JPH01149033A - Optical wavelength converting element - Google Patents

Optical wavelength converting element

Info

Publication number
JPH01149033A
JPH01149033A JP30913487A JP30913487A JPH01149033A JP H01149033 A JPH01149033 A JP H01149033A JP 30913487 A JP30913487 A JP 30913487A JP 30913487 A JP30913487 A JP 30913487A JP H01149033 A JPH01149033 A JP H01149033A
Authority
JP
Japan
Prior art keywords
substrate
face
optical waveguide
antireflection film
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30913487A
Other languages
Japanese (ja)
Inventor
Kimihiko Shibuya
公彦 渋谷
Kazuhisa Yamamoto
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30913487A priority Critical patent/JPH01149033A/en
Publication of JPH01149033A publication Critical patent/JPH01149033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate fluctuation of the oscillation wavelength and to improve the emission efficiency of second higher harmonics by providing an antireflection film for fundamental wave on an incidence face crossing one face of a first substrate and providing an antireflection film for second higher harmonics on the emission face of a second substrate. CONSTITUTION:An antireflection film 4 for fundamental wave is provided on an incidence face 1c crossing one face of a first substrate 1 on which an optical waveguide is formed, and an antireflection film 7 for second higher harmonics is provided on an emission face 5b of a second substrate 5. The other face 1b opposite to one face where the optical waveguide is formed of the first substrate 1 and a face 5a crossing the emission face 5b of the second substrate 5 are put one over the other so that second higher harmonics 6 whose phase is matched to the fundamental wave propagated in the optical waveguide are taken out in the second substrate 5 and are emitted from the emission face 5b. Thus, a stable oscillation wavelength is obtained and an optical wavelength converting element having a high emission efficiency of second higher harmonics is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光源用の光波長変換素子に関するもの
であり、利用分野としては光ディスク、レーザプリンタ
、ファクシミリなどのレーザ応用分野が考えられる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical wavelength conversion element for a laser light source. Possible fields of application include laser application fields such as optical discs, laser printers, and facsimiles.

従来の技術 従来、この皿の光波長変換素子は第3図に示すようなイ
コ成であった。第3図において、11は厚み9.411
1のニオブ酸リチウムからなる第1の基板で、その上面
11aに幅1μm1厚み0.5μmの先導波路12が長
さ1cIILにわたってイオン交換法により形成され、
その下面11bは鏡面研磨されて第2の基板13の鏡面
研磨された上面13mに密着されている。この第2の基
板13もニオブ酸リチウムが用いられ、その上面138
に交差する両側端面も鏡面研磨され、厚みは25鴫とさ
れている。基本波である波長0.84μmの半導体レー
ザ光14を第1の基板11の上面11aに交差する一側
端面の入射面11cから光導波路12に入射させると、
その基本波は先導波路12の中を直進して通過する一方
、先導波路12の中で位相整合が起こり、波長0.42
μmの第2高調波15が所定の角度を有して鏡界面を感
することなく第2の基板13に取り出されて直進し、第
2の基板13の他側端面の出射面13bから出射する。
2. Description of the Related Art Conventionally, the optical wavelength conversion element of this plate has an equal configuration as shown in FIG. In Figure 3, 11 is the thickness 9.411
A first substrate made of lithium niobate No. 1, on its upper surface 11a, a leading waveguide 12 having a width of 1 μm and a thickness of 0.5 μm is formed over a length of 1 cIIL by an ion exchange method,
The lower surface 11b is mirror-polished and is in close contact with the mirror-polished upper surface 13m of the second substrate 13. This second substrate 13 is also made of lithium niobate, and its upper surface 138
The end faces on both sides intersecting with each other are also mirror polished and have a thickness of 25 mm. When the semiconductor laser beam 14 having a wavelength of 0.84 μm, which is a fundamental wave, is made to enter the optical waveguide 12 from the incident surface 11c of the end surface on one side that intersects the upper surface 11a of the first substrate 11,
While the fundamental wave passes straight through the leading wave path 12, phase matching occurs within the leading wave path 12, and the wavelength is 0.42.
The second harmonic wave 15 of μm has a predetermined angle, is taken out to the second substrate 13 without sensing the mirror surface, travels straight, and is emitted from the output surface 13b on the other end surface of the second substrate 13. .

発明が解決しようとする問題点 このような従来の構成では、半導体レーザ光14が光導
波路12に入射するときに、第1の基板11の入射面1
1cで基本波の半導体レーザ光14の一部が反射し、も
どり光となって半導体レーザの従モードの変化をもたら
し、発振波長がゆらぐという問題があった。また、第2
高調波15が第2の基板13の出射面13bから出射す
るときに、この出射面13bで一部反射し、出射効率が
低下するという問題があった。
Problems to be Solved by the Invention In such a conventional configuration, when the semiconductor laser beam 14 enters the optical waveguide 12, the incident surface 1 of the first substrate 11
There was a problem in that a part of the fundamental wave semiconductor laser light 14 was reflected at 1c and turned into returned light, which caused a change in the secondary mode of the semiconductor laser, causing the oscillation wavelength to fluctuate. Also, the second
When the harmonics 15 are emitted from the emitting surface 13b of the second substrate 13, a portion thereof is reflected by the emitting surface 13b, resulting in a problem in that the emitting efficiency is reduced.

本発明はこのような問題点を解決するもので、安定した
発振波長が得られるとともに第2高調波の出射効率の良
い光波長変換素子を提供することを目的とするものであ
る。
The present invention is intended to solve these problems, and aims to provide an optical wavelength conversion element that can obtain a stable oscillation wavelength and has good second harmonic output efficiency.

問題点を解決するための手段 上記問題点を解決するため修こ本発明は、光導波路を一
方の面に形成した第1の基板の上記一方の面に交差する
入射面に基本波用の反射防止膜を設け、第2の基板の出
射面に第2高調波用の反射防止膜を設け、上記第1の基
板の先導波路が形成された上記一方の面に対向する他方
の面と、上記第2の基板の上記出射面と交差する面とを
重ね合せ、上記光導波路を伝搬する基本波と位相整合さ
れた第2の高調波を上記第2の基板中に取り出し、1肥
出射面から出射するように1成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a first substrate having an optical waveguide formed on one surface, and a reflection surface for the fundamental wave on the incident surface intersecting the one surface. an anti-reflection film for a second harmonic wave is provided on the output surface of the second substrate, the other surface of the first substrate facing the one surface on which the leading waveguide is formed; A surface of a second substrate that intersects with the output surface is superimposed, and a second harmonic that is phase-matched with the fundamental wave propagating through the optical waveguide is extracted into the second substrate, and a second harmonic wave that is phase-matched with the fundamental wave propagating through the optical waveguide is extracted from the output surface of the second substrate. It is constructed in such a way that it emits light.

作用 上記構成により、第1の基板の入射面から光導波路内へ
半導体レーザ光が入射すると、基本波と位相整合された
第2の高調波が第2の基板中に取り出され、その出射面
から出射され、この場合に、第1の基板の入射面には反
射防止膜が設けられている仁とで、反射光による半導体
レーザへのもどり光がなくなり、この半導体レーザの発
振波長が安定し、また、第2の基板の出射面にも反射防
止膜が設けられていることで、第2高調波の上記出射面
における反射による損失が少なくなり、第2高調波の出
射効率が増加する。
Effect With the above configuration, when the semiconductor laser light enters the optical waveguide from the entrance surface of the first substrate, the second harmonic wave that is phase-matched with the fundamental wave is extracted into the second substrate and is emitted from the exit surface of the semiconductor laser beam. In this case, the incident surface of the first substrate is provided with an antireflection film, so that the reflected light does not return to the semiconductor laser, and the oscillation wavelength of this semiconductor laser is stabilized. Further, by providing an antireflection film on the output surface of the second substrate, loss due to reflection of the second harmonic on the output surface is reduced, and output efficiency of the second harmonic is increased.

実施例 以下、本発明の一実施例を図面に基づいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の一実施例を示す光波長変換素子の断面
図である。第1図において、1は厚み0、禅のニオブ酸
リチウムからなる第1の基板である。この第1の基板1
の上面1aと下面1=bとをそれぞれ鏡面研磨し、上面
1aにスパッタリングにより厚み3001゛−度のTa
の薄膜を形成し、この薄膜上にフォトレジストを厚み5
000λ程度に均一に塗布し、その後厚み2μmのパタ
ーンを露光、現像し、その後ドライエツチングによるT
aのパターンを形成し、この第1の基板1をビロリン酸
で200℃、14分間処理することにより、第1の基板
lに厚さ0.3μmのプロトン交換層を形成し、光導波
路2に構成した。この第1の基板1における上面1aに
交差する一側端面は半導体レーザ光3の入射面ICとさ
れ、鏡面研磨の後にスパッタリングにより厚み1400
Aの5iO1iを形成し、基本波用の第1の反射防止膜
4に構成した。この@1の基板lの下面1bには第2の
基板5の上面5aがそれぞれ洗浄されて重ね合わせられ
、この重ね合わされた第2の基板5の上記第1の基板1
の入射面側とは反対側でかつ上面5aに交差する他側端
面ば第2高調波6の出射面5bとされ、鏡面研磨の後に
スパッタリングにより厚み700Aの5i02膜を形成
し、第2高調波用の第2の反射防止膜7に構成した。こ
のようにして得られた光波長変換素子は基本波長α84
μm用に使用される。
FIG. 1 is a sectional view of an optical wavelength conversion element showing one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a first substrate made of lithium niobate with a thickness of 0. This first substrate 1
The upper surface 1a and the lower surface 1=b are each mirror-polished, and a Ta layer with a thickness of 3001° is applied to the upper surface 1a by sputtering.
A thin film of
After that, a pattern with a thickness of 2 μm was exposed and developed, and then T by dry etching was applied.
By forming a pattern a and treating this first substrate 1 with birophosphoric acid at 200°C for 14 minutes, a proton exchange layer with a thickness of 0.3 μm is formed on the first substrate l, and a proton exchange layer is formed on the optical waveguide 2. Configured. One end face of the first substrate 1 that intersects with the upper surface 1a is used as the incident surface IC of the semiconductor laser beam 3, and is polished to a thickness of 1400 by sputtering after mirror polishing.
5iO1i of A was formed to constitute the first antireflection film 4 for fundamental waves. The upper surface 5a of the second substrate 5 is washed and superimposed on the lower surface 1b of the substrate l of @1, and the first substrate 1 of the superposed second substrate 5
The other end surface opposite to the incident surface side and intersecting the upper surface 5a is used as the output surface 5b of the second harmonic 6, and after mirror polishing, a 5i02 film with a thickness of 700A is formed by sputtering, and the second harmonic is The second anti-reflection film 7 was constructed for the purpose of use. The optical wavelength conversion element thus obtained has a fundamental wavelength of α84.
Used for μm.

上記構成において、基本波である波長α84μmの半導
体レーザ光3を第1の反射防止膜4を通して第1の基板
lの入射面1cから光導波路2へ入射すると、半導体レ
ーザ光30基本波が先導波路2を通過する一方、位相整
合が起こり、第2高調波6が入射光に対して傾斜角度θ
=16°で第2の基板5の中に取り出され、その出射面
5bより第2の反射防止膜7を通して出射される。この
とき、第1の反射防止膜4により入射面lCにおける半
導体レーザへのもどり光はなくなり、発振波長のゆらぎ
はなくなる。また、第2の反射防止膜7により出射面5
bにおける反射による損失が少なくなり、第2高調波6
の出射効率が従来より増加し、たとえば、半導体レーザ
光3の、バク・、−力i:s+omwのとき、43mW
の第2高調波6が得られる。
In the above configuration, when the semiconductor laser light 3 having a wavelength α of 84 μm, which is the fundamental wave, enters the optical waveguide 2 from the incident surface 1c of the first substrate l through the first antireflection film 4, the semiconductor laser light 30 fundamental wave is transmitted to the leading waveguide. 2, phase matching occurs, and the second harmonic 6 has an inclination angle θ with respect to the incident light.
=16°, and is taken out into the second substrate 5, and is emitted from the output surface 5b through the second antireflection film 7. At this time, the first anti-reflection film 4 eliminates light returning to the semiconductor laser at the incident surface 1C, eliminating fluctuations in the oscillation wavelength. In addition, the second anti-reflection film 7 protects the output surface 5.
The loss due to reflection at b is reduced, and the second harmonic 6
For example, when the output efficiency of the semiconductor laser beam 3 is 43 mW, -power i:s+omw.
The second harmonic 6 of is obtained.

なお、上記実施例において第1の基板1としてニオブ酸
リチウムを用いたが、タンタル酸リチウムを用いてもよ
い。また、上記実施例において反射防止膜4.7である
Sin、膜をスパッタリングを用いて形成しているが、
真空蒸着を用いて形成してもよい。また、上記実施例に
おいて光導波路形成時のプロトン交換処理に際しビロリ
ン酸を用いているが、安息香酸を用いてもよい。
In addition, although lithium niobate was used as the first substrate 1 in the above embodiment, lithium tantalate may also be used. In addition, in the above embodiment, the antireflection film 4.7 was formed using sputtering.
It may also be formed using vacuum deposition. Furthermore, although birophosphoric acid is used in the proton exchange treatment during the formation of the optical waveguide in the above embodiments, benzoic acid may also be used.

第2図に5i02膜厚と反射率の関係を示す。反射率と
膜厚には ^ ただし、 nl:5i01の屈折率 nx:LiNbosの屈折率 λ:入射波の波長 d :膜厚 の関係がある。第2図Gこ示されているように膜厚0^
すなわち、反射防止膜を施こしていない場合が反射率最
大となり、膜厚700Aで反射率が極小となっている。
FIG. 2 shows the relationship between 5i02 film thickness and reflectance. There is a relationship between reflectance and film thickness. However, nl: refractive index of 5i01 nx: refractive index of LiNbos λ: wavelength of incident wave d: film thickness. As shown in Figure 2, the film thickness is 0^
That is, the reflectance is maximum when no antireflection film is applied, and the reflectance is minimum when the film thickness is 700A.

この点が従来例と大きく異なる点で、700Aの反射防
止膜を第2の基板5の出射面5bに設けることにより上
記出射面5bより出射される第2高調波6の出射効率が
3096程度とがる。
This point is greatly different from the conventional example. By providing a 700A antireflection film on the output surface 5b of the second substrate 5, the output efficiency of the second harmonic 6 output from the output surface 5b is approximately 3096. Garu.

発明の効果 以上のように本発明によれば、先導波路を一方の面に形
成した第1の基板の上記一方の面に交差する入射面に基
本波用の反射防止膜を設け、第2の基板の出射面に第2
高調波用の反射防止膜を設け、上記第1の基板の先導波
路が形成された上記一方の面と対向する他方の面と、上
記第2の基板の上記出射面と交差する面を重ね合わせ、
上記光導波路を伝搬する基本波と位相整合された第2高
調波を上記第2の基板中に取り出し、上記出射面から出
射するように構成したことによって、上記第2の基板の
出射面から第2高調波の出射効率が大福に増加すると同
時に、半導体レーザへのもどり光もなくなり、発振波長
のゆらぎもな(なるという効果が得られる。
Effects of the Invention As described above, according to the present invention, an anti-reflection film for the fundamental wave is provided on the incident surface intersecting the one surface of the first substrate having a guiding waveguide formed on one surface, and A second
An anti-reflection film for harmonics is provided, and the other surface of the first substrate opposite to the one surface on which the leading wavepath is formed is overlapped with the surface of the second substrate that intersects with the output surface. ,
By extracting the second harmonic phase-matched with the fundamental wave propagating through the optical waveguide into the second substrate and emitting it from the emission surface, the second harmonic wave is extracted from the emission surface of the second substrate. At the same time, the output efficiency of the second harmonic is greatly increased, and at the same time, there is no light returning to the semiconductor laser, and the oscillation wavelength does not fluctuate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による光波長変換素子を示す
断面図、第2図は入射波長0.42μmのときのSiO
□の膜厚と反射率の関係図、第3図は従来の光波長変換
素子を示す断面図である。 l・・・第1の基板、1a・・・第1の基板の上面、l
b・・・第1の基板の下面、1c・・・第1の基板の入
射面、2・・・先導波路、3・・・半導体レーザ光、4
・・・第1の反射防止膜、5・・・第2の基板、5a・
・・第2の基板の上面、5b・・・第2の基板の出射面
、6・・・第2高調波、7・・・第2の反射防止膜。
FIG. 1 is a cross-sectional view showing an optical wavelength conversion element according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a SiO
□ is a relationship diagram between film thickness and reflectance, and FIG. 3 is a cross-sectional view showing a conventional optical wavelength conversion element. l...first substrate, 1a...upper surface of first substrate, l
b... Lower surface of the first substrate, 1c... Incident surface of the first substrate, 2... Guide waveguide, 3... Semiconductor laser light, 4
...first anti-reflection film, 5...second substrate, 5a.
...Top surface of second substrate, 5b... Outgoing surface of second substrate, 6... Second harmonic, 7... Second anti-reflection film.

Claims (1)

【特許請求の範囲】 1、光導波路を一方の面に形成した第1の基板の上記の
一方の面に交差する入射面に基本波用の反射防止膜を設
け、第2の基板の出射面に第2高調波用の反射防止膜を
設け、上記第1の基板の光導波路を形成した上記一方の
面に対向する他方の面と、上記第2の基板の上記出射面
と交差する面とを重ね合わせ、上記光導波路を伝搬する
基本波と位相整合された第2高調波を上記第2の基板中
に取り出し、上記出射面から出射するように構成した光
波長変換素子。 2、反射防止膜がSiO_2である特許請求の範囲第1
項記載の光波長変換素子。 3、第2高調波用の反射防止膜の膜厚が基本波用の反射
防止膜の膜厚の1/2である特許請求の範囲第1項記載
の光波長変換素子。 4、第1の基板としてLiNb_1_−_xTaxO_
3(0≦x≦1)を用いた特許請求の範囲第1項記載の
光波長変換素子。 5、光導波路がプロトン交換法によつて形成された特許
請求の範囲第1項記載の光波長変換素子。
[Claims] 1. An anti-reflection film for fundamental waves is provided on the incident surface intersecting the one surface of the first substrate having an optical waveguide formed on one surface, and the output surface of the second substrate is provided with an anti-reflection film for the fundamental wave. an anti-reflection film for second harmonics is provided on the second harmonic, the other surface of the first substrate opposite to the one surface on which the optical waveguide is formed, and the surface of the second substrate that intersects with the emission surface. An optical wavelength conversion element configured to superimpose two harmonics, extract a second harmonic wave phase-matched with the fundamental wave propagating through the optical waveguide into the second substrate, and output the second harmonic wave from the output surface. 2. Claim 1 in which the antireflection film is SiO_2
The optical wavelength conversion element described in . 3. The optical wavelength conversion element according to claim 1, wherein the thickness of the antireflection film for the second harmonic is 1/2 of the thickness of the antireflection film for the fundamental wave. 4. LiNb_1_-_xTaxO_ as the first substrate
3 (0≦x≦1). 5. The optical wavelength conversion element according to claim 1, wherein the optical waveguide is formed by a proton exchange method.
JP30913487A 1987-12-07 1987-12-07 Optical wavelength converting element Pending JPH01149033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30913487A JPH01149033A (en) 1987-12-07 1987-12-07 Optical wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30913487A JPH01149033A (en) 1987-12-07 1987-12-07 Optical wavelength converting element

Publications (1)

Publication Number Publication Date
JPH01149033A true JPH01149033A (en) 1989-06-12

Family

ID=17989305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30913487A Pending JPH01149033A (en) 1987-12-07 1987-12-07 Optical wavelength converting element

Country Status (1)

Country Link
JP (1) JPH01149033A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112023A (en) * 1983-11-22 1985-06-18 Matsushita Electric Ind Co Ltd Light wavelength conversion element
JPS61239231A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Light wavelength conversion element
JPS6271907A (en) * 1985-09-26 1987-04-02 Canon Inc Grating optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112023A (en) * 1983-11-22 1985-06-18 Matsushita Electric Ind Co Ltd Light wavelength conversion element
JPS61239231A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Light wavelength conversion element
JPS6271907A (en) * 1985-09-26 1987-04-02 Canon Inc Grating optical device

Similar Documents

Publication Publication Date Title
JPH02195309A (en) Optical coupling element
US5007694A (en) Light wavelength converter
US5032220A (en) Manufacturing method of frequency doubler
JPH0523410B2 (en)
US5313543A (en) Second-harmonic generation device and method of producing the same and second-harmonic generation apparatus and method of producing the same
JPH11167032A (en) Curved optical waveguide circuit
JPH0523413B2 (en)
JP3200996B2 (en) Optical waveguide device
JPH01149033A (en) Optical wavelength converting element
JPH06160930A (en) Second harmonic wave generating element and second harmonic wave generator and its production
JPH09179155A (en) Optical wavelength converting device
JP4237932B2 (en) Optical waveguide device and optical wavelength converter
JPH05323404A (en) Optical wavelength conversion element
JP2001311974A (en) Wavelength conversion element, manufacturing method therefor, and wavelength conversion module
JP2679760B2 (en) Optical waveguide
JPH11281833A (en) Grating coupler
JPH04350804A (en) Waveguide type device
JPH04301625A (en) Optical function element
JPH02275418A (en) Light wavelength converting element
JPH036081A (en) Semiconductor light source
JPH0458232A (en) Optical wavelength converting element
JPH03132628A (en) Wavelength converting element
JPH0262520A (en) Light wavelength converting element and its manufacture
JP2003029307A (en) Optical waveguide type wavelength conversion device, and light source and optical device using the same
JPH0454210B2 (en)