JPS6271175A - Zinc-halogen battery - Google Patents

Zinc-halogen battery

Info

Publication number
JPS6271175A
JPS6271175A JP60111952A JP11195285A JPS6271175A JP S6271175 A JPS6271175 A JP S6271175A JP 60111952 A JP60111952 A JP 60111952A JP 11195285 A JP11195285 A JP 11195285A JP S6271175 A JPS6271175 A JP S6271175A
Authority
JP
Japan
Prior art keywords
zinc
electrolytic solution
battery
electrolyte
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60111952A
Other languages
Japanese (ja)
Inventor
Yuichi Watakabe
雄一 渡壁
Koichi Ashizawa
芦沢 公一
Yoshiteru Takeda
武田 義照
Naoki Yoshida
尚樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60111952A priority Critical patent/JPS6271175A/en
Publication of JPS6271175A publication Critical patent/JPS6271175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To realize shortening time from discharging finish to charging start, by installing a halogen-proof filter in an electrolytic solution-return passage, which goes from a battery part to an electrolytic solution jar, so that the electrolytic solution returns through the filter to the electrolytic solution jar. CONSTITUTION:A swelling part 8 is formed on a return pipe 6, and a halogen- proof filter 9 comprising teflon and titanium is installed inside the swelling part 8 so that electrolytic solution coming from a battery part 3 returns through the filter 9 to an electrolytic solution jar 4. Thus, zinc falling off from a zinc plate at the final period of discharge is securely captured at the filter and swiftly dissolved into a flow of the electrolytic solution returning to the electrolytic solution jar. Therefore, without zinc, graphite and the like mixed into the electrolytic solution, which is supplied into the battery part from the electrolytic solution jar, time from discharging finish to charging start can be shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は亜鉛−ハロゲン電池に関し、特に放電末期に亜
鉛極から溶出せずに脱落する亜鉛を捕捉して早期に溶解
し1、放雷終了から充電開始までの時間の短縮を可能に
したものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a zinc-halogen battery, and in particular, it captures zinc that falls off without being eluted from the zinc electrode at the end of discharge, dissolves it early, and charges the battery after the lightning strike ends. This makes it possible to shorten the time it takes to start.

従来の技術 亜鉛−・・ロゲン電池にハロゲンを・正゛極活物質とし
5、亜鉛を負極活物質としてハロゲン化亜鉛を主取分と
する水溶液を電解液として循環させ、充電時にハロゲン
極でハロゲンガスを発生させ、亜鉛極で金属亜鉛を析出
させ、放電時にハロゲン極でハロゲンガスをイオン化し
、亜鉛極で亜鉛を溶出してイオン化させるものである。
Conventional technology: A zinc-halogen battery is equipped with halogen as a positive electrode active material, zinc is used as a negative electrode active material, and an aqueous solution containing zinc halide as the main component is circulated as an electrolyte. Gas is generated, metallic zinc is deposited at the zinc electrode, halogen gas is ionized at the halogen electrode during discharge, and zinc is eluted and ionized at the zinc electrode.

このような電池としては亜鉛−塩素電池、亜鉛−臭素電
池等が知られている。
As such batteries, zinc-chlorine batteries, zinc-bromine batteries, etc. are known.

亜鉛−ハロゲン電池は何れも亜鉛極板とハロゲン極板と
t対設し7た電池部に、電解液槽からポンプで電解液を
供給して循環させながら充放電を行なっている。例えば
亜鉛−ハロゲン電池は、第3図に示すように硬質グラフ
ァイト又はチタンからなる亜鉛極板(1)と多孔質グラ
ファイト又は多孔質チタン板からなる塩素極板(z全対
設して電池部(3)を形成(、塩化亜鉛を主成分とする
水溶fを電解液として図に矢印で示すように塩素極板(
2)を透過させて両極板(11(2)間に供給している
。電解液の供給は、第4図に示すように電解液を電解液
槽(4)からポンプ”(5)で電池部(3)故?電群准
倒VC,決丁ことにエリ、′屯所滌7凶11Lへ 示す矢印方向に循環させている。このようにして充放電
を行ない、充電時に亜鉛極板で金属亜鉛を析出させ、塩
素極板で塩素ガスを発生させ、放電時に亜鉛極板で亜鉛
を溶出してイオン化し、塩素極板で塩素ガスをイオン化
している。
In all zinc-halogen batteries, charging and discharging are performed by supplying an electrolytic solution from an electrolytic solution tank with a pump and circulating it to a battery section in which a zinc electrode plate and a halogen electrode plate are arranged opposite each other. For example, in a zinc-halogen battery, as shown in Figure 3, a zinc electrode plate (1) made of hard graphite or titanium and a chlorine electrode plate (z) made of porous graphite or porous titanium plate (z are all placed opposite each other in the battery part ( 3) Formation of a chlorine electrode plate (as shown by the arrow in the figure) using an aqueous solution containing zinc chloride as an electrolyte (
2) is passed through and is supplied between the two electrode plates (11 (2).The electrolyte is supplied from the electrolyte tank (4) to the battery using a pump (5) as shown in Figure 4. Part (3) Why? The electric group is circulating in the direction of the arrow shown to 7-11L. During charging, the metal is heated by the zinc electrode plate. Zinc is precipitated, chlorine gas is generated with a chlorine electrode plate, zinc is eluted and ionized with the zinc electrode plate during discharge, and chlorine gas is ionized with the chlorine electrode plate.

発明が解決しようとする問題点 亜鉛−ハロゲン電池では上記の如く充電時に亜鉛極で金
属亜鉛を析出し、放電時に析出した亜鉛を溶出している
が、放電時に亜鉛が均一に溶解しない友め、放電終了電
圧に達しても、第5図に示すように亜鉛極板(1)の表
面には亜鉛(7)が残った状態になっている。この残つ
友亜鉛(7)が放電末期から脱落し、電解液の流れによ
って運ばれて電解液槽内に入る。そして一部は電解液槽
内に残り、一部に電解液の流れに乗って再び電池部に送
り込まれる。また極板に硬質グラファイトや多孔質グラ
ファイトを用いた電池では極板から脱落し比グラファイ
トやカーボンが電解液に混入する。
Problems to be Solved by the Invention In zinc-halogen batteries, metallic zinc is precipitated at the zinc electrode during charging as described above, and the precipitated zinc is eluted during discharging, but the problem is that zinc does not dissolve uniformly during discharging. Even when the discharge end voltage is reached, zinc (7) remains on the surface of the zinc electrode plate (1) as shown in FIG. This remaining friend zinc (7) falls off from the final stage of discharge, is carried by the flow of electrolyte, and enters the electrolyte tank. A part of the electrolyte remains in the electrolyte tank, and a part rides on the flow of the electrolyte and is sent back to the battery section. In addition, in batteries using hard graphite or porous graphite for the electrode plates, graphite and carbon fall off from the electrode plates and become mixed into the electrolyte.

このような電解液が電池部に入ると、亜鉛−塩素電池で
は電解液を透過させる塩素極板の裏面に亜鉛、グラファ
イト、カーボン等の一部が付着して電解液の透過性を低
下し、一部に塩素極板を透過して両極板を流れる。また
塩素−臭素電池では電解液と共に亜鉛;−グラファイト
、カーボン等が両極板間を流れる。このような状態で充
電を開始すると、電解液と共に流れてくる亜鉛、グラフ
フィト、カーボン等が亜鉛極板に付着して亜鉛の均一析
出を妨害するばかりか亜鉛のデンドライト成長を促進し
、電池部内で短絡する問題がある。
When such an electrolyte enters the battery part, in zinc-chlorine batteries, some of the zinc, graphite, carbon, etc. adhere to the back side of the chlorine electrode plate that allows the electrolyte to pass through, reducing the permeability of the electrolyte. Part of the chlorine passes through the electrode plate and flows through both electrode plates. In addition, in a chlorine-bromine battery, zinc, graphite, carbon, etc. flow between the two electrode plates together with the electrolyte. If charging is started in such a state, zinc, graphite, carbon, etc. flowing with the electrolyte will adhere to the zinc electrode plate and not only interfere with the uniform deposition of zinc but also promote the growth of zinc dendrites and cause damage inside the battery. There is a problem with short circuits.

これを防止するため従来は放電終了後に電池部の両極板
間に外部から電流を流して亜鉛極板上に残った亜鉛を溶
解したり、電解液のpHt下げて亜鉛を溶解し易くする
か、又は放電終了から充電開始までの時間を長くしてい
る。しかしこれ等の手段は何れも放電終了から充電開始
までに長時間ヲ要する欠点があった。
In order to prevent this, conventional methods have been to apply an external current between the two electrode plates of the battery after discharging to dissolve the zinc remaining on the zinc electrode plate, or to lower the pH of the electrolyte to make it easier to dissolve the zinc. Or, the time from the end of discharging to the start of charging is lengthened. However, all of these means have the disadvantage that it takes a long time from the end of discharging to the start of charging.

問題点を解決するための手段 本発明にこれに鑑み種々検討の結果、放電末期に亜鉛極
板から脱落した亜鉛を捕捉1−で早期に溶解させ、放電
終了から充電開始までの時間を短縮することができる亜
鉛−ハロゲン電池を開発し友もので、電解液槽からポン
プで亜鉛−ハロゲン電池部に電解液を循環させて充放電
を行なう電池において、電池部から電解液槽への電解液
戻9回路に耐ハロゲン性フィルターを設け、電解液をフ
ィルターを通して電解液槽に戻すことを特徴とするもの
である。
Means for Solving the Problems In view of the present invention, as a result of various studies, the zinc that falls off from the zinc electrode plate at the end of discharge is quickly dissolved by trapping 1- to shorten the time from the end of discharge to the start of charging. We have developed a zinc-halogen battery that can be used for charging and discharging by circulating electrolyte from the electrolyte tank to the zinc-halogen battery part using a pump. This system is characterized in that nine circuits are equipped with halogen-resistant filters, and the electrolyte is returned to the electrolyte tank through the filter.

即ち本発明は第1図に示すように電池部(3)に電解液
槽(4)からポンプ(5)で電解液を供給し、電池部(
3)より戻り管(6)を通して電解液を電解液槽(4)
に戻すことにより、電解液を循環させて充放電を行なう
亜鉛−ハロゲン電池において、戻り管(6)に膨出部(
8)全形成し、該膨出部(8)円にテフロンやチタンか
らなる耐ハロゲン性フィルター(9)全取付け、電池部
(3)からの電解液をフィルター(9) ?通して電解
液槽(4)に戻るようにしたものである。
That is, as shown in FIG.
3) Pour the electrolyte into the electrolyte tank (4) through the return pipe (6).
In zinc-halogen batteries that charge and discharge by circulating the electrolyte, a bulge (
8) Fully formed, halogen-resistant filter (9) made of Teflon or titanium is completely attached to the bulge (8), and the electrolyte from the battery part (3) is filtered (9)? through which it returns to the electrolyte tank (4).

尚耐ハロゲン性フィルターの取付場所は戻り管の途中に
限るものではなく、例えば第2図に示すように戻り管(
6)の下端と電解液槽(4)が接合する電解液槽(4)
内に膨出部(8)を形成し、該膨出部(8)内に耐ハロ
ゲン性フィルター(9)t−取付けてもよい。
The installation location of the halogen-resistant filter is not limited to the middle of the return pipe; for example, as shown in Fig. 2, the installation location is not limited to the middle of the return pipe.
6) Electrolyte tank (4) where the lower end and electrolyte tank (4) are connected
A bulge (8) may be formed within the bulge (8), and a halogen-resistant filter (9) may be mounted within the bulge (8).

作用 電池部から電解液を電解液槽に戻す戻り管に、耐ハロゲ
ン性フィルターを取付け、電池部からの電解液槽に戻す
電解液をフィルターに通すことにより1放電床期に亜鉛
極板から脱落した亜鉛はフィルターにより確実に捕捉さ
れ、電解液槽に戻る電解液の流れによって速やかに溶解
する。またフィルターは脱落した亜鉛の捕捉と共に、極
板から脱落したグラファイトやカーボンも確実に捕捉す
ることができる。その結果、電解液槽からポンプで電池
部に送られる電解液には亜鉛、グラファイト、カーボン
等の混入がないため、放電終了から充電開始までの時間
を短縮しても亜鉛極板への亜鉛析出に均一化し、亜鉛の
デンドライト成長が有効に防止される。
A halogen-resistant filter is attached to the return pipe that returns the electrolyte from the battery section to the electrolyte tank, and by passing the electrolyte returned from the battery section to the electrolyte tank through the filter, it is prevented from falling off the zinc electrode plate during the first discharge bed period. The removed zinc is reliably captured by the filter and quickly dissolved by the flow of electrolyte back into the electrolyte tank. Furthermore, the filter can reliably capture not only zinc that has fallen off, but also graphite and carbon that have fallen off from the electrode plates. As a result, the electrolyte pumped from the electrolyte tank to the battery section does not contain zinc, graphite, carbon, etc., so even if the time from the end of discharging to the start of charging is shortened, zinc deposition on the zinc electrode plate does not occur. uniformity, and zinc dendrite growth is effectively prevented.

亜鉛極板から脱溶する亜鉛は通常数量〜数十μ程度であ
り、耐ハロゲン注フィルターとじてニ、市販の通常のテ
フロンフィルターにより充分捕捉することができる。ま
た更に効率よく除去する必要があるときは、戻り管に形
成した膨出部の直径を太きくし、これに数百メッ7ュの
チタン又はテフロン製フィルターを取付けるとよい。
The amount of zinc that dissolves from the zinc electrode plate is usually in the order of several tens of microns, and can be sufficiently captured by a commercially available regular Teflon filter as well as a halogen-resistant filter. If more efficient removal is required, it is recommended to increase the diameter of the bulge formed in the return pipe and attach a titanium or Teflon filter of several hundred mesh to this.

実施例 硬質グラファイト板からなる亜鉛極と多孔質グラファイ
ト板からなる塩素極とを対設した電極作用面積300i
の単セルを30個直列に配置した500W級の亜鉛−塩
素電池部を用い、電解液槽からポンプで電解液(2mo
l/1ZnC4z+1mol/AKCL+2mol/1
NaC4J k電池部に供給循環させ、第1図に示すよ
うに電池部還 から電解液相への戻り管に膨出部を形成して市販のテフ
ロンフィルターを取付けた本発明電池について光放電試
験を行なった。
Example Electrode active area: 300i with a zinc electrode made of a hard graphite plate and a chlorine electrode made of a porous graphite plate placed opposite each other.
Using a 500W class zinc-chlorine battery with 30 single cells arranged in series, the electrolyte (2 mo
l/1ZnC4z+1mol/AKCL+2mol/1
A photodischarge test was conducted on the battery of the present invention in which NaC4Jk was circulated through the battery section, a bulge was formed in the return pipe from the battery section to the electrolyte phase, and a commercially available Teflon filter was attached as shown in Figure 1. I did it.

電解液は1セル当り600 ml/ltrmを供給し、
光Nは30 m A /cJの電流密度で8時間行なっ
た後、放電1’l:27 mA/’c++!の電流密度
で約8時間行ないこれ全14回繰返(−で完全放電して
から充電を開始する丑での時間と電池部における短絡と
の関係を調べた。これについて電池部から電解液槽への
戻り答から子フロンフィルターを取ジ除いた従来電池に
ついて完全放Zしてから充電全開始するまでの時間と電
池部における短絡との関係と比較して第1表に示す。
Electrolyte is supplied at 600 ml/ltrm per cell,
After light N was carried out for 8 hours at a current density of 30 mA/cJ, discharge 1'l: 27 mA/'c++! This was repeated a total of 14 times at a current density of about 8 hours (-) to investigate the relationship between the time required to fully discharge and then start charging and short circuits in the battery. Table 1 shows a comparison between the time from complete discharge to the start of full charging and the short circuit in the battery section for conventional batteries with the sub-fluorocarbon filter removed.

第1表 本発明電池    2      10〃     4
     なし 〃       6       〃 〃       8       〃 従来電池     2      40〃      
 4      10 〃     6     なし 〃     8     なし 第1表から明らかなように従来電池でに完全放電から充
電開始までに6時間以上亜鉛の溶解分行なう必要がある
が、本発明電池によれば完全放電から充電開始までに約
4時間の亜鉛溶解で電池部の短絡がまったくなくなり、
充電終了から充電開始までの時間を著し5ぐ短縮できる
ことが判る。
Table 1 Batteries of the present invention 2 10 4
None〃 6 〃 〃 8 〃 Conventional battery 2 40〃
4 10 〃 6 None 8 None As is clear from Table 1, it is necessary to dissolve zinc for more than 6 hours from complete discharge to the start of charging with the conventional battery, but with the battery of the present invention, it is necessary to dissolve the zinc from complete discharge to start charging. After about 4 hours of zinc dissolution, there were no short circuits in the battery, and
It can be seen that the time from the end of charging to the start of charging can be significantly shortened by 5 times.

発明の効果 本発明によれば亜鉛−ハロゲン電池の放電終了から充電
開始までの時間全短縮することが可能となり、電池の運
用面において使用効率を著しく向上することができる頒
著な効果を奏するものである。
Effects of the Invention According to the present invention, it is possible to completely shorten the time from the end of discharging to the start of charging of a zinc-halogen battery, and it has the remarkable effect of significantly improving the usage efficiency in terms of battery operation. It is.

【図面の簡単な説明】 第1図に本発明電池の一例を示す説明図、第2図は本発
明電池の他の一例を示す説明図、第3図は従来の亜鉛−
塩素電池部の一例を示す側断面図、第4図は従来電池の
一例を示す説明図である。 1 亜鉛極板  2 塩素極板 3 電池部   4 電解液槽 5 戻り管   6 亜鉛 8 膨出部   9 フィルター 第3図 ス 第4図     第5図 手 vL: ネ山 −正 割 (方式)%式% 2、発明の名称 亜鉛−八[1ゲン電池 、″ 昭和61年9月3日(IiJ発送El:In和61年9
月30目)補正の内容 図面の簡単な説明 第1図は本発明電池の一例を承り説明図、第2図は本発
明電池の他の一例を示す説明図、第3図は従来の亜鉛−
塩素電池部の一例を示す側断面図、第4図は従来電池の
一例を示1説明図、第5図は亜鉛−塩素電池部の亜鉛脱
落現象を示す説明図である。 1、亜鉛極板 2、塩素極板 3、電池部 4、電解液槽 5、戻り管 6、亜鉛 8、膨出部 9、フィルター
[Brief Description of the Drawings] Fig. 1 is an explanatory diagram showing one example of the battery of the present invention, Fig. 2 is an explanatory diagram showing another example of the battery of the present invention, and Fig. 3 is an explanatory diagram showing an example of the battery of the present invention.
FIG. 4 is a side sectional view showing an example of a chlorine battery section, and is an explanatory diagram showing an example of a conventional battery. 1 Zinc electrode plate 2 Chlorine electrode plate 3 Battery part 4 Electrolyte tank 5 Return pipe 6 Zinc 8 Swelling part 9 Filter Figure 3 Figure 4 Figure 5 Hand vL: Neyama - Positive % (Method) % formula % 2. Name of the invention Zinc-8 [1 Gen Battery,'' September 3, 1985 (IiJ dispatch El: Inwa 61 year 9
30th day of the month) Contents of the amendment Brief explanation of the drawings Figure 1 is an explanatory diagram of one example of the battery of the present invention, Figure 2 is an explanatory diagram showing another example of the battery of the present invention, and Figure 3 is a conventional zinc-
FIG. 4 is a side sectional view showing an example of a chlorine battery section, FIG. 4 is an explanatory diagram showing an example of a conventional battery, and FIG. 5 is an explanatory diagram showing a phenomenon in which zinc falls off from a zinc-chlorine battery section. 1, zinc electrode plate 2, chlorine electrode plate 3, battery part 4, electrolyte tank 5, return pipe 6, zinc 8, bulge part 9, filter

Claims (1)

【特許請求の範囲】[Claims] 電解液槽からポンプで亜鉛−ハロゲン電池部に電解液を
循環させて充放電を行なう電池において、電池部から電
解液槽への電解液戻り回路に耐ハロゲン性フィルターを
設け、電解液をフィルターを通して電解液槽に戻すこと
を特徴とする亜鉛−ハロゲン電池。
In batteries that charge and discharge by circulating the electrolyte from the electrolyte tank to the zinc-halogen battery section using a pump, a halogen-resistant filter is installed in the electrolyte return circuit from the battery section to the electrolyte tank, and the electrolyte is passed through the filter. A zinc-halogen battery characterized by being returned to an electrolyte bath.
JP60111952A 1985-05-24 1985-05-24 Zinc-halogen battery Pending JPS6271175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111952A JPS6271175A (en) 1985-05-24 1985-05-24 Zinc-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111952A JPS6271175A (en) 1985-05-24 1985-05-24 Zinc-halogen battery

Publications (1)

Publication Number Publication Date
JPS6271175A true JPS6271175A (en) 1987-04-01

Family

ID=14574267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111952A Pending JPS6271175A (en) 1985-05-24 1985-05-24 Zinc-halogen battery

Country Status (1)

Country Link
JP (1) JPS6271175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170965A (en) * 2015-03-12 2016-09-23 古河電池株式会社 Air battery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170965A (en) * 2015-03-12 2016-09-23 古河電池株式会社 Air battery system

Similar Documents

Publication Publication Date Title
JP6414463B2 (en) Redox flow battery operating method and redox flow battery system
JP3510795B2 (en) How to recycle lead-acid batteries
US20210091426A1 (en) Lithium-ion battery recycling processes and systems
JPS6271175A (en) Zinc-halogen battery
JPH08500934A (en) Zinc / bromine-battery charging method
JPH0773060B2 (en) Secondary battery
Gibson et al. Sulphation in discharged lead-acid batteries
EP0548716A1 (en) Method of operating metal-halogen battery
Danilov et al. Electrocatalytic processes on Pb/PbO2 electrodes at high anodic potential
JP2004059948A (en) Method and apparatus for recovering metal from metal dissolution liquid
JP4293587B2 (en) Lead-acid battery regeneration method and apparatus used therefor
JPH11200099A (en) Plating method and plating apparatus using insoluble anode
JPH04245172A (en) Zinc halogen battery
JP3884150B2 (en) High speed plating apparatus and high speed plating method
JP7249847B2 (en) redox flow battery
JP2011233262A (en) Method of reproducing shield type lead-acid battery
JPS599860A (en) Electrode for zinc-halogen battery
RU2152668C1 (en) Method for shaping electrodes of lead storage batteries
JPH10183389A (en) Electrolytic cell and copper electrolysis operation method using the same
JPH0471172A (en) Metal-bromine battery
JPS62281279A (en) Zinc-halogen cell and its operation method
JP3002390B2 (en) Continuous melting equipment for metal powder for plating
JP2020166977A5 (en)
JPS58163160A (en) Alkaline zinc storage battery
JPS6326966A (en) Operating method for zinc-bromine battery