JPS6271907A - Grating optical device - Google Patents

Grating optical device

Info

Publication number
JPS6271907A
JPS6271907A JP21114285A JP21114285A JPS6271907A JP S6271907 A JPS6271907 A JP S6271907A JP 21114285 A JP21114285 A JP 21114285A JP 21114285 A JP21114285 A JP 21114285A JP S6271907 A JPS6271907 A JP S6271907A
Authority
JP
Japan
Prior art keywords
substrate
grating
antireflection film
film
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21114285A
Other languages
Japanese (ja)
Inventor
Yuichi Handa
祐一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21114285A priority Critical patent/JPS6271907A/en
Publication of JPS6271907A publication Critical patent/JPS6271907A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating

Abstract

PURPOSE:To obtain extremely uniform grating structure by setting an antireflection film provided on the rear surface of a substrate in a manner as to satisfy antireflection conditions for both of light irradiation in the stage of forming the grating pattern and light irradiation in the stage of use. CONSTITUTION:The antireflection film 30 is formed on the rear surface of the substrate 5. The substrate 5 consists of a y-cut LiNbO3 crystal and the antireflection film 30 consists of an SiO2 film (1.48 refractive index). The antireflection conditions in both the manufacturing stage and using stage hold if the coincident point of the min. values of the curves A and B is found. The min. values of the two curves near film thickness d=1.2mum (shown by an arrow) coincide with each other and such value is the value to be determined. Namely, the film thickness (d) of the antireflection film 30 is made 1.12mum. The reflected luminous flux by the antireflection film 30 is thus substantially obviated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はグレーティング光デバイスに関゛シ、特に作製
時に複数の光束の干渉によりグレーティングパターンが
形成されるグレーティング光デバイスに関する。グレー
ティング光デバイスはたとえば光導波路を用いた光学機
器の光結合部として利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a grating optical device, and particularly to a grating optical device in which a grating pattern is formed by interference of a plurality of light beams during manufacture. Grating optical devices are used, for example, as optical coupling parts in optical equipment using optical waveguides.

〔従来の技術及びその間頂点〕[Conventional technology and its top points]

従来、グレーティング光デバイスは一般に二光束干渉法
により作製されていた。
Conventionally, grating optical devices have generally been fabricated by two-beam interferometry.

第8図は二光束干渉法によるグレーティング光デバイス
の作製の概略を示す模式的断面図である。
FIG. 8 is a schematic cross-sectional view showing the outline of fabrication of a grating optical device by two-beam interferometry.

図において、5は光導波路基板であり、たとえばL s
 Nb Osからなる。4は該基板5の表面上に形成さ
れた光導波路層でちり、該層4は基板5の材料の表面か
らTI拡散やプロトン交換を行うことにより形成される
。3は該光導波路層4の表面上に付与されたフォトレジ
スト層である。該層3の上方から異なる方向にて2つの
可干渉性の光束1.2を入射させてフォトレジスト層3
において所望のピッチの干渉縞パターンを形成せしめ、
所定の現像・定着処理によりレジスト層3をストライプ
状とし、これをマスクとしてエツチング分行い光導波路
層4にグレーティングを形成せしめる。
In the figure, 5 is an optical waveguide substrate, for example, L s
Consists of NbOs. Reference numeral 4 denotes an optical waveguide layer formed on the surface of the substrate 5, and the layer 4 is formed by performing TI diffusion or proton exchange from the surface of the material of the substrate 5. 3 is a photoresist layer provided on the surface of the optical waveguide layer 4. Two coherent light beams 1.2 are incident on the photoresist layer 3 in different directions from above the layer 3.
forming an interference fringe pattern with a desired pitch,
The resist layer 3 is formed into stripes by a predetermined development and fixing process, and etching is performed using this as a mask to form a grating in the optical waveguide layer 4.

しかして、2つの光束1,2を照射する際には基板5内
に進行した光束の一部は該基板5の裏面8で反射して反
射光束6,7を生じ、該反射光束がフォトレジスト3に
到達して、入射光束1,2によシ形成される所望の干渉
縞パターンが乱されることになる。即ち、基板5として
代表的なLINbO,を用いた場合、入射光束1,2の
入射角を45’とすると裏面8における反射率は約24
俤であり、該面からの反射光束6,7によるノイズはか
なυ大きい。
Therefore, when the two light beams 1 and 2 are irradiated, a part of the light beam that has progressed into the substrate 5 is reflected by the back surface 8 of the substrate 5 to generate reflected light beams 6 and 7, and the reflected light beams are applied to the photoresist. 3, the desired interference fringe pattern formed by the incident beams 1, 2 will be disturbed. That is, when a typical LINbO is used as the substrate 5, the reflectance at the back surface 8 is approximately 24, assuming that the incident angle of the incident light beams 1 and 2 is 45'.
The noise caused by the reflected light beams 6 and 7 from the surface is quite large.

この様な基板裏面の反射によるノイズを除去する手段と
して基板裏面を該基板と屈折率のほぼ等しいマツチング
オイル等で液浸する方法が考えられるが、この方法は装
置構成が複雑になったり、適当なマツチングオイルが存
在しない場合もある等の問題がある。
As a means of removing such noise caused by reflection on the back surface of the substrate, a method of immersing the back surface of the substrate in a liquid such as matching oil having a refractive index almost equal to that of the substrate may be considered, but this method requires a complicated device configuration and There are problems such as the lack of suitable matting oil in some cases.

また、基板裏面によるノイズを除去する手段として、該
裏面に反射防止膜を施す方法が考えられる。第9図はこ
の方法によるグレーティング光デバイス作製の概略を示
す模式的断面図であシ、第8図と同様の図である。ここ
では、基板5の裏面に反射防止膜9が形成される点のみ
上記第8図の場合と異なる。かくして、光束1,2は基
板5内に進行した後に大部分が反射防止膜9を透過する
光束10.11となる。
Further, as a means for removing noise caused by the back surface of the substrate, a method of applying an antireflection film to the back surface can be considered. FIG. 9 is a schematic cross-sectional view showing the outline of the production of a grating optical device by this method, and is a diagram similar to FIG. 8. Here, the only difference from the case shown in FIG. 8 is that an antireflection film 9 is formed on the back surface of the substrate 5. Thus, after the light beams 1 and 2 travel into the substrate 5, most of the light beams 10 and 2 become light beams 10 and 11 that pass through the antireflection film 9.

ところで、上記の様々反射防止膜としては一般に光学特
性が良好な誇電体膜が用いられ、この様な膜は蒸着また
はスパッタ等によシ形成されるので、一度形成すると剥
離が困難であり、従ってグレーティング光デバイスが使
用される時にも該反射防止膜9はそのまま残される。
By the way, as the various antireflection films mentioned above, hyperelectric films with good optical properties are generally used, and since such films are formed by vapor deposition or sputtering, it is difficult to peel off once formed. Therefore, the antireflection coating 9 remains intact even when the grating optical device is used.

第10図及び第11図は上記反射防止膜9を付して二光
束干渉法によシ作製されたグレーティング光デバイスの
模式的断面図である。第10図は光導波路からの出力用
光結合部に利用された場合を示し、第11図は光導波路
への入力用光結合部に利用された場合を示す。
FIGS. 10 and 11 are schematic cross-sectional views of a grating optical device fabricated by the two-beam interference method with the antireflection film 9 provided thereon. FIG. 10 shows the case where it is used as an optical coupling part for outputting from an optical waveguide, and FIG. 11 shows the case where it is used as an optical coupling part for inputting to an optical waveguide.

第10図において、光導波路層4を進行する導波光21
はグレーティング20により回折せしめられ、空気側へ
の回折光束22及び基板側への回折光束23となる。回
折光束23は反射防止膜9によシ一部反射せしめられて
反射光束24を生じ、残りは反射防止膜9を透過して出
力光束25となる。ここで、反射防止膜9は一般に回折
光束23に対し十分に反射防止条件を満足しないため反
射光240強度は0とはならない。
In FIG. 10, guided light 21 traveling through the optical waveguide layer 4
is diffracted by the grating 20 and becomes a diffracted light beam 22 toward the air side and a diffracted light beam 23 toward the substrate side. A portion of the diffracted light beam 23 is reflected by the anti-reflection film 9 to produce a reflected light beam 24, and the remainder passes through the anti-reflection film 9 and becomes an output light beam 25. Here, since the antireflection film 9 generally does not sufficiently satisfy antireflection conditions for the diffracted light beam 23, the intensity of the reflected light 240 does not become zero.

第11図において入力光束26は反射防止膜9によシ一
部反射せしめられて反射光束28を生じ、残りは反射防
止膜9を透過してグレーティング20への入射光束とな
る。29は結合導波光である。
In FIG. 11, an input light beam 26 is partially reflected by the anti-reflection film 9 to produce a reflected light beam 28, and the rest passes through the anti-reflection film 9 and becomes an incident light beam on the grating 20. 29 is a coupled waveguide light.

ここでも、反射防と膜9は一般に入力光束26に対し十
分に反射防止条件を満足しないため反射光束28の強度
はOとはならない。
Also here, since the anti-reflection film 9 generally does not sufficiently satisfy the anti-reflection conditions for the input light beam 26, the intensity of the reflected light beam 28 does not become O.

以上の様に、グレーティング光デバイスの作製時に基板
裏面に付される反射防止膜は該作製時における反射防止
条件を溝光す様に形成されるため、該グレーティング光
デバイスを異々る条件下で使用すると反射防止条件が一
般に異なるため反射防止が不十分となり、反射防止膜に
よる反射光束がデバイス性能の劣化(たとえば結合効率
の低下やS/Nの低下など)をもたらすという問題が生
ずることになる。
As described above, the anti-reflection film applied to the back surface of the substrate during the fabrication of the grating optical device is formed in such a way as to match the anti-reflection conditions at the time of fabrication. When used, the anti-reflection conditions generally differ, resulting in insufficient anti-reflection, and the problem arises that the light flux reflected by the anti-reflection film causes deterioration in device performance (for example, a decrease in coupling efficiency and a decrease in S/N). .

この様な問題を解決するため、グレーティング構造形成
の後に、使用時の反射防止条件を満たす様に更に補正膜
を付与することも可能であるが、これでは作製工程が繁
雑になる。
In order to solve this problem, it is possible to further apply a correction film after forming the grating structure so as to satisfy the anti-reflection conditions during use, but this would complicate the manufacturing process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、以上の如き従来技術の問題点を解決す
るものとして、基板裏面に反射防止膜が設けられてお9
、該反射防止膜がグレーティングパターン形成時の光照
射と使用時の光照射とに対しいづれも反射防止条件を満
足する様に設定されていることをfF徴とする、グレー
ティング光デバイスが提供される。
According to the present invention, in order to solve the problems of the prior art as described above, an antireflection film is provided on the back surface of the substrate.
Provided is a grating optical device having an fF characteristic that the antireflection film is set to satisfy antireflection conditions for both light irradiation during grating pattern formation and light irradiation during use. .

〔実施例〕〔Example〕

以下、図面を参照しながら本発明の具体的実施例を説明
する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のグレーティング光デバイスの第1の実
施例の作製の概略を示す模式的断面図である。本図にお
いて、上記第9図におけると同様の部材には同一の符号
が付されており、ここではこれらについての説明を省略
する。基板5の裏面には反射防止膜30が形成されてい
る。基板5はy−カッ) LiNbO3結晶からなり、
また反射防止膜30は5IO2膜(屈折率1.48)か
らなる。
FIG. 1 is a schematic cross-sectional view showing the outline of the fabrication of a first embodiment of the grating optical device of the present invention. In this figure, the same members as in FIG. 9 are given the same reference numerals, and explanations thereof will be omitted here. An antireflection film 30 is formed on the back surface of the substrate 5. The substrate 5 is made of y-ka) LiNbO3 crystal,
Further, the antireflection film 30 is made of a 5IO2 film (refractive index: 1.48).

第2図及び第3図は上記反射防止膜30を付して三光束
干渉法によシ作製されたグレーティング光デバイスの模
式的断面図であシ、第2図は光導波路からの出力用光結
合部に利用された場合を示し、第3図は光導波路への入
力用光結合部に利用された場合を示す。これらの図にお
いて、上記第10図及び第11図におけると同様の部材
には同一の符号が付されており、ここではこれらについ
ての説明を省略する。
2 and 3 are schematic cross-sectional views of a grating optical device fabricated by the three-beam interferometry with the anti-reflection film 30 attached, and FIG. 2 shows the output light from the optical waveguide. The case is shown in which it is used as a coupling part, and FIG. 3 shows the case in which it is used in an optical coupling part for input to an optical waveguide. In these figures, the same members as in FIGS. 10 and 11 are denoted by the same reference numerals, and description thereof will be omitted here.

第1図に示される様に作製時の空気側での光の入射角(
出射角)をθFとし、第2図及び第3図に示される様に
使用時の空気側での光の入射角(出射角)をhとする。
As shown in Figure 1, the incident angle of light on the air side during fabrication (
As shown in FIGS. 2 and 3, the incident angle (outgoing angle) of light on the air side during use is assumed to be h.

第1図において、入射光束1,2としてアルゴンレーザ
(波長λF= 0.488μm)を用い入射角θyを2
6°としたときの反射防止膜3oの膜厚dと反射率Rと
の関係は第4図の曲線Aの様になる。該曲線Aの極小値
をとる位置が作製時の反射防止条件である。
In Fig. 1, an argon laser (wavelength λF = 0.488 μm) is used as the incident light beams 1 and 2, and the incident angle θy is set to 2.
The relationship between the thickness d of the antireflection film 3o and the reflectance R when the angle is 6° is as shown by curve A in FIG. The position where the minimum value of the curve A is obtained is the antireflection condition at the time of manufacture.

上記の様な三光束干渉法により作製されたグレーティン
グパターンの周期Aは次式で求められる。
The period A of the grating pattern produced by the three-beam interferometry as described above is determined by the following equation.

Δ=λ2/2s石θ2 ここで、λF= 0.488 ttm 、θ2=26°
とすると71=0.56μmとなる。
Δ=λ2/2s stone θ2 Here, λF= 0.488 ttm, θ2=26°
Then, 71=0.56 μm.

第2図及び第3図において、入出力光束25゜26とし
て半導体レーザ(波長λ、==Q、831μm)を用い
ると、上記のグレーティングパターン周期A=0.56
μmではθ8=45°となる。このときの反射防止膜3
0の膜厚dと反射率1尤との関係は第4図の曲線Bの様
になる。該曲線Bの極小値をとる位置が使用時の反射防
止条件である。
In FIGS. 2 and 3, when a semiconductor laser (wavelength λ, ==Q, 831 μm) is used as the input and output light beam 25°26, the above grating pattern period A=0.56
In μm, θ8=45°. Anti-reflection film 3 at this time
The relationship between the film thickness d at 0 and the reflectance at 1 is as shown by curve B in FIG. The position where the minimum value of the curve B is obtained is the anti-reflection condition during use.

作製時と使用時の双方で反射防止条件が成り立つために
は曲mAとBとの極小値が一致するところを見出せばよ
く、膜厚d=1.12μm近傍(矢印で示す)で2つの
曲線の極小値が一致しており、この値が求める値でちる
ことが分る。即ち、本実施例においては反射防止膜30
の膜厚dは1.12μmとされ、従って、第1図、第2
図及び第3図に示される様に反射防止M30による反射
光束は実質上生じない。
In order to satisfy the anti-reflection conditions both during fabrication and use, it is only necessary to find a point where the minimum values of curves mA and B match, and the two curves should be found near the film thickness d = 1.12 μm (indicated by the arrow). It can be seen that the minimum values of are the same, and this value is the desired value. That is, in this embodiment, the antireflection film 30
The film thickness d of is 1.12 μm, therefore,
As shown in the figure and FIG. 3, substantially no reflected light beam is generated by the anti-reflection M30.

局、第4図のグラフにおいては、基板5の屈折率の波長
分散も考慮されているC n = 2.2561(λ=
0.488μm ) / n=2.1729 (λ=0
.831μff1)’)。
In the graph of FIG. 4, C n = 2.2561 (λ =
0.488μm) / n=2.1729 (λ=0
.. 831μff1)').

第5図(、)〜(f)は本実施例グレーティング光デバ
イスの作製工程図である。
FIGS. 5(a) to 5(f) are manufacturing process diagrams of the grating optical device of this example.

先ず、Y−カッ) LiNbO3結晶基板5の両面を光
学研摩し〔第5図(、) :l 、次にT1拡散やプロ
トン交換等により光導波路層4を形成し〔第5図(b〕
〕、次に蒸着またはスパッタにより上記の様な反射防止
条件を満たす膜厚dの反射防止膜30を形成する〔第5
図(C)〕。尚、この反射防止膜30の膜厚をできる限
り正確に設定するために実時間の膜厚測定を行うのが望
ましい。次に、光導波路層4上に可視域で感度を有する
マイクロポジット1350等の7オトレジスト3をスピ
ナー塗布(3500r pm t1i厚0.5μm )
 L、、上記の様なアルゴンレーザ1,2による二光束
干渉を行い〔第5図(d)〕、現像・定着によシフオド
レジストをレリーフ状のグレーティングとする。続いて
、フォトレジストのグレーティングバター7をマスクと
してイオンビーム加工等のドライエツチング技術を用い
て光導波路層40表面を加工し〔第5図(、) ) 、
更にフォトレジストを除去してレリーフ型のグレーティ
ング構造20を有する光デバイスが得られる〔第5図(
f)〕。
First, both sides of the LiNbO3 crystal substrate 5 (Y-cut) are optically polished [Fig. 5 (,):l], and then the optical waveguide layer 4 is formed by T1 diffusion, proton exchange, etc. [Fig. 5 (b)].
], Next, an antireflection film 30 having a thickness d that satisfies the above antireflection conditions is formed by vapor deposition or sputtering [fifth
Figure (C)]. Note that it is desirable to measure the film thickness in real time in order to set the film thickness of the antireflection film 30 as accurately as possible. Next, on the optical waveguide layer 4, an optical resist 3 such as Microposit 1350 having sensitivity in the visible range is applied using a spinner (3500 rpm, t1i thickness 0.5 μm).
L. Two beam interference is performed using the argon lasers 1 and 2 as described above [FIG. 5(d)], and the shift resist is developed and fixed into a relief-like grating. Subsequently, the surface of the optical waveguide layer 40 is processed using a dry etching technique such as ion beam processing using the grating butter 7 of the photoresist as a mask [FIG. 5(,)).
Further, the photoresist is removed to obtain an optical device having a relief type grating structure 20 [FIG.
f)].

第6図は本発明の第2の実施例の作製の概略を示す模式
的断面図である。本図において、第1図におけると同様
の部材には同一の符号が付されておυ、ここではこれら
についての説明を省略する。
FIG. 6 is a schematic cross-sectional view showing the outline of the fabrication of the second embodiment of the present invention. In this figure, members similar to those in FIG. 1 are designated by the same reference numerals, and description thereof will be omitted here.

本実施例においては、基板50表面に感光性材料40が
比較的厚く塗布される。上記実施例におけると同様の三
光束干渉法を行うべく入射光束1゜2が入射せしめられ
る。入射光束1,2の入射角はθFである。
In this embodiment, the photosensitive material 40 is applied relatively thickly to the surface of the substrate 50. In order to perform the same three-beam interferometry as in the above embodiment, an incident light beam of 1°2 is made incident. The angle of incidence of the incident light beams 1 and 2 is θF.

第7図はかくして作製されたグレーティング光デバイス
の模式的断面図である。本図において、第2図における
と同様の部材には同一の符号が付されており、ここでは
これらについての説明を省略する。
FIG. 7 is a schematic cross-sectional view of the grating optical device thus produced. In this figure, members similar to those in FIG. 2 are designated by the same reference numerals, and description thereof will be omitted here.

第1図に示される様な三光束干渉法によ#)露光され、
所定の現保・定着処理を受けた後に感光性材料40は第
2図に示される様なグレーティング構造を有する層41
となる。第2図において、42は入射光束であり、43
は透過光束であシ、44はグレーティング構造によシブ
ラッグ回折せしめられた回折光束である。回折光束44
の空気中への出射角はθ8である。
#) is exposed by three-beam interferometry as shown in Figure 1,
After undergoing a predetermined maintenance and fixing process, the photosensitive material 40 forms a layer 41 having a grating structure as shown in FIG.
becomes. In FIG. 2, 42 is the incident light flux, and 43
is a transmitted light beam, and 44 is a diffracted light beam subjected to Sibrag diffraction by the grating structure. Diffraction beam 44
The angle of emission into the air is θ8.

この様なブラッグ回折を行うグレーティング光デバイス
においても、一般にグレーティング形成時の光の波長及
び入射角θ、と使用時の光の波長及び入出射角θRとは
一般に異なるため、上記第1の実施例におけると同様の
手法にて作製時及び使用時の双方において反射防止条件
を満足させる様に反射防止膜30の膜厚を決定する。
Even in such a grating optical device that performs Bragg diffraction, the wavelength and incidence angle θ of light when forming the grating are generally different from the wavelength and incidence angle θR of light during use, so the above-mentioned first embodiment is different. The film thickness of the antireflection film 30 is determined using the same method as in , so as to satisfy the antireflection conditions both during manufacture and during use.

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明によれば、以下の様な効果が得られる
According to the present invention as described above, the following effects can be obtained.

(1)作製時において基板裏面からの反射ノイズを低減
し極めて一様なグレーティング構造を得ることができる
(1) During fabrication, reflected noise from the back surface of the substrate can be reduced and an extremely uniform grating structure can be obtained.

(2)使用時において基板裏面での反射を低減し高効率
の光結合を可能にする。
(2) During use, it reduces reflection on the back surface of the substrate and enables highly efficient optical coupling.

(3)一度形成した反射防止膜は最後までデバイスの一
部として機能するためプロセスの簡略化に効果がありプ
ロセスの過程においては基板を保護するなどの効果があ
る。
(3) Since the antireflection film once formed functions as a part of the device until the end, it is effective in simplifying the process and has the effect of protecting the substrate during the process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明デバイスの作製を示す模式的断面図であ
る。 第2図及び第3図は本発明デバイスの模式的断面図であ
る。 第4図は反射防止膜の膜厚と反射率との関係を示すグラ
フである。 第5図(、)〜(f)は本発明デバイスの作製工程図で
ある。 第6図は本発明デバイスの作製を示す模式的断面図であ
る。 第7図は本発明デバイスの模式的断面図である。 第8図及び第9図は従来のグレーティング光デバイスの
作製を示す模式的断面図である。 第10図及び第11図は従来のグレーティング光デバイ
スの模式的断面図である。 3:フォトレジスト層、4:光導波路層、5:基板、2
0:グレーティング、30:反射防止膜。 代理人 弁理士  山 下 穣 子 弟1 図 第2 @ 第3図 第6図 第7図 第8図
FIG. 1 is a schematic cross-sectional view showing the fabrication of the device of the present invention. 2 and 3 are schematic cross-sectional views of the device of the present invention. FIG. 4 is a graph showing the relationship between the thickness of the antireflection film and the reflectance. FIGS. 5(a) to 5(f) are process diagrams for manufacturing the device of the present invention. FIG. 6 is a schematic cross-sectional view showing the fabrication of the device of the present invention. FIG. 7 is a schematic cross-sectional view of the device of the present invention. FIGS. 8 and 9 are schematic cross-sectional views showing the production of a conventional grating optical device. FIGS. 10 and 11 are schematic cross-sectional views of conventional grating optical devices. 3: Photoresist layer, 4: Optical waveguide layer, 5: Substrate, 2
0: grating, 30: antireflection film. Agent Patent Attorney Minoru Yamashita Child 1 Figure 2 @ Figure 3 Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)感光性材料の光照射によりグレーティングパター
ンを形成せしめる工程を含んで作製され基板表面にグレ
ーティング構造を有するグレーティング光デバイスにお
いて、基板裏面に反射防止膜が設けられており、該反射
防止膜がグレーティングパターン形成時の光照射と使用
時の光照射とに対しいづれも反射防止条件を満足する様
に設定されていることを特徴とする、グレーティング光
デバイス。
(1) In a grating optical device that has a grating structure on the surface of the substrate and is manufactured by including a step of forming a grating pattern by irradiating a photosensitive material with light, an antireflection film is provided on the back surface of the substrate, and the antireflection film is A grating optical device, characterized in that it is set to satisfy anti-reflection conditions for both light irradiation during grating pattern formation and light irradiation during use.
(2)基板表面に光導波路が形成されており、該光導波
路中にグレーティング構造を有する、特許請求の範囲第
1項のグレーティング光デバイス。
(2) The grating optical device according to claim 1, wherein an optical waveguide is formed on the surface of the substrate, and a grating structure is provided in the optical waveguide.
JP21114285A 1985-09-26 1985-09-26 Grating optical device Pending JPS6271907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21114285A JPS6271907A (en) 1985-09-26 1985-09-26 Grating optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21114285A JPS6271907A (en) 1985-09-26 1985-09-26 Grating optical device

Publications (1)

Publication Number Publication Date
JPS6271907A true JPS6271907A (en) 1987-04-02

Family

ID=16601075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21114285A Pending JPS6271907A (en) 1985-09-26 1985-09-26 Grating optical device

Country Status (1)

Country Link
JP (1) JPS6271907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149033A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Optical wavelength converting element
EP1070974A1 (en) * 1999-07-21 2001-01-24 SA Highwave Optical Technologies Apodization process of photoinscripted Bragg graring
EP1070973A1 (en) * 1999-07-21 2001-01-24 Highwave Optical Technologies S.A. Optical waveguide with improved photoinscription

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149033A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Optical wavelength converting element
EP1070974A1 (en) * 1999-07-21 2001-01-24 SA Highwave Optical Technologies Apodization process of photoinscripted Bragg graring
EP1070973A1 (en) * 1999-07-21 2001-01-24 Highwave Optical Technologies S.A. Optical waveguide with improved photoinscription
FR2796728A1 (en) * 1999-07-21 2001-01-26 France Telecom PHOTO-WRITTEN BRAGG NETWORK PROCESSING PROCESS
FR2796727A1 (en) * 1999-07-21 2001-01-26 France Telecom OPTICAL GUIDE FOR ENHANCED PHOTO-REGISTRATION
US6574395B1 (en) 1999-07-21 2003-06-03 Sa Highwave Optical Technologies Photowritten Bragg grating apodization method

Similar Documents

Publication Publication Date Title
CA2657509C (en) Diffraction grating-fabricating phase mask, and its fabrication method
US8854731B2 (en) Carbon dioxide laser light optical component
JPS59124306A (en) Optical integrated circuit element and its manufacture
JPH02188729A (en) Manufacture of diffraction grating of optical element
JP2936187B2 (en) Method of forming resist pattern
JPH0435726B2 (en)
JPS60188911A (en) Optical coupler
JPS6271907A (en) Grating optical device
JP3200996B2 (en) Optical waveguide device
JPS6252506A (en) Grating forming method
JP3564215B2 (en) Interference exposure apparatus and interference exposure method using the same
US4359373A (en) Method of formation of a blazed grating
JPS60188909A (en) Manufacture of grating coupler
Oliver et al. Thin-film design for multilayer diffraction gratings
JP3500963B2 (en) Master hologram
JP2809809B2 (en) Manufacturing method of phase shift type diffraction grating
JPH0798404A (en) Production of diffraction grating
JP2824314B2 (en) Method of manufacturing reflective optical bending waveguide
JPH07234310A (en) Production of diffraction grating and production of optical wavelength conversion element
JPH03242648A (en) Photomask
JPS5983111A (en) Preparation of optical integrated circuit
JPH02140787A (en) Hologram generating method
JP2527833B2 (en) Method of manufacturing diffraction grating
JPH033285A (en) Manufacture of semiconductor device
JPH11223714A (en) Phase mask for producing differaction grating and product ion thereof