JPS6274027A - Manufacture of steel wire for high strength cold formed coil spring - Google Patents

Manufacture of steel wire for high strength cold formed coil spring

Info

Publication number
JPS6274027A
JPS6274027A JP60212079A JP21207985A JPS6274027A JP S6274027 A JPS6274027 A JP S6274027A JP 60212079 A JP60212079 A JP 60212079A JP 21207985 A JP21207985 A JP 21207985A JP S6274027 A JPS6274027 A JP S6274027A
Authority
JP
Japan
Prior art keywords
steel wire
heating
wire
induction heating
formed coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212079A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kawasaki
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP60212079A priority Critical patent/JPS6274027A/en
Publication of JPS6274027A publication Critical patent/JPS6274027A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To obtain the titled steel wire without accompanying breakage at all during usage, by applying a prescribed heat treatment to the titled wire manufacture according to usual method to provide surface layer hardness and tensile strength at core part having respective characteristics and decreasing notch susceptibility of product surface. CONSTITUTION:Material steel wire, etc., for JIS standard spring of 10-15mmphi is subjected to pretreating process 1 contg. descaling, etc., passed in induction heating oil while being continuously sent and quenched 2 by heating the whole section to a prescribed quenching temp. and rapidly cooling it. Then the wire is passed in induction heating oil to rapidly heat 3 to a prescribed temp. varying due to contained component, held 4 for an extremely short time and rapidly cooled 5 to finish the whole section to >=200kg/mm<2> tensile strength. Further, the wire is continuously sent and passed in induction heating coil to soften only the surface layer to <=550 Hv by heating 6 only surface layer to e.g. 450-600 deg.C, then cooled 7 to obtain the aimed titled wire.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両の懸架ばね等に使用される大径高強度冷間
成形コイルばね用の鋼線を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a steel wire for a large-diameter, high-strength cold-formed coil spring used in a vehicle suspension spring or the like.

(従来の技術) 本願出願人は先に特公昭59−13568号をもって開
示される発明に詳記した如く、10〜15mmφの如き
大径素材鋼線を全断面にわたり誘導加熱等による急速加
熱・急冷して焼入れしたのち、当該鋼線を300〜60
0’Cの温度範囲に全断面を急速加熱し、当該加熱を停
止して60秒以下の短時間保持のうえ冷却することで、
延性および靭性を具えた冷間塑性加工性に極めて冨む引
張強さ150Kgf 7mm以上の高強度鋼線を得、こ
れを冷間でコイルばねに成形し、当該成形コイルばねを
上記加熱温度より上限の低い300〜5゜OoCの温度
範囲に30〜60分間再加熱することで、耐へたり性お
よび耐遅れ破壊性に優れた強靭なばねを得る「冷間成形
コイルばねの製造方法」を提供している。
(Prior Art) As previously described in detail in the invention disclosed in Japanese Patent Publication No. 59-13568, the applicant of this application has rapidly heated and rapidly cooled a large-diameter raw material steel wire, such as 10 to 15 mmφ, by induction heating etc. over the entire cross section. After hardening, the steel wire is heated to 300 to 60
By rapidly heating the entire cross section to a temperature range of 0'C, stopping the heating, holding it for a short time of 60 seconds or less, and then cooling it,
Obtain a high-strength steel wire with a tensile strength of 150 Kgf 7 mm or more that is extremely rich in cold plastic workability with ductility and toughness, cold-form it into a coil spring, and then mold the formed coil spring to a temperature higher than the upper limit of the above-mentioned heating temperature. Provides a ``method for manufacturing cold-formed coil springs'' that yields strong springs with excellent fatigue resistance and delayed fracture resistance by reheating to a low temperature range of 300 to 5 degrees OoC for 30 to 60 minutes. are doing.

本願出願人は現在、上記方法を用いて引張強さ180〜
220Kgf /mn?クラスの冷間塑性加工性に富む
高強度鋼線を得たうえで冷間成形してコイルばねを製造
しており、当該製品は2輪車に多用され賞用されている
The applicant is currently using the above method to achieve a tensile strength of 180~
220Kgf/mn? We manufacture coil springs by obtaining high-strength steel wires with superior cold plastic workability and then cold-forming them, and these products are widely used and prized in two-wheeled vehicles.

(従来の技術に対する危惧) ところで、上記方法により製造された高強度冷間成形コ
イルばね用線材ならびに高強度冷間成形コイルばねは強
度が高いが故に、何等の支障を生じたこともないにも拘
わらず、4゛軸車業界では重要保安部品である懸架ばね
として、走行時における万一の折損事故を危惧するのあ
まり、使用に踏み切れないでいる。
(Concerns about conventional technology) By the way, since the high-strength cold-formed coil spring wire material and high-strength cold-formed coil spring manufactured by the above method have high strength, no problems have occurred. However, in the 4-axle vehicle industry, suspension springs are an important safety component, and many are unable to use them due to concerns about breakage during driving.

(発明の目的) 本発明は、高強度冷開成形コイルばねに存する上述した
一部ユーザが抱く折損事故の危惧を解消するためになさ
れたもので、従来方法に則って製造される高強度冷間成
形コイルばね用鋼線に所定の熱処理を付加することで、
高強度冷間成形コイルばね用鋼線の具える機械的性質を
そのまま保持しつつ、これを用いて冷開成形して得たコ
イルばね製品表面の切欠き感受性を低下させ、使用時の
折損を一切危惧させない高強度冷間成形コイルばね用鋼
線の製造方法を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to eliminate the above-mentioned concerns about breakage accidents that some users have regarding high-strength cold-open formed coil springs. By adding prescribed heat treatment to the steel wire for interformed coil springs,
While retaining the mechanical properties of high-strength cold-formed steel wire for coil springs, we use this to reduce the sensitivity to notches on the surface of coil spring products obtained by cold-opening, thereby preventing breakage during use. The purpose of the present invention is to provide a method for manufacturing high-strength cold-formed coil spring steel wire that does not cause any danger.

(発明の構成) 本発明の構成は、 (1)大径素材鋼線を全断面にわたり誘導加熱して急冷
焼入れしたのち、 (2)誘導加熱手段を用いた再熱処理工程により、(3
)所定深さまでの表層硬さをHv550以下・芯部の引
張強さを200Kgf /mrrr以上に仕上げるよう
にした ことを特徴とする高強度冷間成形コイルばね用鋼線の製
造方法にある。
(Structure of the Invention) The structure of the present invention is as follows: (1) After induction heating and rapid cooling quenching of a large-diameter raw steel wire over the entire cross section, (2) Reheating process using an induction heating means, (3)
) A method for manufacturing a high-strength cold-formed coil spring steel wire, characterized in that the surface hardness up to a predetermined depth is Hv550 or less and the core tensile strength is 200 Kgf/mrrr or more.

(発明の作用) 本発明は、延性および靭性を具え冷間塑性加工性に冨む
高強度冷間成形コイルばね用鋼線の機械的性質に、さら
に低切欠き感受性を付加する作用がある。
(Action of the Invention) The present invention has the effect of adding low notch sensitivity to the mechanical properties of a high-strength cold-formed coil spring steel wire that has ductility and toughness and is rich in cold plastic workability.

(実施例=1) 本発明を第1図(a)に示す一実施例製造工程ブロック
図に従い、製品線材を180Kgf /mrd以上に仕
上げる場合を挙げて以下に詳述する。
(Example = 1) The present invention will be described in detail below with reference to the manufacturing process block diagram of one embodiment shown in FIG.

本発明は10〜15mmφのJIS規格ばね用素材鋼線
等をデスケールおよび矯直を含む前処理工程■に付し、
連続送りしながら誘導加熱コイル内を通過させて所定焼
入れ温度まで全断面加タシと急冷とを施して焼入れ■す
る。次いで、焼入れされた鋼線は連続送りされて誘導加
熱コイル内を通過し一含有成分により異なる所定温度−
一一一−−−−−−−例えば400〜550℃の温度範
囲まで急速加熱■し、極めて短時間の保持■後、急冷■
に付して全断面を引張強さを200Kgf /mrd以
上に仕上げる。
In the present invention, JIS standard spring material steel wire etc. with a diameter of 10 to 15 mm is subjected to a pretreatment process (2) including descaling and straightening,
The material is passed through an induction heating coil while being continuously fed, and the entire cross section is machined and rapidly cooled to a predetermined hardening temperature. Next, the hardened steel wire is continuously fed through an induction heating coil and heated to a predetermined temperature that varies depending on the content of the wire.
111---For example, rapidly heat to a temperature range of 400 to 550℃, hold for a very short time, and then rapidly cool.
The entire cross section is finished with a tensile strength of 200Kgf/mrd or more.

次いで得られた鋼線をさらに連続送りして、送り速度を
上げるか周波数を高くする等の所定手段のもとで誘導加
熱コイル内を通過させて表層のみを例えば450〜60
0 ’Cの温度範囲まで加熱■して当該表層を硬さHv
 550以下に軟化させたうえで、冷却■する製造方法
からなる。
Next, the obtained steel wire is further continuously fed and passed through an induction heating coil under a predetermined method such as increasing the feeding speed or frequency, so that only the surface layer is heated to a temperature of 450 to 60
Heat the surface layer to a temperature range of 0'C to hardness Hv.
The manufacturing method consists of softening to 550% or less and then cooling.

上記において、加熱■における表層の加熱深さは、鋼線
の全断面平均引張強さを200Kgf /m耐程度に維
持しつつ、低切り欠き感受性を兼備させるに適切なよう
に、線径が例えば15mmの如く大径ならば2.0mm
以下、lQmm前後ならば1、5 m m以下に押さえ
る。
In the above, the heating depth of the surface layer in heating (3) is set such that the wire diameter is appropriate for maintaining the overall cross-sectional average tensile strength of the steel wire at about 200 kgf/m and having low notch sensitivity. 2.0mm if it is a large diameter like 15mm
Below, if it is around 1Qmm, keep it below 1.5mm.

上記製造方法により得られた鋼線は、全断面の平均引張
強さが180Kgf /m’n? (1770MPa)
以上の高強度を保持するとともに、前記本出願人提供発
明前段に記載される冷間成形前の線材の特徴たる延性お
よび靭性を具え冷間塑性加工性に富み、さらに上記表層
軟化部の存在から低切欠き感受性が付加されることとな
る。
The steel wire obtained by the above manufacturing method has an average tensile strength of 180 kgf/m'n across the entire cross section. (1770MPa)
In addition to maintaining the above-mentioned high strength, it has the ductility and toughness characteristic of the wire rod before cold forming described in the first part of the invention provided by the present applicant, and is rich in cold plastic workability. Low notch sensitivity will be added.

従って、当該線材を使用して上記本出願人提供発明後段
に記載される冷間成形およびその後の成形コイルばねの
30〜60分の300〜500℃範囲の加熱を施すよう
にすれば、得られる高強度冷間成形コイルばねは、耐へ
たり性および耐遅れ破壊性に優れているのみならず、低
切欠き感受性をも兼備することとなる。
Therefore, if the wire rod is subjected to cold forming described in the latter part of the invention provided by the present applicant and then heated in the range of 300 to 500°C for 30 to 60 minutes of the formed coil spring, the obtained High-strength cold-formed coil springs not only have excellent fatigue resistance and delayed fracture resistance, but also have low notch sensitivity.

(実施例:2) 第1図(b)は、本発明の他の実施例製造工程を示すブ
ロック図である。
(Example: 2) FIG. 1(b) is a block diagram showing the manufacturing process of another example of the present invention.

当該実施例製造工程では、前処理工程のおよび焼入れ工
程は前記実施例製造工程と同一ではあるが、以下の工程
が異なる。
In the manufacturing process of this example, the pretreatment process and the quenching process are the same as the manufacturing process of the example, but the following steps are different.

即ち、爾後の誘導加熱手段を用いた再熱処理工程が、鋼
材を当該鋼線の直径に応じて選択された所定周波数出力
電源に接続される単数の加熱コイルによる加熱または複
数の加熱コイルによる間欠的加熱によって、その芯部を
例えば400〜550℃の範囲まで、また表層を例えば
450〜600℃の範囲まで急速昇温にさせる断面不均
一加熱(3)後、冷却(4)する工程によるものである
That is, in the subsequent reheating process using induction heating means, the steel material is heated by a single heating coil connected to a predetermined frequency output power source selected according to the diameter of the steel wire, or intermittently by a plurality of heating coils. It is a process of heating the core rapidly to a range of 400 to 550°C and the surface layer to a range of 450 to 600°C (3), followed by cooling (4). be.

当該製造工程でも、鋼材の断面半径方向が前記実施例製
造工程と同様な温度まで加熱されるので、全く同一の作
用および当該作用からマされる同一の効果を発揮する。
In this manufacturing process as well, the cross-sectional radial direction of the steel material is heated to the same temperature as in the manufacturing process of the above-described embodiment, so that exactly the same effect and the same effect obtained from this effect are exhibited.

(実験例) 本発明者は本発明の効果を確認するため、以下の実験を
行った ☆供試体鋼材の作製 12mmφの別紙記載の第1表に示す化学成分組成から
なる素材鋼線(SUP12相当材)を用い、当該素材鋼
線に上記実施例=1に従つた工程■〜■を施して、まず
別紙記載の第2表にAとして示すベース材供試体Aを作
製し、当該ベース材供試体Aから本発明実施例:lの工
程■および■に従う供試体Bを作製した。
(Experimental Example) In order to confirm the effects of the present invention, the present inventor conducted the following experiment. ☆ Preparation of specimen steel material Steel wire (equivalent to SUP12) consisting of a chemical composition shown in Table 1 in the appendix of 12 mmφ First, a base material specimen A shown as A in Table 2 in the attached sheet was prepared by subjecting the raw material steel wire to the steps From sample A, sample B was prepared according to steps (1) and (2) of Example 1 of the present invention.

尚、工程■における加熱温度は485℃として引張強さ
205Kgf /mn(に仕上げ、また工程■で供試体
Bを作製する際の条件は、第2表に示すとおりであって
、加熱コイル通過直後の供試体Bの加熱温度は545℃
であった。
The heating temperature in step ① was 485°C, and the final tensile strength was 205 Kgf/mn. The heating temperature of specimen B is 545℃
Met.

また、上記素材鋼線を用い、当該素材鋼線を従来方法に
則る■〜■工程に付し、引張強さ180Kgf 7m%
に仕上げた比較供試体Cを作製した。
In addition, using the above material steel wire, the material steel wire was subjected to steps 1 to 2 according to conventional methods, and the tensile strength was 180Kgf 7m%.
Comparative specimen C was prepared.

☆供試体の確性試験 *硬さ測定試験 各供試体をマイクロビッカース硬さ針を用い、荷重を3
00gとして断面硬さ分布を測定した。結果は第2図に
示すとおりであり、曲線A、 BおよびCはそれぞれ供
試体A、 BおよびCの測定結果であって、供試体Aお
よびCそれぞれとの比較から、供試体Bは表面からの深
さで1.5mmの範囲が低硬さを示し、かつ最表面硬さ
がHv=500以下となっていることが確認された。
☆Accuracy test of specimen *Hardness measurement test Each specimen was tested with a load of 3 using a micro Vickers hardness needle.
The cross-sectional hardness distribution was measured as 00g. The results are as shown in Figure 2. Curves A, B, and C are the measurement results of specimens A, B, and C, respectively. From comparison with specimens A and C, respectively, specimen B was It was confirmed that a range of 1.5 mm in depth showed low hardness, and the outermost surface hardness was Hv=500 or less.

*残留応力測定試験 X線応力測定装置(MSF−2M)を用いて各供試体の
残留応力を測定した。結果は第3図に示すとおりであっ
て、図における○印は軸・方向の、・印は周方向の残留
応力である。
*Residual stress measurement test The residual stress of each specimen was measured using an X-ray stress measurement device (MSF-2M). The results are as shown in FIG. 3, where the ○ marks in the figure represent the residual stress in the axial direction, and the * marks in the circumferential direction.

供試体AおよびCは圧縮残留応力を示すが、供試体Bは
引張残留応力を示すことが確認され、軟化のための加熱
時間が長(なると、その絶対値が小となると判断される
It was confirmed that specimens A and C exhibit compressive residual stress, while specimen B exhibits tensile residual stress, and it is determined that the longer the heating time for softening (the longer the absolute value thereof), the smaller the absolute value.

*引張り試験 各供試体を線材のまま(JISZ号試験片)万能試験機
(容量Loot)を用いて引張り試験に付した。試験結
果を第4図に示す。同図から、供試体Bは供試体Aに比
べて引張り強さと耐力で若干の低下が見られるものの、
供試体Cに比べると優れていることが確認された。
*Tensile test Each specimen was subjected to a tensile test using a universal testing machine (capacity Loot) as a wire rod (JISZ No. test piece). The test results are shown in Figure 4. From the same figure, specimen B shows a slight decrease in tensile strength and yield strength compared to specimen A, but
It was confirmed that it was superior to Specimen C.

*耐遅れ破壊性試験 各供試体を引張り遅れ破壊試験に付した。*Delayed fracture resistance test Each specimen was subjected to a tensile delayed fracture test.

各供試体の表面を約50μ研磨したのち、さらに電解研
麿し、ロダンアンモン法(20%NH4SCN、50℃
)により、定荷重試験機を用いてσ−100Kgf /
rnrrrの条件下で試験した。試験結果を第5図に示
す。同図から供試体Bの寿命は供試体Aより長く、供試
体Cとほぼ同様であることが見いだされた。
After polishing the surface of each specimen by approximately 50μ, electropolishing was performed using the Rodin-Ammon method (20% NH4SCN, 50°C).
), using a constant load tester, σ-100Kgf /
Tested under rnrrr conditions. The test results are shown in Figure 5. From the figure, it was found that the life of specimen B was longer than that of specimen A, and was almost the same as that of specimen C.

☆供試体から作製したコイルばねの確性試験各供試体鋼
線A〜Cそれぞれを使用してコイリングマシンによる冷
間成形で別紙の第3表に示す形状のコイルばねに成形し
、これを別紙の第4表に示す製造条件によりコイルばね
製品供試体Ac−Ccを得、これを後記試験に付した。
☆Accuracy test of coil springs made from specimens Each of the specimen steel wires A to C was cold-formed using a coiling machine into a coil spring having the shape shown in Table 3 of the appendix. Coil spring product specimens Ac-Cc were obtained under the manufacturing conditions shown in Table 4, and were subjected to the tests described below.

*定荷重クリープ試験での“へたり” 定荷重試験機を用い、試験条件を τ=115Kgf /m%X 96hrs温度: 20
±1℃ として各供試体を定荷重クリープ試験に付し、耐へたり
性を調査した。試験結果を第6図に示す。同図から、供
試体Bcは供試体Ac(、こ比べて、・\たりは些少大
きくなるものの、供試体Ccより十分優れた耐へたり性
を示すことが確認された。
*“Settling” in constant load creep test Using a constant load tester, the test conditions were τ = 115Kgf /m%X 96hrs Temperature: 20
Each specimen was subjected to a constant load creep test at ±1°C to investigate its resistance to settling. The test results are shown in Figure 6. From the same figure, it was confirmed that specimen Bc exhibits sufficiently superior fatigue resistance than specimen Cc, although the specimen Bc is slightly larger in comparison with specimen Ac.

*耐疲れ性 (り返し試験機を用い、τ−65±50Kgf/ m 
mの条件下で各供試体をくり返し試験に付した結果、各
供試体とも30万回以上と十分な寿命を示した。
*Fatigue resistance (using a repeating tester, τ-65±50Kgf/m
As a result of repeatedly subjecting each specimen to the test under conditions of 300,000 cycles, each specimen showed a sufficient lifespan of 300,000 cycles or more.

以上の如く、12mmφの供試体鋼線について行った各
種の確性試験結果から、本発明製造方法による供試体B
は表層の硬さをHv = 550以下としたにも拘わら
ず、引張強さを略200Kgf/mmクラスに維持し、
かつ当該クラスと同程度の他の機械的諸性質を備えてい
ることが確認され、従って表層を少なくとも1.5mm
まで軟化させても、殆ど機械的性質を低下させない高強
度冷間成形コイルばね用鋼線を得ることが可能であるこ
とが証明された。
As mentioned above, from the results of various accuracy tests conducted on the steel wire specimen with a diameter of 12 mm, it was found that the specimen B manufactured by the manufacturing method of the present invention
Even though the hardness of the surface layer was set to Hv = 550 or less, the tensile strength was maintained at approximately 200Kgf/mm class,
and other mechanical properties comparable to that of the relevant class, and therefore the surface layer should be at least 1.5 mm thick.
It has been proven that it is possible to obtain a high-strength cold-formed coil spring steel wire that exhibits almost no deterioration in mechanical properties even when softened to a certain extent.

また当該供試体Bから製作された冷間成形コイルばね供
試体Bcに対して行った確性試験結果から、低切り欠き
感受性を持ちつつ、引張強さ200 Kgf / m 
mクラスとほぼ同等で、引張強さ180Kgf / m
 rdクラスよりもはるかに優れた耐へたの性と疲れ耐
力に冨み強靭な冷開成形コイルばねを製造可能であるこ
とが立証された。
In addition, the results of a reliability test conducted on a cold-formed coil spring specimen Bc manufactured from the specimen B showed that it had a tensile strength of 200 Kgf/m while having low notch sensitivity.
Almost equivalent to m class, tensile strength 180Kgf/m
It has been proven that it is possible to manufacture strong cold-open-formed coil springs with much better fatigue resistance and fatigue strength than the RD class.

以上の実験例を含めて本発明者が行った複数の実験結果
から、前記特許発明と同様に15〜16mmφ程度まで
を対象とする本発明では、より太径の線材ならば表層を
2,0mm以下の範囲内で軟化させても、上記実施例と
同様の結果が得られることが確認されている。
From the results of multiple experiments conducted by the present inventor, including the above-mentioned experimental examples, it has been found that in the present invention, which targets wires up to about 15 to 16 mmφ, similar to the above-mentioned patented invention, the surface layer can be reduced by 2.0 mm if the wire has a larger diameter. It has been confirmed that the same results as in the above example can be obtained even if the material is softened within the following range.

(発明の効果) 本発明方法を実施すれば、従来方法による引張強さ20
0Kgf 7mm以上の高強度冷間成形コイルばね用鋼
線に、その機械的性質を保持しつつ、低切り欠き感受性
を兼備させるので、当該鋼線から製作される冷間成形コ
イルばね製品の使用時における折損を危惧させないこと
となり、当該コイルばね製品を使用する機械装置類は安
心して機能向上−・−・−例えば車両では、従来より細
径鋼材で製造した本発明製造方法によるコイルばねを使
用して従来同様の作用を発揮させることにより、車体重
量を軽量化して機能向上を図る等−−−一一−−−・−
が可能となり、これによりマされる効果は顕著である。
(Effect of the invention) If the method of the present invention is implemented, the tensile strength compared to the conventional method will be 20
0Kgf 7mm or more high-strength cold-formed coil spring steel wire maintains its mechanical properties and has low notch sensitivity, so when using cold-formed coil spring products made from this steel wire. There is no risk of breakage in the coil spring products, and the functionality of machinery and equipment that uses the coil spring products can be improved with peace of mind. By exerting the same effect as before, we aim to reduce the weight of the vehicle and improve functionality.
The effect of this is remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)はそれぞれ本発明方法の一実
施例製造工程および他の実施例製造工程を示すブロック
図、第2図は実験例における鋼材供試体の硬さ測定試験
結果を示す硬さ分布線図。 第3図〜第5図はそれぞれ実験例における残留応力測定
試験結果図、引張り試験結果図および引張り遅れ破壊試
験結果図、第6図は実験例における冷間成形コイルばね
供試体の定荷重クリープ試験結果図である。
Figures 1 (a) and (b) are block diagrams showing the manufacturing process of one embodiment of the method of the present invention and the manufacturing process of another embodiment, respectively, and Figure 2 shows the hardness measurement test results of steel specimens in the experimental example. The hardness distribution diagram shown. Figures 3 to 5 are residual stress measurement test results, tensile test results, and tensile delayed fracture test results in experimental examples, respectively, and Figure 6 is a constant load creep test of cold-formed coil spring specimens in experimental examples. This is a diagram of the results.

Claims (1)

【特許請求の範囲】 1)大径素材鋼線を全断面にわたり誘導加熱して急冷焼
入れしたのち、誘導加熱手段を用いた再熱処理工程によ
り、所定深さまでの表層硬さをHv550以下・芯部の
引張強さを200Kgf/mm^2以上に仕上げるよう
にしたことを特徴とする高強度冷間成形コイルばね用鋼
線の製造方法。 2)硬さをHv550以下とした表層の深さが線径の大
・小に応じて最大2.0mm以下とする特許請求の範囲
第1項記載の高強度冷間成形コイルばね用鋼線の製造方
法。 3)誘導加熱手段を用いた再熱処理工程が、鋼線全断面
を400〜550℃の範囲までの急速加熱、加熱停止後
の60秒以下の短時間保持および急冷からなる第1工程
と、当該第1工程を経た鋼線の表層のみを表面から最大
2.0mm深さ部分がHv550以下となるような誘導
加熱条件で急速昇温させたうえで冷却する第2工程を含
む特許請求の範囲第1項および第2項記載の高強度冷間
成形コイルばね用鋼線の製造方法。 4)誘導加熱手段を用いた再熱処理工程が、鋼線を当該
鋼線の直径に応じて選択された所定周波数出力電源に接
続される単数の加熱コイルによる加熱または複数の加熱
コイルによる間欠的加熱で、表面から最大2.0mm深
さ部分がHv550以下、芯部がHv550を超える所
定硬さに仕上げ得る断面不均一加熱条件をもつて急速昇
温させた後に冷却する特許請求の範囲第1項および第2
項記載の高強度冷間成形コイルばね用鋼線の製造方法。
[Scope of Claims] 1) After induction heating and rapid cooling quenching of a large-diameter raw steel wire over the entire cross section, a reheating process using an induction heating means is performed to reduce the surface hardness to a predetermined depth to Hv550 or less at the core. A method for producing a high-strength cold-formed coil spring steel wire, characterized in that the tensile strength of the steel wire is finished to 200 Kgf/mm^2 or more. 2) The steel wire for high-strength cold-formed coil springs according to claim 1, which has a hardness of Hv550 or less and a depth of the surface layer that is at most 2.0 mm or less depending on the wire diameter. Production method. 3) The reheating process using induction heating means includes a first step consisting of rapid heating of the entire cross section of the steel wire to a temperature in the range of 400 to 550°C, holding for a short time of 60 seconds or less after stopping the heating, and rapid cooling; The scope of claims includes a second step in which only the surface layer of the steel wire that has undergone the first step is rapidly heated under induction heating conditions such that the maximum depth of 2.0 mm from the surface is Hv550 or less, and then cooled. A method for producing a high-strength cold-formed coil spring steel wire according to items 1 and 2. 4) The reheating process using induction heating means heating the steel wire with a single heating coil connected to a predetermined frequency output power source selected according to the diameter of the steel wire or intermittent heating with a plurality of heating coils. Claim 1, in which the temperature is rapidly raised under non-uniform heating conditions in the cross section that can be finished to a predetermined hardness of 550 Hv or less at a maximum depth of 2.0 mm from the surface and over 550 Hv at the core, and then cooled. and the second
A method for manufacturing a steel wire for high-strength cold-formed coil springs as described in .
JP60212079A 1985-09-27 1985-09-27 Manufacture of steel wire for high strength cold formed coil spring Pending JPS6274027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212079A JPS6274027A (en) 1985-09-27 1985-09-27 Manufacture of steel wire for high strength cold formed coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212079A JPS6274027A (en) 1985-09-27 1985-09-27 Manufacture of steel wire for high strength cold formed coil spring

Publications (1)

Publication Number Publication Date
JPS6274027A true JPS6274027A (en) 1987-04-04

Family

ID=16616517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212079A Pending JPS6274027A (en) 1985-09-27 1985-09-27 Manufacture of steel wire for high strength cold formed coil spring

Country Status (1)

Country Link
JP (1) JPS6274027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2192201A1 (en) 2008-11-21 2010-06-02 Muhr und Bender KG Hardened spring steel, spring element and method for manufacturing a spring element
CN107321805A (en) * 2017-08-11 2017-11-07 凡登(常州)新型金属材料技术有限公司 Wire and its producing device and preparation method for flexible pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2192201A1 (en) 2008-11-21 2010-06-02 Muhr und Bender KG Hardened spring steel, spring element and method for manufacturing a spring element
JP2010133558A (en) * 2008-11-21 2010-06-17 Muhr & Bender Kg Hardened spring steel, spring element, and method for manufacturing the spring element
EP2192201B1 (en) * 2008-11-21 2019-04-24 Muhr und Bender KG Hardened spring steel, spring element and method for manufacturing a spring element
CN107321805A (en) * 2017-08-11 2017-11-07 凡登(常州)新型金属材料技术有限公司 Wire and its producing device and preparation method for flexible pipe

Similar Documents

Publication Publication Date Title
US3532560A (en) Cold-working process
US20180147614A1 (en) Press hardened steel with increased toughness and method for production
JP2019007081A (en) Production method of spring steel wire
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JPS6274027A (en) Manufacture of steel wire for high strength cold formed coil spring
JP3859331B2 (en) High fatigue strength steel wires and springs and methods for producing them
US3668020A (en) Method of making steel wires
JP3555814B2 (en) Coil spring manufacturing method
JPH036981B2 (en)
JPS58193323A (en) Preparation of high strength spring
JPH09242763A (en) Manufacture of rolling bearing
JPS5913568B2 (en) Manufacturing method for cold-formed coil springs
SU1678860A1 (en) Method for mechanical-thermal treatment of low-carbon steel
JPH02274810A (en) Production of high tensile untempered bolt
JPS609827A (en) Manufacture of high strength spring
JP2565687B2 (en) Manufacturing method of high strength large diameter deformed steel bar
GB2109276A (en) Method for the manufacture of prefabricated components from high-alloy ferritic materials and components made by the method
US3718442A (en) Stranded steel wire structures
JPS6359775B2 (en)
SU1427094A1 (en) Threaded element
JPS63491B2 (en)
CA1178517A (en) Ferrous materials
JPH08109437A (en) Steel stock for cold forging excellent in workability
SU908857A1 (en) Method for strengthening parts of carbon steel
JPS5956520A (en) Production of steel wire for spring having excellent settling resistance