the measurement error.

なお本発明の他の膜についても、表−Aに示すように実
施例2と同様の結果が得られた。
Note that the same results as in Example 2 were obtained with other films of the present invention as shown in Table A.

比較例1 実施例2と同様の装置で加熱前処理をせずにサンプルガ
ス、パージガスを同じ〈実施例2と同様の条件でJll
l定したところ44時間後サンプルガスの水分含有率1
0.8ppm  (露点−60℃)まで到達しなかった
。同様にして表−Aに示すように本発明以外の膜は比較
例工と同様な結果を示した。
Comparative Example 1 Using the same equipment as in Example 2, using the same sample gas and purge gas without heating pretreatment.
After 44 hours, the moisture content of the sample gas was 1.
It did not reach 0.8 ppm (dew point -60°C). Similarly, as shown in Table A, the membranes other than those of the present invention showed the same results as the comparative examples.

実施例3,4,5.6 実施例2と同様な乾燥装置を用いてサンプルガスをHC
I!に変えて(但し圧力は5 kg/cm?Gのまま)
実施例2と同様にサンプルガスの出口水分含有率を測定
し表−1に示す結果を得た。但しパージ側は水分含有率
1 ppm以下のドライN2を流すか、又は減圧で行な
った。
Examples 3, 4, 5.6 HC sample gas using the same drying device as in Example 2.
I! (However, the pressure remains at 5 kg/cm?G)
The outlet moisture content of the sample gas was measured in the same manner as in Example 2, and the results shown in Table 1 were obtained. However, on the purge side, dry N2 with a moisture content of 1 ppm or less was flowed, or the purge was performed under reduced pressure.

[発明の効果] 本発明に係る気体の高度乾燥用高分子半透膜とその膜を
用いた乾燥方法の効果をまとめると以下の通りである。
[Effects of the Invention] The effects of the polymer semipermeable membrane for highly drying gas and the drying method using the membrane according to the present invention are summarized as follows.

■ 気体を高度に乾燥することができ、その乾燥性部を
長時間持続することができる。
■ Gas can be dried to a high degree and the drying property can be maintained for a long time.

■ 気体乾燥時に浮遊塵が発生しない。■ No floating dust is generated during gas drying.

■ 塩酸ガス等の酸性ガスが薄膜に接触しても膜を侵す
ことがない。
■ Even if acidic gas such as hydrochloric acid gas comes into contact with the thin film, it will not attack the film.

■ モレキュラーシーブ等による吸着法と異なり再生が
不要であり、長時間の連続使用も可能である。
■ Unlike adsorption methods using molecular sieves, etc., regeneration is not required and continuous use for long periods of time is possible.

また、本発明の膜を用いた気体の乾燥装置は、気体の高
度乾燥に優れた性能を有する高分子半透膜を中空糸状に
して多数本ケーシングに挿入したものであるために、単
位鉢植あたりの膜面端が大きく、処理能力が高いコンパ
クトなものとなる。
In addition, the gas drying device using the membrane of the present invention has a large number of hollow fiber-shaped polymer semipermeable membranes inserted into the casing, which have excellent performance in high-level drying of gas. The membrane surface edge is large, making it a compact device with high processing capacity.

更に、本発明の膜を製造する方法は特定のフッ素系共重
合体を加熱することにより、上記気体の高度乾燥に優れ
た膜を容易に製造することができる。
Furthermore, in the method for producing a membrane of the present invention, by heating a specific fluorine-based copolymer, it is possible to easily produce a membrane that is excellent in highly drying the above-mentioned gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた高分子半透膜の乾熱処理温
度と平衡吸水率との関係を示−すグラフ、第2図は実施
例1で70℃以上で乾熱処理して作製したイオン交換容
量0.8〜1.1の高分子半透膜のポリマー吸水率(W
)とイオン交換容量(Q)との関係を示すグラフ、第3
図は本発明に係る気体の乾燥装置を示す概略説明図、第
4図は中空糸状膜の熱収縮のない最高温度を求めるため
のグラフで、横軸は温度、縦軸はt℃における中空糸状
膜の長さくLt )と温度25℃における長さくL25
)との比である。第5図は中空糸状膜の熱処理度(1)
と熱収縮のない最高温度との関係を示すグラフで、この
グラフにより熱処理温度を求めることができる。 l・・・中空糸膜、 2・・・サンプルガス入口、 3・・・サンプルガス出口、 4・・・パージガス入口、 5・・・パージガス出口、 6・・・セル、 7・・・隔膜。
Figure 1 is a graph showing the relationship between dry heat treatment temperature and equilibrium water absorption of the polymer semipermeable membrane obtained in Example 1, and Figure 2 is a graph showing the relationship between dry heat treatment temperature and equilibrium water absorption rate of the semipermeable polymer membrane obtained in Example 1. The polymer water absorption rate (W
) and ion exchange capacity (Q), 3rd graph
The figure is a schematic explanatory diagram showing the gas drying apparatus according to the present invention, and FIG. The length of the film Lt) and the length L25 at a temperature of 25°C
). Figure 5 shows the degree of heat treatment of hollow fiber membrane (1)
This is a graph showing the relationship between the temperature and the maximum temperature without thermal contraction, and the heat treatment temperature can be determined from this graph. 1... Hollow fiber membrane, 2... Sample gas inlet, 3... Sample gas outlet, 4... Purge gas inlet, 5... Purge gas outlet, 6... Cell, 7... Diaphragm.

Claims (1)

【特許請求の範囲】 (1)一般式 ▲数式、化学式、表等があります▼ (式中m=0または1;n=2〜5の整数)で表わされ
る繰返し単位を含むフッ素系共重合体よりなり、吸水率
Wとイオン交換容量Qの関係が次式 1.20Q−1.964<logW<1.20Q−1.
742[W=(W_2−W_1)/W_1 W_1は乾燥重量;W_2は25℃での純水浸漬平衡重
量;Q:meq/g H型乾燥樹脂] を有する高分子半透膜。 (2)m=1、n=3である特許請求の範囲第1項記載
の高分子半透膜。 (3)高分子半透膜が中空糸である特許請求の範囲第1
項記載の高分子半透膜。 (4)一般式 ▲数式、化学式、表等があります▼ (式中m=0または1;n=2〜5の整数)で表わされ
る繰返し単位を含むフッ素系共重合体を加熱して吸水率
Wとイオン交換容量Qの関係が次式 1.20Q−1.964<logW<1.20Q−1.
742[W=(W_2−W_1)/W_1 W_1は乾燥重量;W_2は25℃での純水浸漬平衡重
量;Q:meq/g H型乾燥樹脂] を有する高分子半透膜を得ることを特徴とする高分子半
透膜の製造方法。 (5)加熱が70〜200℃の温度で行なわれる特許請
求の範囲第4項記載の高分子半透膜の製造方法。 (6)水分を含有する気体を一般式 ▲数式、化学式、表等があります▼ (式中m=0または1;n=2〜5の整数)で表わされ
る繰返し単位を含むフッ素系共重合体よりなり、吸水率
Wとイオン交換容量Qの関係が次式 1.20Q−1.964<logW<1.20Q−1.
742[W=(W_2−W_1)/W_1 W_1は乾燥重量;W_2は25℃での純水浸漬平衡重
量;Q:meq/g H型乾燥樹脂] を有する高分子半透膜の一方の側に接触させ、他方の側
に乾燥したパージガスを接触させるか又は他方の側を減
圧することにより、上記水分を含有する気体の除湿を行
うことを特徴とする気体の高度乾燥方法。 (7)一般式 ▲数式、化学式、表等があります▼ (式中m=0または1;n=2〜5の整数)で表わされ
る繰返し単位を含むフッ素系共重合体よりなり、吸水率
Wとイオン交換容量Qの関係が次式 1.20Q−1.964<logW<1.20Q−1.
742[W=(W_2−W_1)/W_1 W_1は乾燥重量;W_2は25℃での純水浸漬平衡重
量;Q:meq/g H型乾燥樹脂] を有する中空糸状の高分子半透膜が多数本ケーシングに
挿入され、両端が樹脂で固定され、中空糸状膜の内側及
び外側を別種の気体が通過可能に形成されたことを特徴
とする気体の乾燥装置。
[Claims] (1) A fluorine-based copolymer containing a repeating unit represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (in the formula, m = 0 or 1; n = an integer from 2 to 5) The relationship between water absorption rate W and ion exchange capacity Q is expressed by the following formula: 1.20Q-1.964<logW<1.20Q-1.
742 [W=(W_2-W_1)/W_1 W_1 is dry weight; W_2 is equilibrium weight immersed in pure water at 25°C; Q: meq/g H-type dry resin] A semipermeable polymer membrane having the following formula. (2) The semipermeable polymer membrane according to claim 1, wherein m=1 and n=3. (3) Claim 1 in which the polymeric semipermeable membrane is a hollow fiber.
Polymer semipermeable membrane described in Section 1. (4) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (in the formula, m = 0 or 1; n = an integer from 2 to 5). The relationship between W and ion exchange capacity Q is expressed by the following formula: 1.20Q-1.964<logW<1.20Q-1.
742 [W=(W_2-W_1)/W_1 W_1 is dry weight; W_2 is equilibrium weight immersed in pure water at 25°C; Q: meq/g H-type dry resin]. A method for manufacturing a semipermeable polymer membrane. (5) The method for producing a semipermeable polymer membrane according to claim 4, wherein the heating is performed at a temperature of 70 to 200°C. (6) A fluorine-based copolymer containing a repeating unit represented by the general formula ▲Mathematical formula, chemical formula, table, etc.▼ (where m = 0 or 1; n = an integer from 2 to 5) for a gas containing moisture. The relationship between water absorption rate W and ion exchange capacity Q is expressed by the following formula: 1.20Q-1.964<logW<1.20Q-1.
742 [W=(W_2-W_1)/W_1 W_1 is dry weight; W_2 is equilibrium weight immersed in pure water at 25°C; Q: meq/g H-type dry resin] on one side of a polymer semipermeable membrane having A method for high-level drying of a gas, characterized in that the moisture-containing gas is dehumidified by contacting the other side with a dry purge gas or by reducing the pressure on the other side. (7) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, m = 0 or 1; n = an integer from 2 to 5). The relationship between and ion exchange capacity Q is expressed by the following formula: 1.20Q-1.964<logW<1.20Q-1.
742 [W=(W_2-W_1)/W_1 W_1 is dry weight; W_2 is equilibrium weight immersed in pure water at 25°C; Q: meq/g H-type dry resin] There are many hollow fiber-shaped polymer semipermeable membranes. A gas drying device, which is inserted into the casing, has both ends fixed with resin, and is formed so that different types of gas can pass through the inside and outside of the hollow fiber membrane.
JP2397786A 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method Expired - Lifetime JPH0761431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2397786A JPH0761431B2 (en) 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP60-22785 1985-02-09
JP2278585 1985-02-09
JP2397786A JPH0761431B2 (en) 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS627417A true JPS627417A (en) 1987-01-14
JPH0761431B2 JPH0761431B2 (en) 1995-07-05

Family

ID=26360046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2397786A Expired - Lifetime JPH0761431B2 (en) 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0761431B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224028A (en) * 1988-03-04 1989-09-07 Ube Ind Ltd Method for dehumidifying gas
US4909810A (en) * 1988-01-26 1990-03-20 Asahi Glass Company Ltd. Vapor permselective membrane
JPH02293551A (en) * 1989-05-09 1990-12-04 Asahi Glass Co Ltd Humidifying method
JPH04138145U (en) * 1991-06-20 1992-12-24 三ツ星ベルト株式会社 power transmission belt
JP2006192364A (en) * 2005-01-13 2006-07-27 Asahi Kasei Corp Vapor permeable membrane
US7171366B2 (en) 2000-07-18 2007-01-30 Shin Caterpillar Mitsubishi Ltd. Method and apparatus for voice-activated control of attachment of construction machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909810A (en) * 1988-01-26 1990-03-20 Asahi Glass Company Ltd. Vapor permselective membrane
JPH01224028A (en) * 1988-03-04 1989-09-07 Ube Ind Ltd Method for dehumidifying gas
JPH02293551A (en) * 1989-05-09 1990-12-04 Asahi Glass Co Ltd Humidifying method
JPH04138145U (en) * 1991-06-20 1992-12-24 三ツ星ベルト株式会社 power transmission belt
US7171366B2 (en) 2000-07-18 2007-01-30 Shin Caterpillar Mitsubishi Ltd. Method and apparatus for voice-activated control of attachment of construction machine
JP2006192364A (en) * 2005-01-13 2006-07-27 Asahi Kasei Corp Vapor permeable membrane

Also Published As

Publication number Publication date
JPH0761431B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
EP0192143B1 (en) Permeable polymer membrane for desiccation of gas
EP0326083B1 (en) Vapor permselective membrane
KR0148232B1 (en) Gas separation by semi-permeable membranes
US5620500A (en) Dehumidifying method
US20130055892A1 (en) Method of producing high purity steam
JPH08511196A (en) Composite carbon fluid separation membrane
JPH0551331B2 (en)
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
JPS61187918A (en) Dry etching method
JPS627417A (en) Semipermeable polymer membrane for drying gas to high degree and gas drying method using the same
US7112363B2 (en) Porous or non-porous substrate coated with a polymeric composition having hydrophilic functional groups and process
JPS62192589A (en) Dry etching method
Lai et al. Polyvinyl alcohol γ-ray grafted nylon 4 membrane for pervaporation and evapomeation
JP4794028B2 (en) Functional polytetrafluoroethylene resin and method for producing the same
JPH0740555B2 (en) Chemical paper deposition equipment, impurity diffusion furnace, and semiconductor wafer cleaning method
JPS6236818A (en) Vapor phase impurity diffusion
JPS6230338A (en) Vapor-phase oxide film forming method
JPS61229830A (en) Method for purifying acetylene
CN111909419B (en) Porous membrane having fluorinated copolymer as surface treatment
JPH082414B2 (en) Water vapor selective permeable membrane
EA038148B1 (en) Gas separation membranes based on fluorinated and perfluorinated polymers
Sakata et al. Plasma‐polymerized membranes and gas permeability III
JPH0240224A (en) Semipermeable membrane to be used for gas separation
JPH0753763A (en) Fluorinated porous polyolefin film
JPS6257613A (en) Production of hydrophilic organic polymer substrate