JPH0761431B2 - Polymer semipermeable membrane for high-level gas drying and its manufacturing method - Google Patents

Polymer semipermeable membrane for high-level gas drying and its manufacturing method

Info

Publication number
JPH0761431B2
JPH0761431B2 JP2397786A JP2397786A JPH0761431B2 JP H0761431 B2 JPH0761431 B2 JP H0761431B2 JP 2397786 A JP2397786 A JP 2397786A JP 2397786 A JP2397786 A JP 2397786A JP H0761431 B2 JPH0761431 B2 JP H0761431B2
Authority
JP
Japan
Prior art keywords
gas
hollow fiber
polymer
semipermeable membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2397786A
Other languages
Japanese (ja)
Other versions
JPS627417A (en
Inventor
能章 影浦
▲紘▼ 小林
栄吾 寺田
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP2397786A priority Critical patent/JPH0761431B2/en
Publication of JPS627417A publication Critical patent/JPS627417A/en
Publication of JPH0761431B2 publication Critical patent/JPH0761431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はシリコンウエハーのような半導体素材製造プロ
セス用ガス、半導体デバイス製造用ガス、及びファイン
セラミックス、太陽電池、光ファイバーのような新素材
製造プロセス用ガスの高度乾燥に適した改良されたフッ
素系高分子半透膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a gas for manufacturing a semiconductor material such as a silicon wafer, a gas for manufacturing a semiconductor device, and a manufacturing process for a new material such as fine ceramics, a solar cell, and an optical fiber. The present invention relates to an improved fluoropolymer semipermeable membrane suitable for high-level drying of a working gas.

[従来の技術] たとえば、現在エレクトロニクス分野のめざましい発展
の先導役をつとめているのがLSI、超LSIと呼ばれている
半導体デバイスであるが、これらの素材の製造やデバイ
ス製造プロセスにおいては窒素等の汎用ガスに加えて、
アルゴン、ヘリウム等の希ガス、塩化水素、塩素等の腐
食性ガス、さらにはシラン、アルシン、ボランガス等の
特殊ガスが使われている。更に現在半導体デバイス製造
プロセスは高集積化(超微細化)が急激に進んでいる。
[Prior Art] For example, semiconductor devices called LSIs and VLSIs are currently playing a leading role in the remarkable development of the electronic field. In addition to general-purpose gas,
Noble gases such as argon and helium, corrosive gases such as hydrogen chloride and chlorine, and special gases such as silane, arsine, and borane gas are used. Further, at present, the semiconductor device manufacturing process is rapidly progressing toward higher integration (ultra-miniaturization).

LSIの集積度があがり、現状の256Kビットから1メガビ
ット、4メガビットになるに従い、微小パターンの線幅
がますますせまくなり、従って、いままであまり問題に
ならなかった微粒子さえ収率への影響が出てきた。
As the degree of integration of LSIs increases and the current 256K bits increases to 1 megabit to 4 megabits, the line width of minute patterns becomes smaller and smaller, so that even fine particles, which have not been a problem until now, will affect the yield. It came out.

そこで上述の半導体製造に関するガスも例えばLSI基板
となるシリコンウエハー用やデバイス製造プロセスにお
けるエピタキシャル用、ドーピング用、エッチング用、
洗浄用等のガスについても4〜5ナイン以上の純度が要
求され、これに加えて水分含有率1ppm以下の乾燥度でし
かも浮遊塵のないものが要求されるようになった。これ
らのガス中の水分は例えば下記に示すような様々な障害
を起こすため、特に厳しく管理しなければならない。
Therefore, the above-mentioned gas for semiconductor production is also used, for example, for a silicon wafer to be an LSI substrate, for epitaxial in device manufacturing process, for doping, for etching,
Gases for cleaning and the like are also required to have a purity of 4 to 5 nines or more, and in addition to them, those having a water content of 1 ppm or less and a degree of dryness and no suspended dust are required. Moisture in these gases causes various obstacles as described below, and therefore must be strictly controlled.

半導体製造の配管バルブ流量計のような金属部の腐
食が起こり、微細金属不純物、微粉末の発生が起こる
(例えばHClガスのような腐食性ガス)。
Corrosion of a metal part such as a pipe valve flow meter in semiconductor manufacturing occurs, and fine metal impurities and fine powder are generated (for example, corrosive gas such as HCl gas).

製造炉での水の分解によりH2とO2が発生し、特にこ
のO2により予期せぬ酸化不純物が発生する。
H 2 and O 2 are generated due to the decomposition of water in the manufacturing furnace, and especially O 2 causes unexpected oxide impurities.

ガスそのものと水との化学反応を起こし、複製不純
物が生じる。
A chemical reaction occurs between the gas itself and water, producing duplicate impurities.

現在たとえば半導体デバイス製造プロセスにおけるガス
の乾燥には一部モレキュラシーブによる吸着法が使われ
ている。モレキュラシーブは五酸化リンにつぐ吸着能力
をもつ乾燥剤で一般のガスを水分含有率1ppm以下に乾燥
させることは比較的容易である。
Currently, for example, an adsorption method using a molecular sieve is partially used for drying gas in a semiconductor device manufacturing process. Molecular sieves are desiccants that have the ability to adsorb phosphorus pentoxide, and it is relatively easy to dry ordinary gases to a water content of 1 ppm or less.

又この乾燥剤は崩壊や膨潤等の障害を起こさない物理的
乾燥剤としての利点をもつため広く利用されている。し
かしながら欠点は一般に行なわれる加熱再生に200〜400
℃の高温を必要とし、又加熱再生のくりかえし使用によ
り浮遊塵が発生する。
This desiccant is widely used because it has an advantage as a physical desiccant which does not cause troubles such as disintegration and swelling. However, the drawback is that the heating regeneration that is generally performed is 200 to 400
High temperature of ℃ is required, and suspended dust is generated by repeated use of heating and regeneration.

また塩酸ガス等の酸性ガスにより、モレキュラシーブの
破砕も起こる。
Further, the acidic gas such as hydrochloric acid gas also causes crushing of the molecular sieve.

耐酸グレードもあるが浮遊塵の発生も無視することは出
来ず、除塵フィルターの取付けを余儀なくされる。又モ
レキュラシーブの再生も不可能である。
There are acid-resistant grades, but the generation of suspended dust cannot be ignored, and a dust filter must be installed. It is also impossible to regenerate the molecular sieve.

一方気体の乾燥方法として高分子膜を用いる方法が米国
特許3735558号公報及び特開昭53−60563号公報等に記載
されている。これら膜透過法はモレキュラシーブ等によ
る吸着法と異なり、再生が不要なので、長時間の連続使
用も可能であり優れた方法である。
On the other hand, a method of using a polymer film as a gas drying method is described in US Pat. No. 3,735,558 and JP-A-53-60563. Unlike the adsorption method using molecular sieves, these membrane permeation methods do not require regeneration and can be used continuously for a long time, which is an excellent method.

前者については特にフッ素系スルホン酸基を有する重合
体を用いており腐食性ガスについても使用可能である。
しかしながら両者とも半導体製造のプロセス用に用いら
れるような水分含有率1ppm以下の高い乾燥度のものは得
られていない。
For the former, a polymer having a fluorinated sulfonic acid group is used, and it can also be used for corrosive gases.
However, neither of them has a high degree of dryness with a water content of 1 ppm or less, which is used for a semiconductor manufacturing process.

[発明が解決しようとする問題点] 使い捨て方式のモレキュラシーブ吸着法がランニングコ
ストの高価なこともあってランニングコストが廉価でし
かも浮遊塵がなく水分含有率1ppm以下という高い乾燥度
の気体を容易に得る方法を見出すことは解決されねばな
らぬ重要な課題である。
[Problems to be Solved by the Invention] The disposable molecular sieve adsorption method has a high running cost, so the running cost is low, and there is no suspended dust, and a gas with a high degree of dryness of 1 ppm or less of water content is easily obtained. Finding ways to gain is an important issue that must be resolved.

[問題点を解決するための手段及び作用] 本発明はまさに上記課題を解決する新規な方法を開発す
べく鋭意検討を重ねた結果、以下に述べる特定のフッ素
系共重合体よりなる高分子半透膜が上記目的に適合して
いることを見出し本発明を完成するに至った。
[Means and Actions for Solving Problems] The present invention has been earnestly studied to develop a novel method for solving the above-mentioned problems, and as a result, a polymer semi-polymer composed of a specific fluorocopolymer described below. The inventors have found that the permeable membrane is suitable for the above purpose and completed the present invention.

すなわち、本発明によれば第1に一般式 (式中m=0または1;n=2〜5の整数) で表わされる繰返し単位を含む中空糸状に成膜されたフ
ッ素系共重合体よりなり、吸水率Wとイオン交換容量Q
の関係が次式 を有する高分子半透膜が提供される。
That is, according to the present invention, firstly, the general formula (In the formula, m = 0 or 1; n = integer of 2 to 5) which is made of a hollow fiber-shaped fluorine-containing copolymer and has a water absorption rate W and an ion exchange capacity Q.
The relation of A polymeric semipermeable membrane having is provided.

また、本発明によれば、第2に (式中m=0または1;n=2〜5の整数) で表わされる繰返し単位を含む中空糸状に成膜されたフ
ッ素系共重合体を加熱して、吸水率Wとイオン交換容量
Qの関係が次式 を有する高分子半透膜を得ることを特徴とする高分子半
透膜の製造方法が提供される。
According to the present invention, secondly, (In the formula, m = 0 or 1; n = integer of 2 to 5) A hollow fiber-shaped fluorine-based copolymer containing a repeating unit represented by the following formula is heated to obtain the water absorption W and the ion exchange capacity Q. The relation is There is provided a method for producing a polymer semipermeable membrane, which comprises obtaining the polymer semipermeable membrane.

上記フッ素系共重合体としてはテトラフルオロエチレ
ン、トリフルオロエチレン、パーフルオロビニルエーテ
ル、ビニリデンフロライド、フッ化ビニル等のフッ素化
オレフィンと (m=0又は1、n=2〜5の整数) であらわされるパーフルオロビニルエーテルモノマーを
共重合して得られるものが好ましい。これらの共重合体
はUSP 4329434,USP 4329435,USP 3909378に記載してあ
る。
Examples of the fluorine-based copolymer include fluorinated olefins such as tetrafluoroethylene, trifluoroethylene, perfluorovinyl ether, vinylidene fluoride and vinyl fluoride. Those obtained by copolymerizing a perfluorovinyl ether monomer represented by (m = 0 or 1, n = integer of 2 to 5) are preferable. These copolymers are described in USP 4329434, USP 4329435, USP 3909378.

本発明者らは上記一般式で表わされる繰り返し単位を含
むフッ素系重合体の膜のうち特に吸水率とイオン交換容
量の関係が次式 である高分子半透膜が気体の高度乾燥は優れていること
を発見した。
The present inventors have found that the relationship between the water absorption rate and the ion exchange capacity among the membranes of the fluoropolymer containing the repeating unit represented by the above general formula is as follows. It was discovered that the polymer semipermeable membrane, which is, is excellent in highly drying gas.

上記フッ素系共重合体のスルホン酸基はイオン交換容量
として共重合体中0.5〜2.5ミリ当量/グラムH型乾燥樹
脂となる量として導入されているのが好ましい。フッ素
系共重合体のイオン交換容量が0.5〜2.5ミリ当量/グラ
ムH型乾燥樹脂の範囲内にすることにより、水蒸気の透
過速度は著しく低下したりせず、また、共重合体の融点
が高くなり過ぎず、高分子薄膜の製造が容易であり、か
つ、物理的強度が低下することなく、高分子薄膜の形状
保持も確保される。
The sulfonic acid group of the fluorine-based copolymer is preferably introduced as an ion exchange capacity in an amount of 0.5 to 2.5 meq / g H-type dry resin in the copolymer. By setting the ion exchange capacity of the fluorine-based copolymer within the range of 0.5 to 2.5 meq / g H-type dry resin, the permeation rate of water vapor is not significantly reduced, and the melting point of the copolymer is high. The polymer thin film can be easily manufactured, and the physical strength of the polymer thin film can be maintained without lowering the physical strength.

特にイオン交換容量が0.8ないし1.8ミリ当量/グラムH
型乾燥樹脂であることが好ましい。
Especially, the ion exchange capacity is 0.8 to 1.8 meq / g H
It is preferably a mold dry resin.

本発明に用いるフッ素系共重合体のスルホン酸基の塩型
としては金属塩、アンモニア塩型を用いることも可能で
あるが、SO3H型が最も含水率が高く、水蒸気の透過速度
が大きく、熱安定性も十分あり好ましい。
As the salt type of the sulfonic acid group of the fluorocopolymer used in the present invention, it is possible to use a metal salt or an ammonia salt type, but the SO 3 H type has the highest water content, and the water vapor transmission rate is large. It is also preferable because it has sufficient thermal stability.

本発明においてフッ素系共重合体の形状は、単位体積あ
たりの膜面積が大きく、処理能力の高い中空糸状膜であ
る。
In the present invention, the shape of the fluorocopolymer is a hollow fiber membrane having a large membrane area per unit volume and a high treatment capacity.

特に、高い乾燥度を達成するには装置の気密性も重要で
その点からも中空糸状膜は好適に用いられる。
In particular, the airtightness of the device is important for achieving a high degree of dryness, and the hollow fiber membrane is preferably used also from this point.

中空糸の膜厚については薄ければ薄い程水蒸気の透過性
が大きくなり、性能が向上し好ましいが、成形性、耐圧
性から制限を受ける。中空糸の径にもよるが内径400〜5
00μmのものについては、膜厚40〜60μmが好ましい。
Regarding the thickness of the hollow fiber, the thinner the hollow fiber, the higher the water vapor permeability and the improved performance, which is preferable, but the hollow fiber is limited in terms of moldability and pressure resistance. Inner diameter 400 to 5 depending on hollow fiber diameter
A film having a thickness of 00 μm preferably has a film thickness of 40 to 60 μm.

本発明の膜を製造するには上記フッ素系共重合体を薄膜
に成形後アルカリで加水分解し、強酸で処理することに
より末端基SO2FをSO3Hに変換した後、該共重合体を加熱
処理することである。
In order to produce the film of the present invention, the above fluorine-based copolymer is formed into a thin film, which is then hydrolyzed with alkali and treated with a strong acid to convert the terminal group SO 2 F into SO 3 H, and then the copolymer. Is a heat treatment.

該加熱処理は必要に応じてドライガス、例えば水分含有
率2.5ppm以下の窒素ガス等をパージしながら、あるいは
減圧下で実施できる。加熱処理温度は70〜250℃が適当
である。温度が高すぎるとイオン交換基の脱離が生じ性
能が低下する恐れがある。加熱処理温度は70〜200℃が
特に好ましい。
The heat treatment can be carried out, if necessary, while purging a dry gas, for example, nitrogen gas having a water content of 2.5 ppm or less, or under reduced pressure. A heat treatment temperature of 70 to 250 ° C is suitable. If the temperature is too high, the ion-exchange group may be eliminated and the performance may be deteriorated. The heat treatment temperature is particularly preferably 70 to 200 ° C.

上記共重合体は上記加熱処理により数十%の収縮を起こ
し、又吸水率も低下する。その結果吸水率と交換容量の
関係が 1.20Q−1.964<logW<1.20Q−1.742 のものがつくられる。
The heat treatment causes the copolymer to shrink by several tens of percent, and the water absorption rate is also reduced. As a result, the relationship between the water absorption rate and the exchange capacity is 1.20Q-1.964 <logW <1.20Q-1.742.

上記加熱処理膜を用いることにより気体を水分含有率5p
pm以下、常温において水分含有率1ppm以下という高度な
除湿が可能となる。この意味で、上記共重合体膜は従来
の膜の常識では考えられない極限的な値まで除湿する性
能を有するものであるといえる。
By using the above heat-treated film, the gas has a moisture content of 5 p
A high degree of dehumidification with a water content of 1 ppm or less at room temperature of pm or less becomes possible. In this sense, it can be said that the above-mentioned copolymer film has a property of dehumidifying to a limit value which cannot be considered by the conventional common sense of the film.

被乾燥ガスは該フッ素系共重合体の薄膜のいずれの側に
供給してもよい。膜をへだてて水分の透過側に水分含有
率の低い乾燥したパージガスを流したり、真空ポンプ等
で減圧することによって膜透過の駆動力である分圧差を
生じさせ、除湿の目的を達成する。
The gas to be dried may be supplied to either side of the thin film of the fluorocopolymer. A dry purge gas having a low water content is passed through the membrane to the water permeation side, or a partial pressure difference, which is a driving force for membrane permeation, is generated by reducing the pressure with a vacuum pump or the like to achieve the purpose of dehumidification.

水分含有率の低い乾燥したパージガスとは、被乾燥ガス
に含まれる水分を膜をへだてて除去する為に供給される
ガスで、不活性で温度が上っても、出来るだけ反応し難
いガスが好ましい。減圧とは、供給する原料ガスの圧力
にもよるが大気圧より低い圧力を意味する。
A dry purge gas with a low water content is a gas that is supplied to remove the water contained in the gas to be dried by removing the film, and is a gas that is inert and difficult to react even if the temperature rises. preferable. The reduced pressure means a pressure lower than the atmospheric pressure, although it depends on the pressure of the supplied source gas.

本発明の膜は加熱処理により作られるが、平膜の場合は
加熱処理により作られたか否かは、吸水率を測定すれば
簡単に判定できる。
The membrane of the present invention is produced by heat treatment. In the case of a flat membrane, whether or not it is produced by heat treatment can be easily determined by measuring the water absorption.

しかし、膜が細い中空糸状の場合は、吸水率は測定しに
くいので、その判定は以下に説明する熱収縮開始温度を
測定することによって行うことができる。
However, if the membrane is a thin hollow fiber, the water absorption rate is difficult to measure, so that the determination can be made by measuring the heat shrinkage start temperature described below.

中空糸膜に、軽いおもり(糸が真直ぐになるに充分だ
が、糸が伸びてしまわない程度の重量)をつけて、空気
槽中につるす。その状態で空気槽の温度を徐々に上昇さ
せ、糸の長さの変化を読取り望遠鏡で測定する。測定結
果の一例を、横軸に温度、縦軸に長さをとりグラフに書
くと第4図のようになる。L25は25℃の長さ、Ltは温度
t℃における長さである。第4図において矢印の温度即
ち、昇温により寸法変化のない最高温度を「熱収縮のな
い最高温度」と定義する。熱処理温度(t)を変化させ
た中空糸を数点用意し、その「熱収縮のない最高温度
(T)」を測定し、その結果をグラフにプロントしたと
ころ第5図のようになった。即ち、 T=t ……(1) となり、中空糸膜の熱処理温度(t)は熱収縮のない最
高温度(T)を測定することにより知ることが出来る。
Attach a light weight (sufficient to straighten the thread but not enough to stretch it) to the hollow fiber membrane and hang it in the air tank. In that state, the temperature of the air tank is gradually raised, and the change in the yarn length is read and measured with a telescope. An example of the measurement results is shown in the graph when the horizontal axis is temperature and the vertical axis is length. L 25 is a length of 25 ° C. and L t is a length at a temperature of t ° C. In FIG. 4, the temperature indicated by the arrow, that is, the maximum temperature at which there is no dimensional change due to temperature rise is defined as the "maximum temperature at which there is no heat shrinkage." Several hollow fibers having different heat treatment temperatures (t) were prepared, the "maximum temperature (T) without heat shrinkage" was measured, and the results were plotted on a graph, as shown in FIG. That is, T = t (1), and the heat treatment temperature (t) of the hollow fiber membrane can be known by measuring the maximum temperature (T) without heat shrinkage.

本発明の方法において、乾燥の対象となるガスは、通常
は一般に市場で得られるボンベに充填されたガスであ
り、水蒸気濃度はそれ程高くないガスである。ボンベに
充填されているガスについては通常数ppm〜数十ppm程度
であるが場合により100ppm以上のものもある。対象ガス
の濃度に応じて気体の乾燥装置の膜面積を変えたり多段
にしたりして目的の除湿レベルのものを得ることができ
る。
In the method of the present invention, the gas to be dried is usually a gas filled in a cylinder, which is generally obtained on the market, and a gas whose water vapor concentration is not so high. The gas filled in the cylinder is usually about several ppm to several tens of ppm, but in some cases, 100 ppm or more. It is possible to obtain the target dehumidification level by changing the film area of the gas drying device according to the concentration of the target gas or by making it in multiple stages.

本発明の方法は半導体素材製造プロセス用ガス、半導体
デバイス製造用ガス及び太陽電池、アモルファスシリコ
ン等の新素材製造プロセス用ガスを高度に乾燥するのに
殊に適している。
The method of the present invention is particularly suitable for highly drying gas for semiconductor material manufacturing process, gas for semiconductor device manufacturing and gas for new material manufacturing process such as solar cell and amorphous silicon.

新素材製造プロセス用ガスとして、半導体プロセスガス
の代表例として、ASH4,H2S,GeH4,SeH2,SbH3,AsC
l3,(C2H52Te,(CH32Cd,(C2H52Cd,AsF3,PH3
PCl3,B2H5,BF3,BCl3,(CH32Te等のドーピングガ
ス;SiH4,SiH2Cl2,SiHCl2,SiCl4,B2H5,BBr3,B
I3,AsH3,PH3,GeH3,TeH2,(CH33As,(C2H53Al,
(CH33Sb,(C2H53Sb,(CH33Ga,(C2H53Ga,(CH
33As,(C2H53As,(CH32Hg,(C2H52Hg,(CH33
P,(C2H53P,SnCl4,GeCl4,SbCl5,AlCl3等のエピタ
キシャルガス;AsF5,PF5,PH3,BF3,BCl3,SiF4,SF6
等のイオン注入用ガス;AsH3,PH3,HCl,SeH2,(CH32
Te,(C2H52Te等の発光ダイオード用ガス;Cl2,HCl,H
F,HBr,SF6等のエッチングガス;SiF4,CF4,C3F8,C
2F6,CHF3,CClF3,O2等のプラズマエッチングガス;C3
F8,CHF3,CClF3,CF4等のイオンビームエッチングガ
ス;Ar,O2の如き反応性スパッタリングガス;SiH4,SiH2
Cl2,SiCl4,NO,O2等の化学蒸着用(CVD)ガス;N2,Ar,H
e,H2,CO2,N2O等のバランスガスが挙げられる。
ASH 4 , H 2 S, GeH 4 , SeH 2 , SbH 3 , AsC as a typical example of semiconductor process gas as a gas for new material manufacturing process
l 3 , (C 2 H 5 ) 2 Te, (CH 3 ) 2 Cd, (C 2 H 5 ) 2 Cd, AsF 3 , PH 3 ,
Doping gases such as PCl 3 , B 2 H 5 , BF 3 , BCl 3 , (CH 3 ) 2 Te; SiH 4 , SiH 2 Cl 2 , SiHCl 2 , SiCl 4 , B 2 H 5 , BBr 3 , B
I 3, AsH 3, PH 3 , GeH 3, TeH 2, (CH 3) 3 As, (C 2 H 5) 3 Al,
(CH 3 ) 3 Sb, (C 2 H 5 ) 3 Sb, (CH 3 ) 3 Ga, (C 2 H 5 ) 3 Ga, (CH
3 ) 3 As, (C 2 H 5 ) 3 As, (CH 3 ) 2 Hg, (C 2 H 5 ) 2 Hg, (CH 3 ) 3
Epitaxial gases such as P, (C 2 H 5 ) 3 P, SnCl 4 , GeCl 4 , SbCl 5 , AlCl 3 ; AsF 5 , PF 5 , PH 3 , BF 3 , BCl 3 , SiF 4 , SF 6
Ion implantation gas such as AsH 3 , PH 3 , HCl, SeH 2 , (CH 3 ) 2
Te, (C 2 H 5 ) 2 Te and other gases for light-emitting diodes; Cl 2 , HCl, H
Etching gas such as F, HBr, SF 6 ; SiF 4 , CF 4 , C 3 F 8 , C
Plasma etching gas such as 2 F 6 , CHF 3 , CClF 3 , O 2 ; C 3
F 8, CHF 3, CClF 3 , ion beam etching gas such as CF 4; Ar, such as reactive sputtering gas O 2; SiH 4, SiH 2
Chemical vapor deposition (CVD) gases such as Cl 2 , SiCl 4 , NO, O 2 ; N 2 , Ar, H
Balanced gases such as e, H 2 , CO 2 and N 2 O can be cited.

[実施例] 以下実験実施例によって本発明を更に詳細に説明する
が、本発明は実施例に限られるものではない。
[Examples] The present invention will be described in more detail below with reference to experimental examples, but the present invention is not limited to the examples.

なお、実施例及び比較例の気体の水分含有率の測定は露
点計又は水分計、ガスによってはカールフィッシャー法
で行なった。
The moisture content of the gas in the examples and comparative examples was measured by a dew point meter or a moisture meter, and depending on the gas, the Karl Fischer method.

実施例1 テトラフルオロエチレンと を共重合してイオン交換容量が0.94ミリ当量/グラムH
型乾燥樹脂を得た。得られた樹脂を成形温度250℃で500
μmのフィルムを作成し、このフィルムをアルカリ性ア
ルコール溶液で加水分解した後、塩酸水溶液でイオン交
換を行ない側鎖の末端をスルホン酸型(H型)にし風乾
した。得られたフィルムを真空で乾温処理後25℃で平衡
吸水率を求めた(第1図)。
Example 1 With tetrafluoroethylene And ion-exchange capacity of 0.94 meq / g H
A mold dry resin was obtained. The resin obtained is molded at a molding temperature of 250 ° C.
A film having a thickness of μm was prepared, and after hydrolyzing this film with an alkaline alcohol solution, ion exchange was performed with a hydrochloric acid aqueous solution to make the end of the side chain a sulfonic acid type (H type) and air-dried. The obtained film was subjected to dry temperature treatment in vacuum, and the equilibrium water absorption was determined at 25 ° C (Fig. 1).

第1図に示すように乾熱処理温度が約70℃以上では吸水
率が大幅に低下した。それ以上の温度でも吸水率はほぼ
一定であった。
As shown in Fig. 1, the water absorption rate decreased significantly when the dry heat treatment temperature was about 70 ° C or higher. The water absorption was almost constant even at higher temperatures.

同様にして表−Aに示すようにモノマー種を変え、イオ
ン交換容量0.8〜1.1meq/gのポリマーフィルムを作成
し、表−Aに示す吸水率を示すものをつくった。表−A
の結果より本発明の膜のイオン交換容量と吸水率の関係
は第2図の斜線部分となる。
Similarly, the monomer species were changed as shown in Table-A to prepare a polymer film having an ion exchange capacity of 0.8 to 1.1 meq / g, and a polymer film having the water absorption rate shown in Table-A was prepared. Table-A
From the results, the relation between the ion exchange capacity and the water absorption rate of the membrane of the present invention is shown by the shaded area in FIG.

実施例2 テトラフルオロエチレンと を共重合して、イオン交換容量が0.9ミリ当量/グラム
H型乾燥樹脂を得た。得られた樹脂を中空糸製造用口金
を備えた成形機で紡糸温度250℃、紡速88mmにて溶融紡
糸し、内径500μm、膜厚60μmの中空糸膜を得た。
Example 2 With tetrafluoroethylene Was copolymerized to obtain an H type dry resin having an ion exchange capacity of 0.9 meq / g. The obtained resin was melt-spun at a spinning temperature of 250 ° C. and a spinning speed of 88 mm using a molding machine equipped with a hollow fiber manufacturing die to obtain a hollow fiber membrane having an inner diameter of 500 μm and a film thickness of 60 μm.

この中空糸をアルカリ性アルコール溶液で加水分解した
後、塩酸水溶液でイオン交換を行ない側鎖の末端をスル
ホン酸型(H型)にし風乾した。得られた糸を長さ40cm
にしたものを400本束ね、SUS製の分離器に両端エポキシ
樹脂で固定し、第3図のような気体乾燥装置をつくっ
た。該乾燥装置に水分含有率1ppm(露点−76℃)以下に
調整したN2ガスを5kg/cm2Gに加圧して、0.5l/minの流
量(流量は大気圧換算。以下同じ)で中空糸の内側に流
した。
After the hollow fiber was hydrolyzed with an alkaline alcohol solution, ion exchange was performed with a hydrochloric acid aqueous solution to make the end of the side chain a sulfonic acid type (H type) and air dried. 40 cm length of the obtained thread
Bunched 400 pieces of the above, and fixing them to a separator made of SUS with epoxy resin at both ends to make a gas drying device as shown in FIG. N 2 gas adjusted to a moisture content of 1 ppm (dew point −76 ° C.) or less was pressurized to 5 kg / cm 2 G in the drying device, and was hollow at a flow rate of 0.5 l / min (flow rate converted to atmospheric pressure; the same below). I shed it inside the thread.

外側には同じく水分含有率1ppm(露点−76℃)以下に調
整したN2ガスを0.75l/min流した。これを70℃の恒温槽
に入れ3時間加熱処理後、該乾燥装置を室温にもどし、
水分含有率31ppm(露点−52℃)、圧力5kg/cm2Gに調整
したN2ガス(サンプルガス)を0.5l/min中空糸の内側に
流し、中空糸の外側には水分含有率1ppm(露点−76℃)
以下に調整したN2ガスを0.75l/min流した。該乾燥装置
サンプルガス出口露点を測定したところ水分含有率1ppm
(露点−76℃)以下であった。そのまま連続運転し、24
時間後もサンプルガス出口水分含有率1ppm(露点−76
℃)以下のままであった。
Similarly, N 2 gas adjusted to have a water content of 1 ppm (dew point −76 ° C.) or less was flowed at 0.75 l / min. This is placed in a constant temperature bath at 70 ° C. and heat-treated for 3 hours, and then the drying device is returned to room temperature,
N 2 gas (sample gas) adjusted to a water content rate of 31 ppm (dew point −52 ° C.) and a pressure of 5 kg / cm 2 G is flown inside the hollow fiber at 0.5 l / min, and a water content rate of 1 ppm (outside the hollow fiber). Dew point -76 ° C)
The N 2 gas adjusted below was flowed at 0.75 l / min. When the dew point of the sample gas outlet of the drying device was measured, the water content was 1 ppm
It was below (dew point -76 ° C). Continuous operation as it is, 24
Sample gas outlet water content 1ppm (dew point -76
C) remained below.

一方、中空糸の外側のパージガスについても該乾燥装置
出口露点を24時間後測定したところ水分含有率4.6ppm
(露点−66℃)であった。その後同一条件で約1000時間
連続運転後のサンプルガスの出口水分含有率1ppm(露点
−76℃)以下のままで、しかもサンプリングガスの該乾
燥装置で減少した水分量とパージガスの該乾燥装置で増
加した水分量の比率は1.2:1でほぼ測定誤差内で一致し
ていた。
On the other hand, also for the purge gas on the outside of the hollow fiber, the moisture content was 4.6 ppm when the drying device outlet dew point was measured after 24 hours.
It was (dew point -66 ° C). After that, the outlet water content of the sample gas remains 1ppm (dew point -76 ° C) or less after continuous operation for about 1000 hours under the same conditions, and the amount of water reduced by the sampling gas dryer and increased by the purge gas dryer The water content ratio was 1.2: 1, which was in good agreement within the measurement error.

なお本発明の他の膜についても、表−Aに示すように実
施例2と同様の結果が得られた。
As for the other films of the present invention, the same results as in Example 2 were obtained as shown in Table-A.

比較例1 実施例2と同様の装置で加熱前処理をせずにサンプルガ
ス、パージガスを同じく実施例2と同様の条件で測定し
たところ44時間後サンプルガスの水分含有率10.6ppm
(露点−60℃)まで到達しなかった。同様にして表−A
に示すように本発明以外の膜は比較例1と同様な結果を
示した。
Comparative Example 1 When the sample gas and the purge gas were measured by the same apparatus as in Example 2 without the heating pretreatment under the same conditions as in Example 2, the moisture content of the sample gas was 10.6 ppm after 44 hours.
It did not reach the (dew point -60 ° C). Similarly, Table-A
As shown in FIG. 5, the films other than the present invention showed the same results as in Comparative Example 1.

実施例3,4,5,6 実施例2と同様な乾燥装置を用いてサンプルガスをHCl
に変えて(但し圧力は5kg/cm2Gのまま)実施例2と同
様にサンプルガスの出口水分含有率を測定し表−1に示
す結果を得た。但しパージ側は水分含有率1ppm以下のド
ライN2を流すか、又は減圧で行なった。
Example 3,4,5,6 Using the same drying apparatus as in Example 2, the sample gas was changed to HCl.
(However, the pressure was kept at 5 kg / cm 2 G) and the outlet water content of the sample gas was measured in the same manner as in Example 2 to obtain the results shown in Table 1. However, the purge side was performed by flowing dry N 2 having a water content of 1 ppm or less or by reducing the pressure.

[発明の効果] 本発明に係る気体の高度乾燥用高分子半透膜とその膜を
用いた乾燥方法の効果をまとめると以下の通りである。
[Effects of the Invention] The effects of the semi-permeable polymer membrane for highly drying gas and the drying method using the membrane according to the present invention are summarized as follows.

気体を高度に乾燥することができ、その乾燥性能を
長時間持続することができる。
The gas can be highly dried and its drying performance can be maintained for a long time.

気体乾燥時に浮遊塵が発生しない。 No airborne dust is generated during gas drying.

塩酸ガス等の酸性ガスが薄膜に接触しても膜を侵す
ことがない。
Even if an acidic gas such as hydrochloric acid gas contacts the thin film, it does not attack the thin film.

モレキュラーシーブ等による吸着法と異なり再生が
不要であり、長時間の連続使用も可能である。
Unlike the adsorption method using molecular sieves, no regeneration is required and continuous use for a long time is possible.

また、本発明の膜を用いた気体の乾燥装置は、気体の高
度乾燥に優れた性能を有する高分子半透膜を中空糸状に
して多数本ケーシングに挿入したものであるために、単
位体積あたりの膜面積が大きく、処理能力が高いコンパ
クトなものとなる。
Further, since the gas drying apparatus using the membrane of the present invention is a polymer semipermeable membrane having excellent performance in highly drying gas and is inserted into a large number of hollow fiber-shaped casings, The film area is large and the processing capacity is high and compact.

更に、本発明の膜を製造する方法は特定のフッ素系共重
合体を加熱することにより、上記気体の高度乾燥に優れ
た膜を容易に製造することができる。
Further, in the method for producing the membrane of the present invention, by heating a specific fluorine-based copolymer, a membrane excellent in highly drying the above gas can be easily produced.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1で得られた高分子半透膜の乾熱処理温
度と平衡吸水率との関係を示すグラフ、第2図は実施例
1で70℃以上で乾燥処理して作製したイオン交換容量0.
8〜1.1の高分子半透膜のポリマー吸水率(W)とイオン
交換容量(Q)との関係を示すグラフ、第3図は本発明
に係る気体の乾燥装置を示す概略説明図、第4図は中空
糸状膜の熱収縮のない最高温度を求めるためのグラフ
で、横軸は温度、縦軸はt℃における中空糸状膜の長さ
(Lt)と温度25℃における長さ(L25)との比である。
第5図は中空糸状膜の熱処理度(t)と熱収縮のない最
高温度との関係を示すグラフで、このグラフにより熱処
理温度を求めることができる。 1…中空糸膜、2…サンプルガス入口、3…サンプルガ
ス出口、4…パージガス入口、5…パージガス出口、6
…セル、7…隔膜。
FIG. 1 is a graph showing the relationship between the dry heat treatment temperature and the equilibrium water absorption of the polymer semipermeable membrane obtained in Example 1, and FIG. 2 is the ion produced in Example 1 by drying at 70 ° C. or higher. Exchange capacity 0.
Graph showing the relationship between the polymer water absorption rate (W) and the ion exchange capacity (Q) of the polymer semipermeable membrane of 8 to 1.1, FIG. 3 is a schematic explanatory view showing a gas drying apparatus according to the present invention, and FIG. The figure is a graph for obtaining the maximum temperature without heat shrinkage of the hollow fiber membrane, where the horizontal axis is temperature and the vertical axis is the length (L t ) of the hollow fiber membrane at t ° C and the length at temperature 25 ° C (L 25 ) And the ratio.
FIG. 5 is a graph showing the relationship between the heat treatment degree (t) of the hollow fiber membrane and the maximum temperature at which heat shrinkage does not occur, and the heat treatment temperature can be determined from this graph. 1 ... Hollow fiber membrane, 2 ... Sample gas inlet, 3 ... Sample gas outlet, 4 ... Purge gas inlet, 5 ... Purge gas outlet, 6
... cell, 7 ... diaphragm.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式 (式中m=0または1;n=2〜5の整数) で表わされる繰返し単位を含む中空糸状に成膜されたフ
ッ素系共重合体よりなり、吸水率Wとイオン交換容量Q
の関係が次式 を有する高分子半透膜。
1. A general formula (In the formula, m = 0 or 1; n = integer of 2 to 5) which is made of a hollow fiber-shaped fluorine-containing copolymer and has a water absorption rate W and an ion exchange capacity Q.
The relation of A semi-permeable membrane having a polymer.
【請求項2】m=1,n=3である特許請求の範囲第1項
記載の高分子半透膜。
2. The polymer semipermeable membrane according to claim 1, wherein m = 1 and n = 3.
【請求項3】一般式 (式中m=0または1;n=2〜5の整数) で表わされる繰返し単位を含む中空糸状に成膜されたフ
ッ素系共重合体を加熱して吸水率Wとイオン交換容量Q
の関係が次式 を有する高分子半透膜を得ることを特徴とする高分子半
透膜の製造方法。
3. General formula (In the formula, m = 0 or 1; n = integer of 2 to 5) A hollow fiber-shaped fluorine-based copolymer containing repeating units is heated to absorb water W and ion-exchange capacity Q.
The relation of A method for producing a polymer semipermeable membrane, comprising:
【請求項4】加熱が70〜200℃の温度で行なわれる特許
請求の範囲第3項記載の高分子半透膜の製造方法。
4. The method for producing a polymer semipermeable membrane according to claim 3, wherein heating is performed at a temperature of 70 to 200 ° C.
JP2397786A 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method Expired - Lifetime JPH0761431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2397786A JPH0761431B2 (en) 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP60-22785 1985-02-09
JP2278585 1985-02-09
JP2397786A JPH0761431B2 (en) 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS627417A JPS627417A (en) 1987-01-14
JPH0761431B2 true JPH0761431B2 (en) 1995-07-05

Family

ID=26360046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2397786A Expired - Lifetime JPH0761431B2 (en) 1985-02-09 1986-02-07 Polymer semipermeable membrane for high-level gas drying and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0761431B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326083B1 (en) * 1988-01-26 1994-06-01 Asahi Glass Company Ltd. Vapor permselective membrane
JPH01224028A (en) * 1988-03-04 1989-09-07 Ube Ind Ltd Method for dehumidifying gas
JPH07111261B2 (en) * 1989-05-09 1995-11-29 旭硝子株式会社 Humidification method
JPH04138145U (en) * 1991-06-20 1992-12-24 三ツ星ベルト株式会社 power transmission belt
JP3676204B2 (en) 2000-07-18 2005-07-27 新キャタピラー三菱株式会社 Voice attachment control method for construction machinery
JP2006192364A (en) * 2005-01-13 2006-07-27 Asahi Kasei Corp Vapor permeable membrane

Also Published As

Publication number Publication date
JPS627417A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
EP0192143B1 (en) Permeable polymer membrane for desiccation of gas
EP0326083B1 (en) Vapor permselective membrane
US5620500A (en) Dehumidifying method
US20130055892A1 (en) Method of producing high purity steam
US20070138102A1 (en) Composition for removing moisture from hydrogen halides
CN113893713A (en) Preparation method of high-selectivity lithium-magnesium separation membrane
JPH0761431B2 (en) Polymer semipermeable membrane for high-level gas drying and its manufacturing method
US7112363B2 (en) Porous or non-porous substrate coated with a polymeric composition having hydrophilic functional groups and process
JPS61187918A (en) Dry etching method
JPH0751757B2 (en) Dry etching method
EP1263522A1 (en) Porous or non-porous substrate coated with a polymeric composition having hydrophilic functional groups and process
JPH0278426A (en) Laminated membrane and production thereof
JPH0740555B2 (en) Chemical paper deposition equipment, impurity diffusion furnace, and semiconductor wafer cleaning method
JPH0797561B2 (en) Vapor phase impurity diffusion method
JP2001153854A5 (en)
JPS61229830A (en) Method for purifying acetylene
JPH04322716A (en) Gas dehymidifing method
JPH0691078B2 (en) Vapor phase oxide film formation method
KR102161970B1 (en) Surface-modified polyketone anion exchange fiber having quaternary ammonium and Method of manufacture thereof
JPH082413B2 (en) Dehumidifying film
KR20210098374A (en) coating solution for hollow fiber membrane, composite membrane using the same, preparation method thereof and carbon dioxide separation membrane comprising the same
JP3026086B2 (en) Base recovery method
CN112691554A (en) Method for preparing MOFs organic gas separation membrane
JPH07185544A (en) Extrapure water production system having silica removing function
Gavalas New developments in hydrogen permselective membranes