JPH0278426A - Laminated membrane and production thereof - Google Patents

Laminated membrane and production thereof

Info

Publication number
JPH0278426A
JPH0278426A JP22884788A JP22884788A JPH0278426A JP H0278426 A JPH0278426 A JP H0278426A JP 22884788 A JP22884788 A JP 22884788A JP 22884788 A JP22884788 A JP 22884788A JP H0278426 A JPH0278426 A JP H0278426A
Authority
JP
Japan
Prior art keywords
membrane
hydrophilic
polyacrylonitrile
soln
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22884788A
Other languages
Japanese (ja)
Other versions
JPH0634909B2 (en
Inventor
Michio Tsuyumoto
美智男 露本
Yasushi Maeda
恭志 前田
Hiroki Karakane
博樹 唐金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUSHO SANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Original Assignee
TSUSHO SANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUSHO SANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU filed Critical TSUSHO SANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Priority to JP63228847A priority Critical patent/JPH0634909B2/en
Priority to US07/392,527 priority patent/US5087367A/en
Priority to PCT/JP1988/001219 priority patent/WO1989005182A1/en
Priority to EP89900146A priority patent/EP0436720B1/en
Priority to DE3853366T priority patent/DE3853366T2/en
Publication of JPH0278426A publication Critical patent/JPH0278426A/en
Publication of JPH0634909B2 publication Critical patent/JPH0634909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

PURPOSE:To enhance the hydrophilic property of a laminated membrane as a general separating membrane by partially hydrolyzing a polyacrylonitrile base membrane and coating the base membrane with a hydrophilic synthetic polymer. CONSTITUTION:A membrane of polyacrylonitrile, a blend or copolymer of polyacrylonitrile with other material or cross-linked polyacrylonitrile is partially hydrolyzed by dipping in a soln. of an acid or alkali such as KOH, NaOH or Ba(OH)2 or by bringing only the surface of the membrane into contact with the soln. The excess soln. is then removed by washing and the membrane is dried. The resulting hydrophilic base membrane is coated with a hydrophilic synthetic polymer such as polyacrylic acid or PVA to enhance the hydrophilic property. A hydrophilic separating membrane is easily obtd. and used for various purposes such as permeation of steam, dialysis, reverse osmosis and dehumidification of air.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は浸透気化法又は蒸気透過法による水選択透過膜
だけでなく、逆浸透、限外?過や空気の除湿膜といった
、広範囲な一般分離膜に関するものである。又、緻密層
又は多孔層というような膜構造は限定されず、膜形態も
平膜、中空糸膜、チューブ膜等のいずれでもよく、用途
によって任意に決めることができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable not only to water selective permeation membranes using pervaporation or vapor permeation methods, but also to reverse osmosis and ultraviolet membranes. It relates to a wide range of general separation membranes, such as filtration and air dehumidification membranes. Further, the membrane structure such as a dense layer or a porous layer is not limited, and the membrane form may be any of flat membranes, hollow fiber membranes, tube membranes, etc., and can be arbitrarily determined depending on the application.

[従来技術及び課題] 一般の疎水性分離膜は、表面が水で濡れ難く乾燥し易い
、吸着や目詰まりし易いなどの欠点を改善するために各
種の親水化処理が行なわれてきた。
[Prior Art and Problems] General hydrophobic separation membranes have been subjected to various hydrophilic treatments in order to improve their shortcomings, such as the surface being difficult to wet with water and easily drying out, and prone to adsorption and clogging.

従来行なわれている分離膜への親水化処理としては、ポ
リエチレングリコールやグリセリン等の多価アルコール
を膜中に添加することが一般的に行なわれている。しか
しながら、このような方法で分離膜に親水性を付与した
場合には、使用時にf液中にこれらの添加剤が溶出する
といった欠点があった。又、特公昭56’ −1618
7では、疎水性分離膜に水溶性ポリマーを浸漬すること
によって塗布した後、電子線照射や加熱結晶化及びホル
ムアルデヒドやグリオキザールによる化学反応によって
水不溶化処理して親水化する方法が開示されている。し
かしながら、このような方法の場合には操作が煩雑なた
め実用的でなくディフェクトも発生しやすいという欠点
があった。又、特開昭58−35862には、疎水性微
孔性シ濾過膜の親水化方法として、ポリサルホン製ン濾
過膜を真空放電雰囲気中にスパッタエツチングする方法
が開示されている。しかしながら、この方法では親水化
処理後の微孔性3濾過膜の機械的強度が著しく低下する
という欠点を有している。
As a conventional hydrophilic treatment for separation membranes, it is common practice to add polyhydric alcohols such as polyethylene glycol and glycerin to the membrane. However, when hydrophilicity is imparted to the separation membrane by such a method, there is a drawback that these additives are eluted into the f-liquid during use. Also, special public service 1986-1618
No. 7 discloses a method in which a water-soluble polymer is coated on a hydrophobic separation membrane by immersion, and then subjected to water insolubilization treatment to make it hydrophilic by electron beam irradiation, heating crystallization, and chemical reaction with formaldehyde or glyoxal. However, in the case of such a method, the operation is complicated, so it is impractical and defects are likely to occur. Furthermore, Japanese Patent Laid-Open No. 58-35862 discloses a method of sputter etching a polysulfone filtration membrane in a vacuum discharge atmosphere as a method for making a hydrophobic microporous filtration membrane hydrophilic. However, this method has the disadvantage that the mechanical strength of the microporous 3-filtration membrane after the hydrophilic treatment is significantly reduced.

[課題を解決するための手段] 本発明者らは、前記課題を解決するために鋭意研究を重
ねた結果、容易な方法により親水化処理されたポリアク
リロニトリル系分離膜を得ることに成功した。この膜は
そのまま親水化分離膜として使用することも勿論可能で
あるが、親水性ポリマーをコーティングする際の基材膜
として用いることらできる。即ち本発明は、以下の構成
から成る。
[Means for Solving the Problems] As a result of extensive research in order to solve the above problems, the present inventors succeeded in obtaining a polyacrylonitrile-based separation membrane that was subjected to a hydrophilic treatment using a simple method. Of course, this membrane can be used as it is as a hydrophilic separation membrane, but it can also be used as a base membrane when coating a hydrophilic polymer. That is, the present invention consists of the following configuration.

(1)部分的に加水分解されたポリアクリロニトリル系
基材膜に親水性合成ポリマーをコーティングして製造す
ることを特徴とする複合膜。
(1) A composite membrane produced by coating a partially hydrolyzed polyacrylonitrile base membrane with a hydrophilic synthetic polymer.

(2)ポリアクリロニトリル系基材膜に親水性合成ポリ
マーをコーティングして複合膜を製造する際、ポリアク
リロニトリル系基材膜をあらかじめ部分的に加水分解し
て親水性を高めておくことを特徴とする複合膜の製造方
法。
(2) When manufacturing a composite membrane by coating a polyacrylonitrile base film with a hydrophilic synthetic polymer, the polyacrylonitrile base film is partially hydrolyzed in advance to increase its hydrophilicity. A method for manufacturing a composite membrane.

本発明でいう浸透気化性能評価における透過速度とは、
単位膜面積・単位時間当たりの透過混合物量でKg/m
’・hrの単位で表す。一方、分離係数(α)は、供給
液あるいは供給蒸気中の水と有機物との比に対する透過
気体中の水と有機物との比である。すなわち、α −(
X/Y)/(X/Y)。
The permeation rate in pervaporation performance evaluation in the present invention is
Kg/m in permeation mixture amount per unit membrane area/unit time
Expressed in units of '・hr. On the other hand, the separation coefficient (α) is the ratio of water and organic matter in the permeate gas to the ratio of water and organic matter in the feed liquid or feed vapor. That is, α − (
X/Y)/(X/Y).

p である。ここで、X、Yは2成分系での水及び有機物の
それぞれの組成を、又p及びrは、それぞれ透過及び供
給を表す。
It is p. Here, X and Y represent the respective compositions of water and organic matter in a two-component system, and p and r represent permeation and supply, respectively.

膜素材は、ポリアクリロニトリルと他の素材とのブレン
ド物又は共重合物であっても差し支えないし、又、架橋
されていてし膜形態維持の点から好ましいことは明らか
である。これらの素材を加水分解する代表的な方法とし
ては、酸又はアルカリ性溶液に浸漬する方法か挙げられ
る。このなかでも特に、水酸化カリウム、水酸化ナトリ
ウム、水酸化バリウム等のアルカリ性溶液に浸漬する方
法が、その加水分解速度と膜形態維持のバランスからい
って好ましい。加水分解の度合は、膜素材の種類や、ブ
レンド物、共重合物、又は、架橋処理物であるなしによ
っても異なるが、用いる酸、アルカリの種類、濃度、処
嬰時間によってそれぞれ適度な加水分解塵にすることが
できる。膜素材を全て加水分解Vることは、素材により
異なるが、水溶性のゲル状物に変換されてしまうことが
多いので好ましくない。又1.膜表面のみを処理液と接
触させて加水分解するだけでも本発明の目的は達成され
る。
The membrane material may be a blend or copolymer of polyacrylonitrile and other materials, and it is clear that crosslinking is preferable from the viewpoint of maintaining the membrane shape. Typical methods for hydrolyzing these materials include immersion in acid or alkaline solutions. Among these, the method of immersing in an alkaline solution such as potassium hydroxide, sodium hydroxide, barium hydroxide, etc. is particularly preferable from the viewpoint of the balance between the hydrolysis rate and maintaining the membrane shape. The degree of hydrolysis varies depending on the type of membrane material and whether it is a blend, copolymer, or crosslinked product, but depending on the type and concentration of the acid or alkali used, and the treatment time, an appropriate degree of hydrolysis can be achieved. It can be turned into dust. Although it differs depending on the material, it is not preferable to completely hydrolyze the membrane material because it is often converted into a water-soluble gel-like substance. Also 1. The object of the present invention can be achieved even if only the surface of the membrane is brought into contact with the treatment liquid and hydrolyzed.

又、ポリアクリロニトリルのアルカリ性溶液による加水
分解の反応経路については、およそ(+)〜(V)式の
ように進行すると考えられている。
Further, the reaction route of hydrolysis of polyacrylonitrile with an alkaline solution is thought to proceed approximately as shown in equations (+) to (V).

(以下余白) ↓OH− 適度に加水分解した膜は、カルボキシル基が処理液に応
じて酸型、種々の金属塩型、アミン塩型等の状聾となり
、そのままで分離膜として使用できる。又さらに、この
親水化された分離膜を基材膜として用いて、その表面に
親水性ポリマーをコーティングし、機能性を高めること
が容易にできる。親水性合成ポリマーの例としては、ポ
リアクリル酸、ポリビニルアルコールのような合成高分
子が代表的であるがこれに限定されるしのではない。°
コーティング液がポリアクリル酸のようなアニオン性ポ
リマーの場合には、カチオン性ポリマーとポリイオンコ
ンプレックス化する方が、膜性能の向上及び安定性の面
から好ましい。カチオン性ポリマーの具体的な例として
は、ポリエチレンイミン、ポリアリルアミン、ポリビニ
ルビリノン、主鎖に第4級アンモニウム塩を含むアニオ
ン性ポリマー等が代表的であるが、これに限定されるも
のではない。又、ポリイオンコンプレックス化は、コー
ティングされた膜を、これらの溶液に浸漬するだけで容
易に達成される。又、該基材膜のように表面にカルボキ
シル基のようなアニオン性基が生成している場合には、
カチオン性ポリマーを先にコーティングしてもイオン間
の相互作用により容易に塗布されろことは明らかである
(See margin below) ↓OH- In a properly hydrolyzed membrane, the carboxyl group becomes an acid type, various metal salt type, amine salt type, etc. depending on the treatment liquid, and can be used as a separation membrane as it is. Furthermore, this hydrophilized separation membrane can be used as a base membrane and its surface can be coated with a hydrophilic polymer to easily enhance functionality. Typical examples of hydrophilic synthetic polymers include synthetic polymers such as polyacrylic acid and polyvinyl alcohol, but are not limited thereto. °
When the coating liquid is an anionic polymer such as polyacrylic acid, it is preferable to form a polyion complex with a cationic polymer in terms of improved membrane performance and stability. Specific examples of cationic polymers include, but are not limited to, polyethyleneimine, polyallylamine, polyvinylvinylone, and anionic polymers containing a quaternary ammonium salt in the main chain. . Moreover, polyion complexation can be easily achieved by simply immersing the coated membrane in these solutions. In addition, when anionic groups such as carboxyl groups are formed on the surface of the base film,
It is clear that even if the cationic polymer is coated first, it will be easily applied due to interactions between ions.

[実施例] 次に実施例によってこの発明をさらに具体的に説明する
[Example] Next, the present invention will be explained in more detail with reference to Examples.

実施例1 ポリアクリロニトリル系限外を過膜であるD tJY−
M平膜(ダイセル化学工業社製、ポリアクリロニトリル
含有量約7割)を、I NN aO[1水溶液中に78
−85℃で30分間浸漬して加水分解した。加水分解後
、膜中の過剰のアルカリを水で洗浄し乾燥した後、AT
Ft−[Rを測定した結果、1400、I 550cm
−’位置の吸収からイオン化されたカルボキシル基の存
在が認められ、膜が現水化処理されたことが確認された
。又、この親水化処理された膜を用いて浸透気化法によ
って水/エタノールの分離性能(評価液95%エタノー
ル、60℃)を測定し、水選択性を評価した結果、分離
係数的40、透過速度1 kg/m”・hrであった。
Example 1 D tJY- which is a polyacrylonitrile-based ultrafiltration membrane
M flat membrane (manufactured by Daicel Chemical Industries, Ltd., polyacrylonitrile content approximately 70%) was mixed with INN aO [78% in an aqueous solution.
Hydrolysis was carried out by immersion at -85°C for 30 minutes. After hydrolysis, excess alkali in the membrane is washed with water, dried, and then AT
As a result of measuring Ft-[R, 1400, I 550cm
The presence of ionized carboxyl groups was recognized from the absorption at the -' position, and it was confirmed that the membrane had been subjected to aqueous treatment. In addition, the water/ethanol separation performance (evaluation liquid: 95% ethanol, 60°C) was measured using this hydrophilic membrane using the pervaporation method, and the water selectivity was evaluated. The speed was 1 kg/m"·hr.

比較例I DUY−M平膜を加水分解処理せずに、そのまま実施例
1と同様の方法で水選択性を評価した結果、分離係数は
約1であり水選択性を有していなかった。
Comparative Example I The water selectivity of the DUY-M flat membrane was evaluated in the same manner as in Example 1 without being subjected to hydrolysis treatment. As a result, the separation coefficient was approximately 1, indicating that it had no water selectivity.

比較例2 DUY−M平膜を、lN−NaOH水溶液中に78−8
5℃で60分間浸漬して加水分解した。
Comparative Example 2 A DUY-M flat membrane was placed in a 1N-NaOH aqueous solution at 78-8
Hydrolysis was carried out by immersion at 5° C. for 60 minutes.

この膜は、過剰にポリアクリル酸ナトリウム変換されて
おり、ゲル状物となり膜形態が壊れていた。
This film had been converted to an excessive amount of sodium polyacrylate, and had become a gel-like substance with a broken film morphology.

実施例2 ポリアクリロニトリル系ポリマー(含有率約9割)から
なる中空糸(内径/外径= 1.0 / 1..5mm
)ヲ用いて、膜面積約70cm”のミニモジュールを5
ヶ作成した。このミニモジュールを用いて糸内部にlN
−NaOHを80℃で15分間通液して内表面を軽く加
水分解した。この中空糸内部に分子量約400万のポリ
アクリル酸0.5%水溶液を10秒間通液した後、50
℃の温風で通風乾燥した後、次式の構造を何するアイオ
ネン型ポリカチオン))CA−107の2%水溶液を通
液してポリイオンコンプレックス化し、さらに通風乾燥
した。ディフェクト部分を減少させるため以上のポリア
クリル酸コーティング〜ボリイオンコンブレククス化操
作を2回繰り返したのち、実施例1と同様の方法によっ
て水選択性を評価した。その結果、5モノニールとも分
離係数は800を超える高い値を示した。この評価方法
の場゛合、塗りむらのようなディフェクトが少ない場合
は、分離係数が大きくなるので、この膜は、はぼ均一に
コーティングされているといえよう。
Example 2 Hollow fibers (inner diameter/outer diameter = 1.0/1.5 mm) made of polyacrylonitrile polymer (content rate approximately 90%)
) using 5 mini-modules with a membrane area of approximately 70 cm.
created. Using this mini module, lN inside the thread.
-NaOH was passed at 80° C. for 15 minutes to lightly hydrolyze the inner surface. After passing a 0.5% aqueous solution of polyacrylic acid with a molecular weight of about 4 million for 10 seconds inside this hollow fiber,
After drying with hot air at a temperature of .degree. C., a 2% aqueous solution of CA-107, an ionene polycation having the following structure, was passed therethrough to form a polyion complex, and the mixture was further dried with ventilation. After repeating the above polyacrylic acid coating to polyion conjugation process twice to reduce defective areas, the water selectivity was evaluated in the same manner as in Example 1. As a result, all 5 monoyls showed high separation coefficients exceeding 800. In the case of this evaluation method, if there are few defects such as uneven coating, the separation coefficient becomes large, so it can be said that the film is coated fairly uniformly.

匡亜面】刀 比較例3 ポリアクリロニトリル系中空糸を加水分解せずにそのま
ま複合膜用の基材膜として用いた以外は実施例2と同様
の方法でコーチイングルポリイオンコンプレックス比処
理した後、膜性能を評価したところ5モジユールの中で
分離係数が800を超えるものは3ケであった。
Comparative Example 3 The membrane was coated with a polyion complex in the same manner as in Example 2, except that the polyacrylonitrile hollow fibers were used as the base membrane for the composite membrane without being hydrolyzed. When the performance was evaluated, 3 out of 5 modules had a separation coefficient of over 800.

実施例3 −、ポリアクリロニトリル系中空糸にコーティング処理
をしない以外は実施例2と同様の加水分解処理をし、2
%PCA−107水溶液を中空糸内部に通液してポリイ
オンコンプレックス化した。この膜を実施例!と同じ方
法で膜性能を評価した結果、分離係数3而後、透過速度
10 kg/n+”−hr以」−であった。
Example 3 - Hydrolysis treatment was carried out in the same manner as in Example 2 except that the polyacrylonitrile hollow fibers were not coated.
% PCA-107 aqueous solution was passed through the hollow fiber to form a polyion complex. Example of this membrane! The membrane performance was evaluated in the same manner as above, and after a separation factor of 3, the permeation rate was 10 kg/n+"-hr"-.

実施例4 加水分解をしない他は実施例3と同様の処理をした。こ
の膜を実施例1と同じ方法で膜性能を評価した結果、分
離係数は約1であり水選択透過性は無かった。
Example 4 The same treatment as in Example 3 was carried out except that hydrolysis was not performed. The membrane performance of this membrane was evaluated in the same manner as in Example 1. As a result, the separation coefficient was approximately 1, and there was no water selective permeability.

[発明の効果] 本発明によれば、従来から市販されている逆浸透膜、限
外−過膜、精密9濾過膜等をそのまま用いることができ
、従来法のような高度な技術を用いなくても、酸又はア
ルカリ水溶液に所定時間接触させて加水分解することで
、親水化された分離膜が容易に得られる。又、本発明に
よる親水化された分離膜を複合膜用の基材膜として使用
する際には、親水性ポリマーをコーティングした時に膜
表面と親和性が良いために、コーティングしやすくなる
。本発明による親水化された分離膜は、浸透気化法によ
り優れた水選択透過性を示し、種々の有機物混合溶液か
らの脱水に使用可能なことはもとより、その特性を生か
し蒸気透過、透析、逆浸透、空気の除湿といった広範な
用途を用いることができる。
[Effects of the Invention] According to the present invention, conventionally commercially available reverse osmosis membranes, ultrafiltration membranes, precision 9 filtration membranes, etc. can be used as they are, without using advanced technology unlike conventional methods. However, a hydrophilized separation membrane can be easily obtained by contacting with an acid or alkaline aqueous solution for a predetermined period of time and hydrolyzing the membrane. Furthermore, when the hydrophilized separation membrane according to the present invention is used as a base membrane for a composite membrane, it has good affinity with the membrane surface when coated with a hydrophilic polymer, making coating easier. The hydrophilized separation membrane according to the present invention exhibits excellent water selective permeability by pervaporation, and can be used not only for dehydration from various organic mixed solutions, but also for vapor permeation, dialysis, and reverse water permeation by taking advantage of its properties. A wide range of applications can be used, such as infiltration and air dehumidification.

特許出願人 通商産業省基礎産業局長Patent applicant: Director-General of Basic Industries Bureau, Ministry of International Trade and Industry

Claims (2)

【特許請求の範囲】[Claims] (1)部分的に加水分解されたポリアクリロニトリル系
基材膜に親水性合成ポリマーをコーティングして製造す
ることを特徴とする複合膜。
(1) A composite membrane produced by coating a partially hydrolyzed polyacrylonitrile base membrane with a hydrophilic synthetic polymer.
(2)ポリアクリロニトリル系基材膜に親水性合成ポリ
マーをコーティングして複合膜を製造する際、ポリアク
リロニトリル系基材膜をあらかじめ部分的に加水分解し
て親水性を高めておくことを特徴とする複合膜の製造方
法。
(2) When manufacturing a composite membrane by coating a polyacrylonitrile base film with a hydrophilic synthetic polymer, the polyacrylonitrile base film is partially hydrolyzed in advance to increase its hydrophilicity. A method for manufacturing a composite membrane.
JP63228847A 1987-12-02 1988-09-14 Method for manufacturing composite membrane Expired - Lifetime JPH0634909B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63228847A JPH0634909B2 (en) 1988-09-14 1988-09-14 Method for manufacturing composite membrane
US07/392,527 US5087367A (en) 1987-12-02 1988-12-01 Hydrolyzed membrane and process for the preparation of the same
PCT/JP1988/001219 WO1989005182A1 (en) 1987-12-02 1988-12-01 Hydrolyzed membrane and process for its production
EP89900146A EP0436720B1 (en) 1987-12-02 1988-12-01 Hydrolyzed membrane and process for its production
DE3853366T DE3853366T2 (en) 1987-12-02 1988-12-01 Hydrolyzed membrane and process for its manufacture.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228847A JPH0634909B2 (en) 1988-09-14 1988-09-14 Method for manufacturing composite membrane

Publications (2)

Publication Number Publication Date
JPH0278426A true JPH0278426A (en) 1990-03-19
JPH0634909B2 JPH0634909B2 (en) 1994-05-11

Family

ID=16882804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228847A Expired - Lifetime JPH0634909B2 (en) 1987-12-02 1988-09-14 Method for manufacturing composite membrane

Country Status (1)

Country Link
JP (1) JPH0634909B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237347A (en) * 1992-02-26 1993-09-17 Daicel Chem Ind Ltd Method for concentrating food
JP2005218996A (en) * 2004-02-06 2005-08-18 Kurita Water Ind Ltd Nano filtration device and its operation method
JP2005230692A (en) * 2004-02-19 2005-09-02 Kurita Water Ind Ltd Poly ion complex membrane and water treatment device
JP2005246263A (en) * 2004-03-04 2005-09-15 Kurita Water Ind Ltd Polyion complex membrane and water treatment device
JP2008520403A (en) * 2004-09-30 2008-06-19 マクマスター ユニバーシティー Composite material comprising a multilayered hydrophilic coating layer
CN100431676C (en) * 2006-09-08 2008-11-12 浙江工商大学 Processing technology of polyacrylic acid and cellulose acetate composite membrane
WO2009044655A1 (en) * 2007-10-01 2009-04-09 Kurita Water Industries Ltd. Reverse osmosis membrane, reverse osmosis membrane device, and method of hydrophilizing reverse osmosis membrane
JP2009109020A (en) * 2000-11-08 2009-05-21 Jtekt Corp Assembly method of drive force transmitting equipment using electromagnetic clutch
US8443986B2 (en) 2007-10-01 2013-05-21 Kurita Water Industries Ltd. Reverse osmosis membrane and reverse osmosis membrane apparatus
JP2019058896A (en) * 2017-09-28 2019-04-18 Nok株式会社 Hollow fiber membrane module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242106A (en) * 1988-03-23 1989-09-27 Toray Ind Inc Composite semipermeable membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242106A (en) * 1988-03-23 1989-09-27 Toray Ind Inc Composite semipermeable membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237347A (en) * 1992-02-26 1993-09-17 Daicel Chem Ind Ltd Method for concentrating food
JP2009109020A (en) * 2000-11-08 2009-05-21 Jtekt Corp Assembly method of drive force transmitting equipment using electromagnetic clutch
JP2005218996A (en) * 2004-02-06 2005-08-18 Kurita Water Ind Ltd Nano filtration device and its operation method
JP2005230692A (en) * 2004-02-19 2005-09-02 Kurita Water Ind Ltd Poly ion complex membrane and water treatment device
JP4547932B2 (en) * 2004-02-19 2010-09-22 栗田工業株式会社 Polyion complex membrane and water treatment device
JP2005246263A (en) * 2004-03-04 2005-09-15 Kurita Water Ind Ltd Polyion complex membrane and water treatment device
JP2008520403A (en) * 2004-09-30 2008-06-19 マクマスター ユニバーシティー Composite material comprising a multilayered hydrophilic coating layer
JP4805939B2 (en) * 2004-09-30 2011-11-02 マクマスター ユニバーシティー Composite material comprising a multilayered hydrophilic coating layer
CN100431676C (en) * 2006-09-08 2008-11-12 浙江工商大学 Processing technology of polyacrylic acid and cellulose acetate composite membrane
WO2009044655A1 (en) * 2007-10-01 2009-04-09 Kurita Water Industries Ltd. Reverse osmosis membrane, reverse osmosis membrane device, and method of hydrophilizing reverse osmosis membrane
US8443986B2 (en) 2007-10-01 2013-05-21 Kurita Water Industries Ltd. Reverse osmosis membrane and reverse osmosis membrane apparatus
JP2019058896A (en) * 2017-09-28 2019-04-18 Nok株式会社 Hollow fiber membrane module

Also Published As

Publication number Publication date
JPH0634909B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US10427104B2 (en) Double crosslinked sodium alginate/polyvinyl alcohol composite nanofiltration membrane and preparation method thereof
CN110038438B (en) Preparation method of organic-inorganic composite ceramic nanofiltration membrane
JPS6368646A (en) Permeable porous polymer membrane having hydrophilic characteristic, and its production and use
CN113522058B (en) High-performance composite forward osmosis membrane based on polyolefin microporous substrate and preparation method thereof
JP2001520111A (en) Method for producing composite membrane having thin hydrophilic coating layer on hydrophobic support membrane
JPH0278426A (en) Laminated membrane and production thereof
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
EP0510574B1 (en) Reactive treatment of composite gas separation membranes
US5087367A (en) Hydrolyzed membrane and process for the preparation of the same
JPS5824447B2 (en) Manufacturing method of reverse osmosis membrane
KR102056872B1 (en) Positive charged poly(vinylidene fluoride) porous membranes and manufacturing method thereof
JPH0691949B2 (en) Separation membrane made of polyion complex
CN106823856B (en) Hydrophilic porous polyolefin material and hydrophilic modification treatment method thereof
JPH10309449A (en) Organic material separating polymer film and its manufacture
CN113413760A (en) Acid and alkali resistant layer-by-layer cross-linked nanofiltration membrane and preparation method thereof
KR100239137B1 (en) Preparation method of nanofilter membrane
JP3242185B2 (en) Method for producing polyamide-based composite hollow fiber type reverse osmosis membrane
JPH0567332B2 (en)
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
JPH0691947B2 (en) Water selective permeable hydrolysis membrane
KR100371901B1 (en) Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers
JPH0470936B2 (en)
Lee et al. Effect of deacetylation degree in chitosan composite membranes on pervaporation performance
JPH0516286B2 (en)
JPS63214304A (en) Production of membrane containing polyionic complex

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term