JPH0753763A - Fluorinated porous polyolefin film - Google Patents

Fluorinated porous polyolefin film

Info

Publication number
JPH0753763A
JPH0753763A JP19850393A JP19850393A JPH0753763A JP H0753763 A JPH0753763 A JP H0753763A JP 19850393 A JP19850393 A JP 19850393A JP 19850393 A JP19850393 A JP 19850393A JP H0753763 A JPH0753763 A JP H0753763A
Authority
JP
Japan
Prior art keywords
fluorine
porous polyolefin
membrane
porous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19850393A
Other languages
Japanese (ja)
Inventor
Yasuyuki Sasaki
康之 佐々木
Hidehiko Obara
秀彦 小原
Akira Watanabe
渡邉  朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP19850393A priority Critical patent/JPH0753763A/en
Publication of JPH0753763A publication Critical patent/JPH0753763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To impart hydrophilicity and water permeability to a porous polyolefin film by treating the film with fluorine and oxygen to bring the ratio of oxygen atoms to fluorine atoms at the surface into a specified range. CONSTITUTION:A porous film of polyethylene, polypropylene, etc., esp. of an ultrahigh-mol.-wt. polyethylene (including a hollow film) is brought into contact with fluorine and oxygen gases pref. for 1sec to 30min in such a way that an atomic compsn. at the surface is obtd. which satisfies the relation: 100>(10X[O]-[F]/[C])>0.5, pref. 30>(10X[O]-[F]/[C]), wherein [C], [F], and [O] are the numbers of atoms of C, F, and O, respectively. Thus treated film has an angle of contact with water droplet at the surface of 100 deg. or lower, i.e., has high hydrophilicity and water permeability, and is usable for a water- base electrolytic soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フッ素含有多孔質ポリ
オレフィン膜に関する。詳しくは、本発明は多孔質ポリ
オレフィンが有する優れた分離膜素材としての特性を損
なうことなく、高度の親水性、透水性が付与された多孔
質ポリオレフィン膜に関する。
FIELD OF THE INVENTION The present invention relates to a fluorine-containing porous polyolefin membrane. More specifically, the present invention relates to a porous polyolefin membrane having a high degree of hydrophilicity and water permeability without impairing the characteristics of the porous polyolefin as an excellent material for a separation membrane.

【0002】[0002]

【従来の技術】多孔質ポリオレフィン膜は分離膜素材と
して様々な工業分野で用いられているが、特に半導体関
連分野においては薬品中の微粒子等の異物の除去に広く
用いられている。
2. Description of the Related Art Porous polyolefin membranes are used as a separation membrane material in various industrial fields, and are widely used for removing foreign matters such as fine particles in chemicals, especially in the field of semiconductors.

【0003】[0003]

【発明が解決しようとする課題】しかし、ポリオレフィ
ンやポリテトラフルオロエチレンなどからなる多孔膜は
その臨界界面張力が小さいため、そのままでは表面張力
の高い液体、特に、電解液等の水溶液を透過させること
は困難である。そこで、従来このように疎水性の多孔質
ポリオレフィン膜で、表面張力の大きい液体を透過させ
ようとするときは、その膜を予めアルコール等の親水性
有機溶剤で処理し、成形体中の微細孔を湿潤処理した
後、この有機溶剤を透過対象である液体で置換すること
が行われている。しかし、かかる方法は手間を要すると
共に環境安全性の点からも必ずしも望ましい方法とはい
えない。
However, since a porous membrane made of polyolefin, polytetrafluoroethylene, or the like has a small critical interfacial tension, it should be permeated with a liquid having a high surface tension, especially an aqueous solution such as an electrolytic solution. It is difficult. Therefore, when it is attempted to permeate a liquid having a large surface tension in such a hydrophobic porous polyolefin membrane as described above, the membrane is previously treated with a hydrophilic organic solvent such as alcohol to obtain fine pores in the molded body. After the wet treatment, the organic solvent is replaced with a liquid to be permeated. However, such a method is not always desirable from the viewpoint of labor and time and environmental safety.

【0004】一方、多孔質ポリオレフィン膜表面を親水
化する方法としては、スパッタエッチング処理する方法
やプラズマ処理する方法などが挙げられる。しかし、ス
パッタエッチング処理方法は多孔質ポリオレフィン膜表
面がエッチングされて、水に対する濡れ性が改善される
ものとみられるが、親水性基が多孔質ポリオレフィン膜
表面に導入されることは少ない。また、多孔質ポリオレ
フィン膜をプラズマ処理する方法では高真空条件が必要
であり、大型材料の連続運転が困難であり、更に、装置
コストが高く簡便な汎用的処理方法としては不適当であ
る。
On the other hand, as a method for making the surface of the porous polyolefin film hydrophilic, there are a sputter etching treatment method and a plasma treatment method. However, although it is considered that the sputter etching treatment method improves the wettability with water by etching the surface of the porous polyolefin film, hydrophilic groups are rarely introduced onto the surface of the porous polyolefin film. In addition, the method of plasma-treating a porous polyolefin membrane requires high vacuum conditions, which makes continuous operation of large materials difficult, and is unsuitable as a general-purpose treatment method that requires high equipment cost and is simple.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記事情
に鑑みて鋭意検討を行った結果、表面元素分析における
フッ素、炭素および酸素の含有量が特定量である多孔質
ポリオレフィン膜が、高度な親水性ならびに透水性能を
有することを見いだし、本発明を完成させるに至った。
Means for Solving the Problems As a result of intensive studies in view of the above circumstances, the present inventors have found that a porous polyolefin membrane having a specific content of fluorine, carbon and oxygen in surface elemental analysis is They found that they have high hydrophilicity and water permeability, and completed the present invention.

【0006】すなわち、本発明の要旨は、表面の水滴接
触角が100゜以下であって、ESCAにて測定した表
面元素組成における炭素原子数[C]、酸素原子数
[O]、フッ素原子数[F]が、
That is, the gist of the present invention is that the contact angle of water droplets on the surface is 100 ° or less and the number of carbon atoms [C], the number of oxygen atoms [O], the number of fluorine atoms in the surface elemental composition measured by ESCA. [F] is

【0007】[0007]

【数2】 100>(10×[O]−[F])/[C]>0.5 (1) の関係式をみたすことを特徴とするフッ素含有多孔質ポ
リオレフィン膜に関する。以下、本発明を詳細に説明す
る。
[Formula 2] 100> (10 × [O] − [F]) / [C]> 0.5 The present invention relates to a fluorine-containing porous polyolefin membrane characterized by satisfying the relational expression. Hereinafter, the present invention will be described in detail.

【0008】本発明を適用し得る多孔質ポリオレフィン
膜としては、ポリエチレン、ポリプロピレン等の多孔膜
が挙げられる。特に、好ましくは粘度平均分子量50万
以上、更に好ましくは100万以上の超高分子量ポリエ
チレンに適用される。多孔質超高分子量ポリエチレン膜
は、通常の方法により製造され、超高分子量ポリエチレ
ンと炭化水素系等の可塑剤等、好ましくは、ステアリル
アルコールを混合したものを一軸もしくは二軸スクリュ
ー押し出し機で溶融、混練し、Tダイヤインフレーショ
ンダイから押し出し、フィルム、シート、または中空状
の成形物を得た後、可塑剤を抽出し、必要に応じ、一軸
もしくは二軸延伸を実施して得られる。延伸する場合の
延伸倍率は面積倍率で1.5〜100倍、好ましくは1
0倍〜50倍である。
Examples of the porous polyolefin membrane to which the present invention can be applied include porous membranes of polyethylene, polypropylene and the like. Particularly, it is preferably applied to ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more, and more preferably 1,000,000 or more. Porous ultra-high molecular weight polyethylene membrane is produced by a conventional method, such as plasticizers such as ultra-high molecular weight polyethylene and hydrocarbon type, preferably, a mixture of stearyl alcohol is melted in a single or twin screw extruder, It is obtained by kneading and extruding from a T-diaflation die to obtain a film, a sheet, or a hollow molded product, extracting the plasticizer, and, if necessary, carrying out uniaxial or biaxial stretching. The stretching ratio in stretching is 1.5 to 100 times, preferably 1 in area.
It is 0 to 50 times.

【0009】かかる多孔質ポリオレフィン膜は、通常、
平均孔径が0.001〜100μm、好ましくは0.0
1〜1μm、膜厚が1〜350μm、好ましくは3〜8
0μm、空孔率が1〜90%、好ましくは35〜80
%、バブルポイント(BJ:JIS K3832)が
1.5〜15kg/cm2、好ましくは3〜9kg/cm2の範囲に
あるものが好ましく挙げられる。
Such a porous polyolefin membrane is usually
The average pore size is 0.001 to 100 μm, preferably 0.0
1-1 μm, film thickness 1-350 μm, preferably 3-8
0 μm, porosity 1 to 90%, preferably 35 to 80
%, And the bubble point (BJ: JIS K3832) is in the range of 1.5 to 15 kg / cm 2 , preferably 3 to 9 kg / cm 2 .

【0010】また、このような多孔質ポリオレフィン膜
は、濾過膜あるいはバッテリーセパレータとして有用で
ある。本発明の多孔質ポリオレフィン膜の表面の水滴接
触角は100゜以下、好ましくは70゜以下である。ま
た、本発明の多孔質ポリオレフィン膜は、ESCA表面
元素組成分析によって得られるフッ素原子数[F]、炭
素原子数[C]、酸素原子数[O]が下記式を満足する
ことが必要である。
Further, such a porous polyolefin membrane is useful as a filtration membrane or a battery separator. The water droplet contact angle on the surface of the porous polyolefin membrane of the present invention is 100 ° or less, preferably 70 ° or less. Further, the porous polyolefin membrane of the present invention is required to satisfy the following formulas in the number of fluorine atoms [F], the number of carbon atoms [C], and the number of oxygen atoms [O] obtained by ESCA surface elemental composition analysis. .

【0011】[0011]

【数3】 100>(10×[O]−[F])/[C]>0.5 (1) なお、好ましくは、## EQU3 ## 100> (10 × [O] − [F]) / [C]> 0.5 (1) Note that, preferably,

【0012】[0012]

【数4】 50>(10×[O]−[F])/[C]
>0.5 が良く、更には、
50> (10 × [O] − [F]) / [C]
> 0.5 is good, and moreover,

【0013】[0013]

【数5】 30>(10×[O]−[F])/[C]
>0.5 が好ましい。この値が0.5以下であると、表面の水滴
接触角が100°以下となるものは得られない。該多孔
性ポリオレフィン膜を製造する、簡便かつ効果的な方法
としては、多孔質ポリオレフィン膜を特定量のフッ素ガ
スおよび酸素ガスを含有する気体と接触処理する方法が
好適である。
30> (10 × [O] − [F]) / [C]
> 0.5 is preferred. If this value is 0.5 or less, a surface water droplet contact angle of 100 ° or less cannot be obtained. As a simple and effective method for producing the porous polyolefin membrane, a method of contact-treating the porous polyolefin membrane with a gas containing a specific amount of fluorine gas and oxygen gas is suitable.

【0014】なお、通常のフッ素ガスのみを用いたフッ
素処理条件では、[O]/[C]および[F]/[C]
の得られる範囲は、
Under ordinary fluorine treatment conditions using only fluorine gas, [O] / [C] and [F] / [C]
The obtained range of

【0015】[0015]

【数6】 0< [O]/[C] <0.06
(2) かつ、
[Equation 6] 0 <[O] / [C] <0.06
(2) And

【0016】[0016]

【数7】 [F]/[C] >0.1
(3) となり、式(1)を満足することができない。以下、か
かるフッ素ガスおよび酸素ガスを含有する気体との接触
処理を用いた場合について説明する。本発明のフッ素含
有多孔質ポリオレフィン膜は、例えば、多孔質ポリオレ
フィン膜にフッ素ガスの分圧1に対して酸素ガスの分圧
を0.1〜500程度で混合した混合ガスを接触させ、
得ることができる。この時フッ素および酸素ガスは窒素
あるいはヘリウム等の不活性ガスで希釈して用いてもよ
く、その濃度は特に限定されないが0.01〜50%の
範囲、好ましくは0.05〜20%の範囲から選ばれ
る。
[F] / [C]> 0.1
(3), which means that the equation (1) cannot be satisfied. Hereinafter, the case where the contact treatment with the gas containing the fluorine gas and the oxygen gas is used will be described. The fluorine-containing porous polyolefin membrane of the present invention is, for example, brought into contact with a mixed gas obtained by mixing the porous polyolefin membrane with a partial pressure of fluorine gas of 1 to a partial pressure of oxygen gas of about 0.1 to 500,
Obtainable. At this time, the fluorine and oxygen gases may be diluted with an inert gas such as nitrogen or helium, and the concentration thereof is not particularly limited, but is in the range of 0.01 to 50%, preferably 0.05 to 20%. Chosen from.

【0017】かかる処理におけるフッ素ガス含有気体の
多孔質膜との接触処理時の全圧は、大気圧であっても、
陰圧あるいは陽圧であってもよい。多孔質ポリオレフィ
ン膜をこのガスで処理する時の温度は、−70〜90°
C、好ましくは0〜50°Cの範囲がよい。また、フッ
素および酸素ガスの接触時間は、広い範囲から適宜選ば
れ、通常1秒から3時間、好ましくは、1秒から30分
の範囲である。
The total pressure during the contact treatment of the gas containing fluorine gas with the porous membrane in such treatment is atmospheric pressure,
It may be negative or positive. The temperature when the porous polyolefin membrane is treated with this gas is -70 to 90 °.
C, preferably in the range of 0 to 50 ° C. The contact time of fluorine and oxygen gas is appropriately selected from a wide range and is usually 1 second to 3 hours, preferably 1 second to 30 minutes.

【0018】該フッ素処理、すなわち多孔質ポリオレフ
ィン膜と、フッ素を含有する気体とを接触させる方法に
ついては、特に限定されないが、バッチ式処理法や連続
式処理法が挙げられる。バッチ式処理法としては、密閉
された反応容器中に膜を保持し、容器内の気体を、フッ
素および酸素を含有する気体で置換して、膜と処理気体
とを接触させる方法が用いられる。この場合、多孔質膜
と気体との接触効率を高めるため、膜同士が接触しない
ように固定したり、容器内でロール状フィルムの巻きだ
し、巻き取りを行うことができる。
The fluorine treatment, that is, the method of bringing the porous polyolefin membrane into contact with a gas containing fluorine is not particularly limited, but a batch treatment method or a continuous treatment method can be mentioned. As a batch-type treatment method, a method is used in which the membrane is held in a closed reaction vessel, the gas in the vessel is replaced with a gas containing fluorine and oxygen, and the membrane is brought into contact with the treatment gas. In this case, in order to improve the contact efficiency between the porous film and the gas, it is possible to fix the films so that they do not come into contact with each other, or to roll out and roll up the roll-shaped film in the container.

【0019】一方、連続的処理方法としては、フッ素と
酸素とを含有する気体雰囲気中を、多孔質膜を通過させ
て、接触処理する方法が挙げられる。この場合、中の気
体が漏れないような構造であれば良く、フッ素と酸素と
を含有する気体を密閉容器中に入れ、該容器に多孔質膜
の入口、出口を設け、多孔質膜を連続的に処理する方
法、あるいは、フッ素分圧を低くする方法、エアーカー
テンを用いる方法等の方法により、接触処理を行うこと
もできる。
On the other hand, as a continuous treatment method, there is a method of contact treatment by passing through a porous membrane in a gas atmosphere containing fluorine and oxygen. In this case, the structure may be such that the gas inside does not leak, and a gas containing fluorine and oxygen is placed in a closed container, and the container is provided with an inlet and an outlet for the porous membrane to continuously connect the porous membrane. The contact treatment can also be carried out by a method such as a method of selectively treating, a method of lowering the fluorine partial pressure, a method of using an air curtain or the like.

【0020】[0020]

【実施例】次に、本発明を実施例により詳細に説明する
が、本発明はその要旨を越えない限り、以下の実施例に
限定されるものではない。なお、以下の諸例において、
各測定は次の方法によって行った。 (1)接触角 接触角測定機(協和界面(株)製CA−A)を用いて室
温で液滴法にて計測した。 (2)透水速度 23℃の雰囲気下、直径26mmのサンプルに圧力2k
g/cm2にて純水5ミリリットルを透過させ、透過時
間から下記の式を用いて算出した。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. In the following examples,
Each measurement was performed by the following method. (1) Contact angle The contact angle was measured by a droplet method at room temperature using a contact angle measuring device (CA-A manufactured by Kyowa Interface Co., Ltd.). (2) Water permeation rate Pressure of 2k on a sample with a diameter of 26mm in an atmosphere of 23 ° C
5 ml of pure water was allowed to permeate at g / cm 2, and it was calculated from the permeation time using the following formula.

【0021】[0021]

【数8】 透水速度=透過水量/(膜面積×透過時間
×圧力) 単位はリットル/m2・hr・atmに換算した。 (3)ESCA測定 PERKIN ELMER PHI社製のESCA−5
500MCを用いて多孔質膜の表面元素組成分析を行っ
た。測定条件としては、X線源Al,14KV,300
W,モノクロメーター使用、分析面積0.8mmφ,取
出角65°とした。
## EQU00008 ## Water permeation rate = permeated water amount / (membrane area × permeation time × pressure) The unit was converted to liter / m 2 · hr · atm. (3) ESCA measurement ESCA-5 manufactured by PERKIN ELMER PHI
The surface elemental composition of the porous film was analyzed using 500 MC. The measurement conditions are X-ray source Al, 14 KV, 300
W, monochromator used, analysis area 0.8 mmφ, take-out angle 65 °.

【0022】実施例1 フッ素に対し耐性を有する反応器内に粘度平均分子量2
00万の超高分子量ポリエチレン多孔膜(平均孔径0.
1μm、膜厚10μm、空孔率70%)を入れ、真空排
気後、フッ素ガスと酸素ガスを窒素でそれぞれ0.13
%ずつに希釈した混合ガスを導入して760torrと
した。室温で10分間静置後、混合ガスを真空排気し、
窒素ガスを導入して760torrとした。その後、試
料を取り出し、水に対する接触角および透水速度ならび
に表面元素組成を測定した。測定結果を表1に示す。水
に対する接触角は52゜であり、表面が親水化されたた
め、3800リットル/m2・hr・atmの透水速度を示した。ES
CA測定より、(10×[O]−[F])/[C]の値
を計算すると0.94の値が得られた。
Example 1 Viscosity average molecular weight 2 in a reactor resistant to fluorine
1,000,000 ultra high molecular weight polyethylene porous membrane (average pore size of 0.
1 μm, film thickness 10 μm, porosity 70%), and after vacuum evacuation, fluorine gas and oxygen gas with nitrogen each 0.13
A mixed gas diluted to 100% was introduced to make 760 torr. After standing at room temperature for 10 minutes, the mixed gas was evacuated,
Nitrogen gas was introduced to 760 torr. Then, the sample was taken out, and the contact angle to water, the water permeation rate, and the surface elemental composition were measured. The measurement results are shown in Table 1. The contact angle with water was 52 °, and the surface was hydrophilized to show a water permeation rate of 3800 liter / m 2 · hr · atm. ES
When the value of (10 × [O] − [F]) / [C] was calculated from the CA measurement, a value of 0.94 was obtained.

【0023】実施例2 実施例1と同様の操作により、フッ素ガス0.13%、
酸素ガス5.9%を含有する混合ガスを用い、実施例1
と同じ超高分子量ポリエチレン多孔膜の表面処理を行っ
た。測定結果を表1に示す。水に対する接触角は47゜
であり、表面が親水化されたため、5300リットル/m2・hr
・atmの透水速度を示した。ESCA測定による(10×
[O]−[F])/[C]の値は1.26であった。
Example 2 By the same operation as in Example 1, 0.13% fluorine gas,
Example 1 using a mixed gas containing 5.9% oxygen gas
The same ultra high molecular weight polyethylene porous membrane was surface-treated. The measurement results are shown in Table 1. The contact angle with water was 47 °, and the surface was hydrophilized, so it was 5300 liters / m 2 · hr.
・ The water permeability of atm is shown. By ESCA measurement (10 ×
The value of [O]-[F]) / [C] was 1.26.

【0024】実施例3 実施例1と同様の操作により、フッ素ガス0.07%、
酸素ガス0.13%を含有する混合ガスを用い、実施例
1と同じ超高分子量ポリエチレン多孔膜の表面処理を行
った。測定結果を表1に示す。水に対する接触角は60
゜であり、表面が親水化されたため、3600リットル/m2
hr・atmの透水速度を示した。ESCA測定による(10
×[O]−[F])/[C]の値は0.81であった。
Example 3 By the same operation as in Example 1, 0.07% of fluorine gas,
The same ultrahigh molecular weight polyethylene porous membrane as in Example 1 was surface-treated using a mixed gas containing 0.13% oxygen gas. The measurement results are shown in Table 1. Contact angle to water is 60
And the surface was hydrophilized, so 3600 liters / m 2 ·
The permeation rate of hr ・ atm is shown. According to ESCA measurement (10
The value of x [O]-[F]) / [C] was 0.81.

【0025】実施例4 実施例1と同様の操作によりフッ素ガス0.13%、酸
素ガス0.13%を含有する混合ガスを用い、反応温度
−50℃において、実施例1と同じ超高分子量ポリエチ
レン多孔膜の表面処理を行った。
Example 4 The same operation as in Example 1 was carried out using a mixed gas containing 0.13% fluorine gas and 0.13% oxygen gas at a reaction temperature of -50 ° C. The surface treatment of the polyethylene porous membrane was performed.

【0026】測定結果を表1に示す。水に対する接触角
は91゜であり、表面が親水化されたため、1100リッ
トル/m2・hr・atmの透水速度を示した。ESCA測定による
(10×[O]−[F])/[C]の値は0.63であ
った。 比較例1 実施例1と同様の操作を窒素で希釈したフッ素ガス(フ
ッ素濃度0.13%、酸素濃度0%)を用い、10分間
処理を行った。
The measurement results are shown in Table 1. The contact angle with water was 91 °, and the surface was hydrophilized to show a water permeation rate of 1100 liter / m 2 · hr · atm. The value of (10 × [O] − [F]) / [C] measured by ESCA was 0.63. Comparative Example 1 The same operation as in Example 1 was performed for 10 minutes using fluorine gas diluted with nitrogen (fluorine concentration 0.13%, oxygen concentration 0%).

【0027】この場合の測定結果を表1に示す。水に対
する接触角は113゜であり処理前とほとんど濡れ性に
変化はなく、水は透過しなかった。すなわち、酸素を添
加しないフッ素処理では超高分子量ポリエチレン多孔膜
の透水性付与は困難である。ESCA測定より、(10
×[O]−[F])/[C]の値を計算すると−0.1
7の値が得られた。
Table 1 shows the measurement results in this case. The contact angle with water was 113 °, the wettability was almost unchanged from that before the treatment, and the water did not permeate. That is, it is difficult to impart water permeability to the ultrahigh molecular weight polyethylene porous membrane by the fluorine treatment without adding oxygen. From ESCA measurement, (10
When the value of × [O] − [F]) / [C] is calculated, it is −0.1.
A value of 7 was obtained.

【0028】なお、未処理の超高分子量ポリエチレン多
孔膜の接触角及び透水速度を併記する。
The contact angle and water permeation rate of an untreated ultra-high molecular weight polyethylene porous membrane are also shown.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の多孔質ポリオレフィン膜を分離
膜として用いると、表面張力の高い液体を濾過する際
に、アルコールのような親水性有機溶媒で前処理する必
要がなくなり、コスト面や環境安全性の点からも非常に
好ましい。更に、本発明の多孔質ポリオレフィン膜は透
水性を有するため水系電解液にも応用でき、従ってバッ
テリーセパレーターとして用いることもできる。
EFFECT OF THE INVENTION When the porous polyolefin membrane of the present invention is used as a separation membrane, it is not necessary to pretreat a liquid having a high surface tension with a hydrophilic organic solvent such as alcohol. It is also very preferable in terms of safety. Furthermore, since the porous polyolefin membrane of the present invention has water permeability, it can be applied to an aqueous electrolyte solution, and thus can be used as a battery separator.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面の水滴接触角が100゜以下であっ
て、ESCAにて測定した表面元素組成における炭素原
子数[C]、酸素原子数[O]、フッ素原子数[F]
が、 【数1】 100>(10×[O]−[F])/
[C]>0.5 の関係式をみたすことを特徴とするフッ素含有多孔質ポ
リオレフィン膜
1. The number of carbon atoms [C], the number of oxygen atoms [O], the number of fluorine atoms [F] in the surface elemental composition measured by ESCA, which has a contact angle of water droplets of 100 ° or less.
Where, 100> (10 × [O] − [F]) /
Fluorine-containing porous polyolefin membrane characterized by satisfying a relational expression [C]> 0.5
【請求項2】 多孔質ポリオレフィン膜が高分子量ポリ
エチレンからなる多孔膜である請求項1記載のフッ素含
有多孔質ポリオレフィン膜
2. The fluorine-containing porous polyolefin membrane according to claim 1, wherein the porous polyolefin membrane is a porous membrane made of high molecular weight polyethylene.
JP19850393A 1993-08-10 1993-08-10 Fluorinated porous polyolefin film Pending JPH0753763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19850393A JPH0753763A (en) 1993-08-10 1993-08-10 Fluorinated porous polyolefin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19850393A JPH0753763A (en) 1993-08-10 1993-08-10 Fluorinated porous polyolefin film

Publications (1)

Publication Number Publication Date
JPH0753763A true JPH0753763A (en) 1995-02-28

Family

ID=16392221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19850393A Pending JPH0753763A (en) 1993-08-10 1993-08-10 Fluorinated porous polyolefin film

Country Status (1)

Country Link
JP (1) JPH0753763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743690A1 (en) * 1995-05-17 1996-11-20 Mitsubishi Chemical Corporation Battery separator and method for its production
JP2001183532A (en) * 1999-10-14 2001-07-06 Asahi Kasei Corp Light guide plate and method of producing the same
JP2016180055A (en) * 2015-03-24 2016-10-13 東京応化工業株式会社 Preparation method of silanization agent chemical liquid and surface treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743690A1 (en) * 1995-05-17 1996-11-20 Mitsubishi Chemical Corporation Battery separator and method for its production
JP2001183532A (en) * 1999-10-14 2001-07-06 Asahi Kasei Corp Light guide plate and method of producing the same
JP2016180055A (en) * 2015-03-24 2016-10-13 東京応化工業株式会社 Preparation method of silanization agent chemical liquid and surface treatment method

Similar Documents

Publication Publication Date Title
CA1326116C (en) Fluoro-oxidized polymeric membranes for gas separation and process for preparing them
KR0148232B1 (en) Gas separation by semi-permeable membranes
EP0226141B1 (en) Fluorinated polymeric membranes for gas separation processes
US4685940A (en) Separation device
US4218312A (en) Membrane separation of organics from aqueous solutions
JPH07246322A (en) Modified polyolefin porous membrane and filter using the same
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
US9381449B2 (en) Carbon nanotube composite membrane
JPH0753763A (en) Fluorinated porous polyolefin film
EP1865017B1 (en) Surface fluorination of plastics materials
Lin et al. Gas permeabilities of poly (trimethylsilylpropyne) membranes surface modified with CF4 plasma
Hartwig et al. Surface amination of poly (acrylonitrile)
JP2521884B2 (en) Method for manufacturing plasma-treated film
US20050282971A1 (en) Process for reducing the permeability of plastics materials
JPH06116436A (en) Method for treating porous polymer membrane
JPH0445829A (en) Pervaporization separating membrane, pervaporization separating device and pervaporization separation method
JPS6349220A (en) Gas separating membrane
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
JPH0330416B2 (en)
EP1609815B1 (en) Process for reducing the permeability of plastics materials
EP0472596B1 (en) Surface fluorination of membranes
JPH08224451A (en) Production of porous high-molecular membrane
JPH07251045A (en) Organic polymeric gas separation membrane and its production
KR20230056299A (en) Method for producing an organic polymer membrane with improved gas permeation performance using a low molecular weight hydrophilic organic oligomer
JPH03154625A (en) Manufacture of unsymmetrical membrane having high separating ability