JP4293587B2 - Lead-acid battery regeneration method and apparatus used therefor - Google Patents

Lead-acid battery regeneration method and apparatus used therefor Download PDF

Info

Publication number
JP4293587B2
JP4293587B2 JP2002313930A JP2002313930A JP4293587B2 JP 4293587 B2 JP4293587 B2 JP 4293587B2 JP 2002313930 A JP2002313930 A JP 2002313930A JP 2002313930 A JP2002313930 A JP 2002313930A JP 4293587 B2 JP4293587 B2 JP 4293587B2
Authority
JP
Japan
Prior art keywords
discharge
lead
battery
charge
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002313930A
Other languages
Japanese (ja)
Other versions
JP2004152522A (en
JP2004152522A5 (en
Inventor
高明 宮薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002313930A priority Critical patent/JP4293587B2/en
Publication of JP2004152522A publication Critical patent/JP2004152522A/en
Publication of JP2004152522A5 publication Critical patent/JP2004152522A5/ja
Application granted granted Critical
Publication of JP4293587B2 publication Critical patent/JP4293587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サルフェーション分解による鉛蓄電池再生方法およびそれに用いる装置に関する。
【0002】
【従来の技術】
鉛蓄電池は充電および放電を繰り返して行なうことができる二次電池として広い用途で使用されている。鉛蓄電池は充電・放電時に陽極及び陰極で生成された硫酸鉛(PbSO4)が、それぞれ硫化鉛・鉛・硫酸として陽極、陰極、電解液(希硫酸37%濃度)に戻る化学変化をしている。
放電時:陽極(正極) PbO2+H2SO4→PbSO4+H2O
陰極(負極) Pb+H2SO4→PbSO4+H2O
充電時:陽極(正極) PbSO4+H2O→PbO2+H2SO4
陰極(負極) PbSO4+H2O→Pb+H2SO4
【0003】
この化学変化が十分に進行しなくなった場合に鉛蓄電池は寿命となる。通常、寿命がきてしまった鉛蓄電池は廃棄されることとなるが、その廃棄処理は、鉛蓄電池内の希硫酸を中和処理後放出し、蓄電池本体(プラスチック)を解体し産業廃棄物として処分し、電極の再生を行ない新バッテリーの材料として使用するといったことが行なわれている。しかし、このような処理は高コストであるため、近年では不法投棄などの社会問題を引き起こしている。
【0004】
鉛蓄電池の寿命は、ほとんどの場合がサルフェーションによる。サルフェーションとは、電極表面に生じる電極反応に関与しない不活性な硫酸鉛(PbSO4)の結晶のことで、鉛蓄電池内の化学反応を繰り返すと、電極面に付着・成長(結晶化)し、不導体皮膜となる。
サルフェーション(不導体皮膜)が電極表面に付着すると、鉛蓄電池の内部抵抗が増大する。この状態で充電すると、電流が流れにくく、電圧だけが上昇し、電極・液が発熱し、危険な状態になる。また、この状態では不十分な充電しかできず、放電時の電気容量は大きく減少し、使用可能な時間も短くなり、充電回数の増加につながる。そして、充電しても電圧が定格電圧までに達しないで、結果的に寿命が尽きたと判断される。
したがって、鉛蓄電池を再生するためには、このサルフェーションを除去することが必要となる。
【0005】
従来知られたサルフェーションを除去する方法のうち物理的な方法としては、パルス方式、マイクロカーボン(ホロン)方式、これらの組合せなどが挙げられる。例えば、直流パルス電流を鉛蓄電池の陽極から陰極に向かって流すことにより電極表面に析出した硫酸鉛(サルフェーション)を減少させ、水系での炭素陽極の電解酸化により得られた炭素懸濁液を鉛蓄電池の電解液に用いて直流電圧を印加することにより鉛蓄電池の陽極を電気化学的ドーピングにより活性化する再生方法が知られている(特許文献1参照)。これらの方法はいわばサルフェーションを電極から削り落とす方式である。
一方、サルフェーション除去反応を促進させる物質を電解液に添加し、大電流を放電することによってサルフェーションを除去する方法(化学的方式)も知られている。例えば、硫酸などの酸性物質を反応促進剤として電解液中に加え、短絡に近い大電流放電することによりサルフェーションを除去する方法(特許文献2および3参照)が知られている。
【0006】
前記のとおり、これまで物理的方式および化学的方式のサルフェーション除去方法が知られていた。しかしながら、いずれの方式も充分なものではなかった。即ち、物理的方式では、サルフェーションを削り取るように除去するため、過度に除去しようとすると電極を損傷してしまい、逆に、電極損傷をおそれるあまり、充分な除去効果を得ることができなかった。また、化学的方式は、電極表面を化学的に処理している点で、物理的方式のような削り落としによる電極損傷のおそれはないが、短絡に近い大電流放電を行なうため、これを繰り返すと電極に過度の負荷がかかり、結局、電極を損傷してしまうといった問題があった。
【0007】
【特許文献1】
特開2000−40537号公報
【特許文献2】
特開2002−100415号公報
【特許文献3】
特開2002−190329号公報
【0008】
【発明が解決しようとする課題】
従って本発明の課題は、電極損傷のおそれがなく、効率的鉛蓄電池の再生方法およびそれに用いる装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
このような事情に鑑み、本発明者らが鋭意研究を重ねた結果、使用済み鉛蓄電池に対して、電極を傷めない程度に充分に放電して、充電時間が長くなるように充放電を制御することによって、電極を傷めることなく、充電中にプラス極側のサルフェーションを分解可能であることを見出し、本発明を完成するに至った。
したがって本発明は、電極に付着した不導体皮膜を分解して鉛蓄電池を再生する方法であって、
(1)再生すべき鉛蓄電池の電圧を測定し、定格電圧の80%を超える場合は、定格電圧の50〜80%になるまで放電する工程、次いで、
(2)充電時間が5時間以上であり、かつ定格電圧の80%を越えるように鉛蓄電池を充電する工程、
2回以上繰り返すことを含む、前記方法に関する。
また本発明は、工程(1)の放電が、定格電圧の80%までの放電であることを特徴とする、前記の方法に関する。
【0010】
さらに本発明は、さらに、パルスまたはマイクロカーボンにより電極に付着した不導体膜を物理的に除去する不導体皮膜除去手段、および/または、不導体膜を化学的に除去できる物質を添加する不導体皮膜除去手段を併用することを特徴とする、前記の方法に関する。
【0011】
本発明は、上記の構成を採用することにより、鉛蓄電池を再生するとき、電極を損傷することなく、効率的にサルフェーションを化学的分解することができる。また、電極の損傷がないため、鉛蓄電池を長期に渡って再生使用可能にすることができる。
【0012】
【発明の実施の形態】
本発明の鉛蓄電池再生方法は、電極に付着した不導体皮膜を分解する鉛蓄電池再生方法である。
本発明によって再生可能な鉛蓄電池は、フォークリフトなどの電気車両に用いる鉛蓄電池を主な対象といえるが、特に限定されず、例えば、JIS C8701(可搬蓄電池)、JIS D 5301(自動車用蓄電池)、JIS D 5302(自動車用小型蓄電池)、JIS D 5303(電気車両用蓄電池)、JIS F 8101(船用蓄電池)、JIS W 7301(航空機用蓄電池)などが挙げられる。
【0013】
本発明の方法によるサルフェーションの分解は、以下の各工程を行なうことで達成されるが、各工程は必要に応じて改変が可能である。
(1)鉛蓄電池の定格電圧より低い所定の電圧になるまで放電する工程
通常、鉛蓄電池を使用した場合、その使用目的を終えた時点で使用済みとなることから、電気残量がどの程度かは、個々の電池によって異なる。しかしながら、いずれの電池であっても、定格容量の50%〜80%を消費していること、とくに80%を消費していることが好ましい。
このような電気残量は、電圧を測定することで知ることができる。本発明においては、鉛蓄電池の定格電圧の80%を超える場合、電気残量が大きすぎ、50%を下回る場合には、電気残量が小さすぎるので、充電すれば良いが、大きすぎる場合は、放電してやることによって、充電に適した状態にすることができる。
【0014】
したがって、本発明の方法に適した鉛蓄電池の電圧は、定格電圧の50%〜80%、好ましくは、80%である。
例えば、定格電圧が48Vのものでは、約38V程度に減ずるまで放電し、同様に、定格電圧24Vであれば、約19V程度、定格電圧12Vであれば、約9.5V程度まで減ずるまで放電する。
また本発明の方法は、充電時に陽極(プラス極)側の電極のサルフェーションが分解され、充電時間がある程度長いと分解効果が上がることから、一旦、定格容量の、20%〜25%、好ましくは20%まで放電することが好ましい。しかし、放電を過剰に行なうと、電極の損傷のおそれがあるため、下限は定格容量の20%程度であることが必要である。
【0015】
(2)鉛蓄電池を定格容量まで充電する工程
次に、電解液に有機溶液を含み、電気残量が定格容量の一定量になるまで使用または放電した鉛蓄電池に対して充電を行なう。
サルフェーション分解は、この工程の間に、陽極側の電極において行なわれるため、充電中の電流・電圧および充電時間を適切に調整することが好ましい。サルフェーションを分解するためには、1回または2回以上に分けて充電してもよく、合計の充電時間は、5時間以上であり、好ましくは6〜15時間、さらに好ましくは7〜12時間であり、最も好ましいのは8時間程度である。
【0016】
具体的には、表1に示すように鉛蓄電池の容量(AH)の大きさによって、さらに適切に調整する。なお、充電電圧は、鉛蓄電池の定格電圧の約1.2倍までである。
【表1】

Figure 0004293587
【0017】
このように十分な充電時間を確保することで、電極を損傷することなく、陽極電極のサルフェーションを分解しながら、定格容量までの充電を達成することができる。
【0018】
(3)鉛蓄電池の再生程度の評価
充電した鉛蓄電池を放電し、再生程度を評価する場合、この放電は、短絡したような大電流の放電ではなく、電極を損傷しない程度であれば、特に限定されない。
具体的には、表2に示すように鉛蓄電池の容量(AH)の大きさによって、適切に調整する。
【表2】
Figure 0004293587
【0019】
鉛蓄電池の再生程度は、放電時間、電圧、電解液の温度および比重から評価することができる。
即ち、放電時間が、定格容量と放電器のワット数とで計算される理論値に近づけば近づくほど、サルフェーションが分解され、定格電圧が確保されており、鉛蓄電池が再生できたものと評価できる。
【0020】
比重の測定は、鉛蓄電池の各セル毎に、その電解液の温度とともに測定する。
温度と比重の関係は、下記換算式:
20=S+0.0007(t−20)
(S20:20℃での電解液の比重、S:t℃での電解液の比重、t:比重測定時の電解液温度)
で表される。この換算式により画一的な蓄電池の評価が可能となる。
即ち、電解液の温度と電解液の比重を測定して、20℃での電解液の比重が、1.260〜1.280以上であれば、鉛蓄電池が再生できたと評価できる。
なお、表3に比重と充電状態の関係を示す。
【表3】
Figure 0004293587
再生が十分ではないと評価する場合は、その再生程度に応じて、充電・放電を2回以上繰り返してもよい。また、再生評価は、必要に応じて適宜行なうことができる。
【0021】
再生の完了は、各セルの電解液のS20の平均比重値が1.27以上で、電圧がDC2.0V以上であることを目安とし、負荷に対する最後の放電時間と放電完了後の電圧の戻り具合を考慮して完了とする。
なお、容量、負荷、電圧および放電時間の関係は次の式による。
【外1】
Figure 0004293587
【0022】
本発明の方法のために用いる鉛蓄電池再生装置は、鉛蓄電池を充電するための充電器、鉛蓄電池を放電するための放電器、充放電の電流および/または電圧を制御する充放電制御装置を含む。
ここで用いられる充電器としては、特に限定されないが、AEW−500ST−4(愛知電機株式会社製)、P12100T(アルプス計器製)などが挙げられる。また、放電器としては、特に限定されないが、水用フランジヒータ(進興電気工業株式会社製)などが挙げられる。使用に際しては、
【0023】
本発明の方法はさらに他の不導体皮膜除去手段を併用することが好ましい。
他の不導体皮膜除去手段としては、パルスやマイクロカーボンなどにより、いわば電極のサルフェーションを物理的に削り取る手段や、酸性物質または有機溶液などを鉛蓄電池の電解液に添加して、サルフェーションを化学的に除去できる手段や、有機ポリマーを酸性物質で調整した溶液などによる手段が挙げられるが、不導体皮膜除去という所期の目的を達成できるものであればこれらに限定されない。
【0024】
前記の有機ポリマーとしては、SRS液(有限会社ホットアンドクール社製)が好ましい。
有機ポリマーを調製する酸性溶液としては、希硫酸(20±5%;精製水で調製)が好ましい。
このような有機溶液は、例えば、SRS液(販売元:有限会社ホットアンドクール)として商業的に入手可能である。
【0025】
なお、鉛蓄電池の電解液に有機溶液を加えるのは、充電工程前であればいつでもよいが、作業上、使用済みの鉛蓄電池の再生を始める段階が好ましい。また、鉛蓄電池の状態により、有機溶液を適宜追加することができる。
具体的には、後述の通り、S20(20℃での電解液の比重)を算出し、鉛蓄電池の定格容量との関係で、表4にしたがって有機溶液を加える。
【表4】
Figure 0004293587
【0026】
また本発明の鉛蓄電池再生装置は、定格容量の異なる複数の鉛蓄電池を同時に再生するために、複数の充電器、複数の放電器および複数の充放電制御装置を備え、これらを適宜切り替えられるように結線することも可能である。
本発明の鉛蓄電池再生装置の一態様を図1に示す。
本発明の鉛蓄電池再生装置は、再生すべき鉛蓄電池と接続可能な充電器1、該充電器1と結線し鉛蓄電池の充放電を制御する充放電用制御装置2、該充放電用制御装置2と結線し鉛蓄電池の放電を安全に行なう放電器としてのヒーター4を備えている。
ヒーター4は、安全のためタンク3の内部において発熱する。該タンク3は、内部に水などを貯留することができ、ヒーター4から熱を与えることができる。また、内部の水は流入口5および流出口6を介して入れ替え可能である。
充電器1、充放電用制御装置2およびタンク3は、一体として安定自立できるように脚部7に備え付けられていてもよい。
【0027】
【実施例】
以下に本発明の鉛蓄電池再生方法の実施例を挙げるが、本発明はこれら実施例に限定されるものではない。
実施例1
本発明の鉛蓄電池再生方法にしたがって、使用済みフォークリフト用鉛蓄電池(VCD8AC;GS製)を再生した。
搬入時において、鉛蓄電池の24セルの電解液の比重平均は、1.131であったが、充放電を23回繰り返した後に、1.281となり、再生したことが確認された。図2に、搬入時、1回目、13回目、20回目、23回目の各セルの電解液の比重平均値をグラフにした。
【0028】
実施例2 DC48V専用鉛蓄電池の再生
(1)1回目の充放電
バッテリー液面レベルを希硫酸(約37.5%)および/または精製水で調整し、蓄電池並びに電解液の比重および温度を測定し、充電状態を確認した。
次に、鉛蓄電池再生装置の充電器(AEW−800ST:愛知電機株式会社製)に接続し、充放電用制御装置により、放電器(4000Wのヒーター)を介して所定の電気容量になるまで放電し、その後充電した。
充電完了後、再び充放電用制御装置の制御のもと、放電器(4000Wのヒーター)に放電時間を測定しながら放電した。放電時間は、3時間12分であり、放電完了電圧は37Vであった。次式、
【外2】
Figure 0004293587
から、計算すると、前回の充電で約345.9AHの充電が行なわれたことがわかった。定格容量が440AHであったため、この時点での蓄電容量は、約78.6%であった。
【0029】
(2)2回目の充放電
1回目の充放電で放電された鉛蓄電池の電解液に、1セルあたり7〜20mlのSRS液(販売元:有限会社ホットアンドクール)を加え、1回目と同様に充放電を行なった。
(3)3回目以降の充放電
2回目の充放電を行なった鉛蓄電池に対し、蓄電容量などで再生程度を評価し、再生が不十分である場合に、3回目以降の充放電を1回目と同様に行なった。
【0030】
実施例3
本発明の鉛蓄電池再生方法にしたがって、過放電状態の使用済みフォークリフト用鉛蓄電池(VCDH400P-48(400AH/5HR);YUASA製)を再生した。
充電器として、AEW−800ST(愛知電機株式会社製)を用い、放電器として、4kWのヒーターを用いた。
搬入時、電解液の比重が1.080であった上記電池にSRS液を注入せずに、1回目の充電を行なった。1回目充電後、放電した(1回目放電、放電時間:1時間10分)。各セルの電解液の比重平均値は1.235であった。
【0031】
1回目放電後、各セル毎に、SRS液を7〜20ml加え、2回目充電を行なった。2回目充電後、再び放電を行なった(2回目放電、放電時間:2時間25分、比重平均値:1.243)。
さらに、2回目放電後、各セル毎に、SRS液を0〜20ml加え、3回目充電を行なった(充電時間:7時間35分)。3回目充電後、再び放電を行なった(3回目放電、放電時間:3時間10分、比重平均値:1.241)。
3回目放電後、電解液を入れ替え、それにSRS液を0〜20ml加え、4回目充電を行なった。4回目充電後、再び放電を行なった(4回目放電、放電時間:3時間20分、比重平均値:1.253)。
この鉛蓄電池を、充電(5回目充電)し、1ヶ月間使用した後に、各セルの電解液の比重を測定すると、その平均は、1.263であった。
【0032】
この結果を、図3(各セル毎の電解液比重値)および表5(4kWヒーターを用いた放電時の電圧の経時的変化)に示す。なお、中間点である43V到達時間も示す。
【表5】
Figure 0004293587
【0033】
実施例4
本発明の鉛蓄電池再生方法にしたがって、使用済みフォークリフト用鉛蓄電池(VCDH400P-48(400AH/5HR);YUASA製)を再生した。
充電器として、AEW−800ST(愛知電機株式会社製)を用い、放電器として、4kWのヒーターを用いた。
搬入時、電解液の比重が1.249であった上記電池にSRS液を0〜20ml注入して、1回目の充電を行なった。1回目充電後、各セル毎にSRS液を0〜20ml加え、放電した(1回目放電、放電時間:4時間10分)。各セルの電解液の比重平均値は1.262であった。
【0034】
次いで、2回目充電を行なった。2回目充電後、再び放電を行なった(2回目放電、放電時間:4時間50分、比重平均値:1.267)。
さらに、2回目放電後、各セル毎に、SRS液を0〜15ml加え、3回目充電を行なった。3回目充電後、再び放電を行なった(3回目放電、放電時間:4時間55分、比重平均値:1.275)。
3回目放電後、電解液を入れ替え、それにSRS液を0〜15ml加え、4回目充電を行なった。4回目充電後、再び放電を行なった(4回目放電、放電時間:4時間50分、比重平均値:1.277)。
【0035】
この結果を、図4(各セル毎の電解液比重値)および表6(4kWヒーターを用いた放電時の電圧の経時的変化)に示す。なお、中間点である43V到達時間も示す。
【表6】
Figure 0004293587
【0036】
実施例5
本発明の鉛蓄電池再生方法にしたがって、使用済みフォークリフト用鉛蓄電池(VZC 225−48(225AH/5HR);YUASA製)を再生した。
充電器として、AEW−800ST(愛知電機株式会社製)を用い、放電器として、4kWのヒーターを用いた。
搬入時、電解液の比重が1.225であった上記電池にSRS液を5〜12ml注入して、1回目の充電を行なった。1回目充電後、各セル毎にSRS液を0〜15ml加え、放電した(1回目放電、放電時間:3時間)。各セルの電解液の比重平均値は1.250であった。
【0037】
次いで、2回目充電を行なった。2回目充電後、再び放電を行なった(2回目放電、放電時間:2時間50分、比重平均値:1.257)。
さらに、2回目放電後、各セル毎に、SRS液を0〜10ml加え、3回目充電を行なった。3回目充電後、再び放電を行なった(3回目放電、放電時間:2時間50分、比重平均値:1.275)。
3回目放電後、電解液を入れ替え、4回目充電を行なった。4回目充電後、再び放電を行なった(4回目放電、放電時間:2時間55分、比重平均値:1.265)。
【0038】
この結果を、図5(各セル毎の電解液比重値)および表7(4kWヒーターを用いた放電時の電圧の経時的変化)に示す。なお、中間点である43V到達時間も示す。
【表7】
Figure 0004293587
【0039】
実施例6
本発明の鉛蓄電池再生方法にしたがって、使用済み鉛蓄電池(FB15-D8AC-M1B(400AH/5HR);GS製)を再生した。
充電器として、AEW−800ST(愛知電機株式会社製)を用い、放電器として、6kWのヒーターを用いた。
搬入時、電解液の比重が1.215であった上記電池にSRS液を計280ml注入して、1回目の充電を行ない、次いで放電した(1回目放電、放電時間:30分)。各セルの電解液の比重平均値は1.230であった。
【0040】
次いで、2回目充放電を行ない、2回目放電後、SRS液を計280ml加え、3回目充電を行なった。3回目充電後、再び放電を行なった(3回目放電、放電時間:1時間45分、比重平均値:1.230)。
3回目放電後、4回目充放電を行ない、その後、電解液を入れ替え、5回目充電を行なった。5回目充電後、再び放電を行なった(5回目放電、放電時間:2時間、比重平均値:1.267)。さらに6回目充電を行ない、電解液の比重を測定すると、1.259であった。
【0041】
この結果を、図6(各セル毎の電解液比重値)および表8(6kWヒーターを用いた放電時の電圧の経時的変化)に示す。
【表8】
Figure 0004293587
【0042】
【発明の効果】
従来の技術は、サルフェーション(不導体皮膜)の初期段階で対処するものが多かったが、この本発明の方法は、サルフェーションで使用できなくなった鉛蓄電池を新品同様に能力を戻すことができた。
さらに本発明の方法は、鉛蓄電池内の過充・放電による極板の劣化程度にもよるが、電極が正常であれば何回でも再生可能であるため、同じ鉛蓄電池を10年間以上使用することが可能である。
本発明の方法は、電極面に付着した不導体皮膜を化学的に分解するため、従来の物理的な方法のように電極を損傷することがない。また、新品の鉛蓄電池であればサルフェーションを起こしにくくなり、寿命を延ばすことも可能である。
本発明の方法は、電極に付着したサルフェーション(硫酸鉛の結晶)に反応し、鉛蓄電池内の電極自体には悪影響は及ぼさず、サルフェーションを分解するため、分解した後のサルフェーションの進行(電極への付着)を有機溶液(SRS液)の効果によって抑制することが可能である。
【図面の簡単な説明】
【図1】 本発明の鉛蓄電池再生装置を示す概念図である。
【図2】 本発明の鉛蓄電池再生方法の効果を示すグラフである。
【図3】 本発明の鉛蓄電池再生方法の効果を示すグラフである。
【図4】 本発明の鉛蓄電池再生方法の効果を示すグラフである。
【図5】 本発明の鉛蓄電池再生方法の効果を示すグラフである。
【図6】 本発明の鉛蓄電池再生方法の効果を示すグラフである。
【符号の説明】
1 充電器
2 充放電用制御装置
3 タンク
4 ヒーター
5 流入口
6 流出口
7 脚部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead storage battery regeneration method by sulfation decomposition and an apparatus used therefor.
[0002]
[Prior art]
Lead-acid batteries are used in a wide range of applications as secondary batteries that can be repeatedly charged and discharged. In lead-acid batteries, lead sulfate (PbSO 4 ) produced at the anode and cathode during charge / discharge undergoes a chemical change that returns to the anode, cathode, and electrolyte (37% dilute sulfuric acid) as lead sulfide, lead, and sulfuric acid, respectively. Yes.
During discharge: Anode (positive electrode) PbO 2 + H 2 SO 4 → PbSO 4 + H 2 O
Cathode (negative electrode) Pb + H 2 SO 4 → PbSO 4 + H 2 O
During charging: Anode (positive electrode) PbSO 4 + H 2 O → PbO 2 + H 2 SO 4
Cathode (negative electrode) PbSO 4 + H 2 O → Pb + H 2 SO 4
[0003]
When this chemical change does not proceed sufficiently, the lead-acid battery has a lifetime. Normally, lead-acid batteries that have reached the end of their service life will be discarded, but the disposal process will release the dilute sulfuric acid in the lead-acid battery after neutralization, disassemble the battery body (plastic), and dispose of it as industrial waste. However, the electrode is regenerated and used as a new battery material. However, since such treatment is expensive, it has caused social problems such as illegal dumping in recent years.
[0004]
The life of lead-acid batteries is mostly due to sulfation. Sulfation is an inactive lead sulfate (PbSO 4 ) crystal that does not participate in the electrode reaction that occurs on the electrode surface. When the chemical reaction in the lead storage battery is repeated, it adheres and grows (crystallizes) on the electrode surface. It becomes a non-conductive film.
When sulfation (nonconductive film) adheres to the electrode surface, the internal resistance of the lead-acid battery increases. If charging is performed in this state, it is difficult for current to flow, only the voltage rises, the electrodes and liquid generate heat, and a dangerous state occurs. Further, in this state, only insufficient charging can be performed, the electric capacity during discharging is greatly reduced, the usable time is shortened, and the number of times of charging is increased. And even if it charges, a voltage does not reach a rated voltage, and it is judged that the lifetime was exhausted as a result.
Therefore, in order to regenerate the lead storage battery, it is necessary to remove this sulfation.
[0005]
Among the conventionally known methods for removing sulfation, physical methods include a pulse method, a microcarbon (holon) method, a combination thereof, and the like. For example, lead sulfate (sulfation) deposited on the electrode surface is reduced by flowing a DC pulse current from the anode to the cathode of the lead storage battery, and the carbon suspension obtained by electrolytic oxidation of the carbon anode in the aqueous system is lead. A regeneration method is known in which the anode of a lead storage battery is activated by electrochemical doping by applying a DC voltage to the electrolyte of the storage battery (see Patent Document 1). These methods are so-called methods of scraping sulfation off the electrodes.
On the other hand, a method (chemical method) for removing sulfation by adding a substance that promotes sulfation removal reaction to the electrolyte and discharging a large current is also known. For example, a method of removing sulfation by adding an acidic substance such as sulfuric acid as a reaction accelerator into an electrolytic solution and discharging a large current close to a short circuit is known (see Patent Documents 2 and 3).
[0006]
As described above, physical and chemical sulfation removal methods have been known so far. However, none of these methods is sufficient. That is, in the physical method, since the sulfation is removed so as to be scraped off, the electrode is damaged if it is excessively removed, and conversely, the electrode cannot be damaged, so that a sufficient removal effect cannot be obtained. In addition, the chemical method is that the electrode surface is chemically treated, and there is no risk of electrode damage due to scraping as in the physical method, but this is repeated because a large-current discharge close to a short circuit is performed. There was a problem that an excessive load was applied to the electrode and eventually the electrode was damaged.
[0007]
[Patent Document 1]
JP 2000-40537 A [Patent Document 2]
JP 2002-100415 A [Patent Document 3]
Japanese Patent Laid-Open No. 2002-190329
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an efficient method for regenerating a lead-acid battery and an apparatus used therefor without the risk of electrode damage.
[0009]
[Means for Solving the Problems]
In view of such circumstances, as a result of extensive research conducted by the present inventors, it is possible to sufficiently discharge the used lead-acid battery to such an extent that the electrodes are not damaged, and to control charging / discharging so that the charging time becomes longer. As a result, it was found that the sulfation on the positive electrode side can be disassembled during charging without damaging the electrode, and the present invention has been completed.
Therefore, the present invention is a method for regenerating a lead-acid battery by decomposing a non-conductive film attached to an electrode,
(1) Measure the voltage of the lead storage battery to be regenerated, and if it exceeds 80% of the rated voltage, discharge the battery until it reaches 50 to 80% of the rated voltage ;
(2) charging the lead-acid battery so that the charging time is 5 hours or more and exceeds 80% of the rated voltage;
Is repeated twice or more .
The present invention, discharge of step (1), characterized in that a discharge of up to 80% of the rated voltage, related to the method.
[0010]
Furthermore, the present invention further provides a non-conductive film removing means for physically removing the non-conductive film attached to the electrode by pulse or microcarbon and / or a non-conductive material to which a substance capable of chemically removing the non-conductive film is added. It is related with the said method characterized by using a film removal means together.
[0011]
By adopting the above-described configuration, the present invention can efficiently chemically decompose sulfation without damaging the electrode when regenerating a lead-acid battery. Moreover, since there is no damage of an electrode, a lead storage battery can be made recyclable over a long period of time.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The lead storage battery regeneration method of the present invention is a lead storage battery regeneration method for decomposing a non-conductive film attached to an electrode.
The lead storage battery that can be regenerated by the present invention can be said to be mainly a lead storage battery used for electric vehicles such as forklifts, but is not particularly limited. For example, JIS C8701 (portable storage battery), JIS D 5301 (automobile storage battery) JIS D 5302 (small battery for automobiles), JIS D 5303 (electric vehicle storage battery), JIS F 8101 (ship battery), JIS W 7301 (aircraft storage battery), and the like.
[0013]
The decomposition of sulfation by the method of the present invention is achieved by carrying out the following steps, but each step can be modified as necessary.
(1) The process of discharging until a predetermined voltage lower than the rated voltage of the lead-acid battery Normally, when a lead-acid battery is used, it is already used when the purpose of use is finished, so how much electricity is left Depends on the individual battery. However, even in any of the battery, it consumes 50% to 80% of rated capacity, it is preferable that consume 80% especially.
Such remaining electric power can be known by measuring the voltage. In the present invention, if it exceeds 80% of the rated voltage of the lead-acid battery, the remaining amount of electricity is too large, and if it is less than 50%, the remaining amount of electricity is too small, so it may be charged. By discharging the battery, a state suitable for charging can be obtained.
[0014]
Therefore, the voltage of the lead acid battery suitable for the method of the present invention is 50% to 80%, preferably 80% of the rated voltage.
For example, when the rated voltage is 48V, the battery is discharged until the voltage is reduced to about 38V. Similarly, when the rated voltage is 24V, the battery is discharged about 19V, and when the rated voltage is 12V, the battery is discharged until the voltage is reduced to about 9.5V. .
Further, the method of the present invention decomposes the sulfation of the electrode on the anode (positive electrode) side during charging, and the decomposing effect is improved when the charging time is long to some extent. Therefore, once in the rated capacity, 20% to 25%, preferably It is preferable to discharge to 20%. However, if the discharge is performed excessively, the electrode may be damaged, so the lower limit needs to be about 20% of the rated capacity.
[0015]
(2) Step of charging the lead storage battery to the rated capacity Next, the lead storage battery containing the organic solution in the electrolyte and charged or used until the remaining amount of electricity reaches a certain amount of the rated capacity is charged.
Since sulfation decomposition is performed at the anode electrode during this step, it is preferable to appropriately adjust the current / voltage and charging time during charging. In order to decompose sulfation, it may be charged in one or more times, and the total charging time is 5 hours or more, preferably 6 to 15 hours, more preferably 7 to 12 hours. And most preferred is about 8 hours.
[0016]
Specifically, as shown in Table 1, it is further appropriately adjusted according to the capacity (AH) of the lead storage battery. The charging voltage is up to about 1.2 times the rated voltage of the lead storage battery.
[Table 1]
Figure 0004293587
[0017]
By securing a sufficient charging time in this manner, charging up to the rated capacity can be achieved while disassembling the anode electrode sulfation without damaging the electrode.
[0018]
(3) Evaluation of the degree of regeneration of the lead storage battery When discharging a charged lead storage battery and evaluating the degree of regeneration, this discharge is not a large current discharge such as a short circuit and is not particularly damaged as long as the electrode is not damaged. It is not limited.
Specifically, as shown in Table 2, it is appropriately adjusted according to the capacity (AH) of the lead storage battery.
[Table 2]
Figure 0004293587
[0019]
The degree of regeneration of the lead storage battery can be evaluated from the discharge time, voltage, electrolyte temperature, and specific gravity.
That is, as the discharge time approaches the theoretical value calculated by the rated capacity and the wattage of the discharger, it can be evaluated that the sulfation is decomposed, the rated voltage is secured, and the lead-acid battery can be regenerated. .
[0020]
The specific gravity is measured together with the temperature of the electrolyte for each cell of the lead storage battery.
The relationship between temperature and specific gravity is as follows:
S 20 = S t +0.0007 (t−20)
(S 20 : Specific gravity of electrolyte at 20 ° C., S t : Specific gravity of electrolyte at t ° C., t: Electrolyte temperature at specific gravity measurement)
It is represented by This conversion formula enables uniform battery evaluation.
That is, the temperature of the electrolytic solution and the specific gravity of the electrolytic solution are measured, and if the specific gravity of the electrolytic solution at 20 ° C. is 1.260 to 1.280 or more, it can be evaluated that the lead storage battery has been regenerated.
Table 3 shows the relationship between specific gravity and state of charge.
[Table 3]
Figure 0004293587
When it is evaluated that regeneration is not sufficient, charging / discharging may be repeated twice or more depending on the degree of regeneration. Further, the reproduction evaluation can be appropriately performed as necessary.
[0021]
Completion of regeneration, the average density value of S 20 of the electrolyte of each cell is 1.27 or more, the voltage is a measure that is at least 2.0 Vdc, the last discharge time and the voltage after discharge completion to the load Consider completion of the return.
The relationship among capacity, load, voltage and discharge time is according to the following equation.
[Outside 1]
Figure 0004293587
[0022]
The lead-acid battery regeneration device used for the method of the present invention comprises a charger for charging a lead-acid battery, a discharger for discharging the lead-acid battery, and a charge / discharge control device for controlling the charge / discharge current and / or voltage. Including.
Although it does not specifically limit as a charger used here, AEW-500ST-4 (made by Aichi Electric Co., Ltd.), P12100T (made by Alps Keiki), etc. are mentioned. Moreover, as a discharger, although not specifically limited, the flange heater for water (made by Shinko Electric Industrial Co., Ltd.) etc. are mentioned. In use,
[0023]
The method of the present invention preferably further uses other non-conductive film removing means.
Other non-conductive film removal means include, for example, a means of physically scraping the electrode sulfation by means of pulses or microcarbon, or by adding an acidic substance or organic solution to the electrolyte of the lead storage battery to chemically remove the sulfation. However, the present invention is not limited to these as long as the intended purpose of removing the non-conductive film can be achieved.
[0024]
As the organic polymer, an SRS liquid (manufactured by Hot & Cool Co., Ltd.) is preferable.
The acidic solution for preparing the organic polymer is preferably dilute sulfuric acid (20 ± 5%; prepared with purified water).
Such an organic solution is commercially available as, for example, an SRS solution (distributor: hot and cool limited company).
[0025]
The organic solution may be added to the electrolytic solution of the lead storage battery at any time before the charging process, but it is preferable to start the regeneration of the used lead storage battery for work. Further, depending on the state of the lead storage battery, an organic solution can be added as appropriate.
Specifically, as described later, S 20 (specific gravity of the electrolytic solution at 20 ° C.) is calculated, and the organic solution is added according to Table 4 in relation to the rated capacity of the lead storage battery.
[Table 4]
Figure 0004293587
[0026]
Moreover, in order to simultaneously reproduce a plurality of lead storage batteries having different rated capacities, the lead storage battery regeneration apparatus of the present invention includes a plurality of chargers, a plurality of dischargers, and a plurality of charge / discharge control devices, which can be switched as appropriate. It is also possible to connect to.
An embodiment of the lead-acid battery regeneration device of the present invention is shown in FIG.
The lead storage battery regeneration device of the present invention includes a charger 1 connectable to a lead storage battery to be regenerated, a charge / discharge control device 2 connected to the charger 1 to control charge / discharge of the lead storage battery, and the charge / discharge control device. 2 is provided with a heater 4 as a discharger that is connected to 2 and safely discharges the lead storage battery.
The heater 4 generates heat inside the tank 3 for safety. The tank 3 can store water or the like inside, and can apply heat from the heater 4. Further, the internal water can be exchanged through the inflow port 5 and the outflow port 6.
The charger 1, the charging / discharging control device 2, and the tank 3 may be provided on the leg portion 7 so as to be stable and independent as a unit.
[0027]
【Example】
Although the Example of the lead acid battery regeneration method of this invention is given to the following, this invention is not limited to these Examples.
Example 1
A used forklift lead acid battery (VCD8AC; manufactured by GS) was regenerated according to the lead acid battery regeneration method of the present invention.
At the time of carrying in, the specific gravity average of the electrolyte solution of 24 cells of the lead storage battery was 1.131, but after repeating charging and discharging 23 times, it became 1.281, confirming that it was regenerated. In FIG. 2, the specific gravity average value of the electrolyte solution of each cell of the 1st time, 13th time, 20th time, and 23rd time at the time of carrying in was made into a graph.
[0028]
Example 2 Regeneration of lead-acid battery dedicated to DC48V (1) The first charge / discharge battery liquid level was adjusted with dilute sulfuric acid (about 37.5%) and / or purified water, and the specific gravity and temperature of the battery and electrolyte were measured. And confirmed the state of charge.
Next, it is connected to a charger (AEW-800ST: manufactured by Aichi Electric Co., Ltd.) of a lead storage battery regeneration device, and discharged until a predetermined electric capacity is reached via a discharger (4000 W heater) by a charge / discharge control device. And then charged.
After the completion of charging, the battery was discharged to the discharger (4000 W heater) while measuring the discharge time under the control of the charge / discharge control device. The discharge time was 3 hours and 12 minutes, and the discharge completion voltage was 37V. The following formula,
[Outside 2]
Figure 0004293587
From the calculation, it was found that approximately 345.9 AH was charged in the previous charge. Since the rated capacity was 440 AH, the storage capacity at this point was about 78.6%.
[0029]
(2) Second charge / discharge Add 7 to 20 ml of SRS liquid (sales source: Hot and Cool Co., Ltd.) per cell to the electrolyte of the lead-acid battery discharged during the first charge / discharge. The battery was charged and discharged.
(3) For the lead storage battery that has been charged / discharged for the second and subsequent times, the degree of regeneration is evaluated by the storage capacity, etc., and when the regeneration is insufficient, the charge / discharge for the third and subsequent times is the first time. It carried out like.
[0030]
Example 3
According to the lead storage battery regeneration method of the present invention, a used lead storage battery for forklifts (VCDH400P-48 (400 AH / 5HR); manufactured by YUSAS) in an overdischarged state was regenerated.
AEW-800ST (manufactured by Aichi Electric Co., Ltd.) was used as the charger, and a 4 kW heater was used as the discharger.
At the time of carrying in, the first charge was performed without injecting the SRS solution into the battery in which the specific gravity of the electrolyte was 1.080. After the first charge, the battery was discharged (first discharge, discharge time: 1 hour 10 minutes). The specific gravity average value of the electrolyte solution in each cell was 1.235.
[0031]
After the first discharge, 7 to 20 ml of SRS solution was added for each cell, and the second charge was performed. After the second charge, discharge was performed again (second discharge, discharge time: 2 hours 25 minutes, specific gravity average value: 1.243).
Further, after the second discharge, 0 to 20 ml of SRS solution was added for each cell, and the third charge was performed (charge time: 7 hours and 35 minutes). After the third charge, discharge was performed again (third discharge, discharge time: 3 hours 10 minutes, specific gravity average value: 1.241).
After the third discharge, the electrolyte solution was replaced, and 0 to 20 ml of the SRS solution was added thereto, and the fourth charge was performed. After the fourth charge, discharge was performed again (fourth discharge, discharge time: 3 hours 20 minutes, specific gravity average value: 1.253).
When this lead storage battery was charged (fifth charge) and used for one month, the specific gravity of the electrolyte in each cell was measured, and the average was 1.263.
[0032]
The results are shown in FIG. 3 (electrolyte specific gravity value for each cell) and Table 5 (change in voltage over time during discharge using a 4 kW heater). In addition, 43V arrival time which is an intermediate point is also shown.
[Table 5]
Figure 0004293587
[0033]
Example 4
In accordance with the lead acid battery regeneration method of the present invention, a used forklift lead acid battery (VCDH400P-48 (400 AH / 5HR); manufactured by YUSASA) was regenerated.
AEW-800ST (manufactured by Aichi Electric Co., Ltd.) was used as the charger, and a 4 kW heater was used as the discharger.
At the time of carrying in, 0 to 20 ml of the SRS solution was injected into the battery having a specific gravity of 1.249, and the first charge was performed. After the first charge, 0 to 20 ml of SRS solution was added to each cell and discharged (first discharge, discharge time: 4 hours and 10 minutes). The specific gravity average value of the electrolyte solution in each cell was 1.262.
[0034]
Next, the second charge was performed. After the second charge, discharge was performed again (second discharge, discharge time: 4 hours 50 minutes, specific gravity average value: 1.267).
Further, after the second discharge, 0 to 15 ml of SRS solution was added for each cell, and the third charge was performed. After the third charge, discharge was performed again (third discharge, discharge time: 4 hours 55 minutes, specific gravity average value: 1.275).
After the third discharge, the electrolyte solution was replaced, and 0 to 15 ml of the SRS solution was added thereto, and the fourth charge was performed. After the fourth charge, discharge was performed again (fourth discharge, discharge time: 4 hours 50 minutes, specific gravity average value: 1.277).
[0035]
The results are shown in FIG. 4 (electrolyte specific gravity value for each cell) and Table 6 (change in voltage during discharge using a 4 kW heater). In addition, 43V arrival time which is an intermediate point is also shown.
[Table 6]
Figure 0004293587
[0036]
Example 5
A used lead storage battery for forklift (VZC 225-48 (225 AH / 5HR); manufactured by YUSASA) was regenerated in accordance with the lead storage battery regeneration method of the present invention.
AEW-800ST (manufactured by Aichi Electric Co., Ltd.) was used as the charger, and a 4 kW heater was used as the discharger.
At the time of carrying in, 5 to 12 ml of the SRS solution was injected into the battery in which the specific gravity of the electrolyte was 1.225, and the first charge was performed. After the first charge, 0 to 15 ml of SRS solution was added to each cell and discharged (first discharge, discharge time: 3 hours). The specific gravity average value of the electrolyte solution in each cell was 1.250.
[0037]
Next, the second charge was performed. After the second charge, discharge was performed again (second discharge, discharge time: 2 hours 50 minutes, specific gravity average value: 1.257).
Further, after the second discharge, 0 to 10 ml of SRS solution was added for each cell, and the third charge was performed. After the third charge, discharge was performed again (third discharge, discharge time: 2 hours 50 minutes, specific gravity average value: 1.275).
After the third discharge, the electrolyte was replaced and the fourth charge was performed. After the fourth charge, discharge was performed again (fourth discharge, discharge time: 2 hours 55 minutes, specific gravity average value: 1.265).
[0038]
The results are shown in FIG. 5 (electrolyte specific gravity value for each cell) and Table 7 (change with time in voltage during discharge using a 4 kW heater). In addition, 43V arrival time which is an intermediate point is also shown.
[Table 7]
Figure 0004293587
[0039]
Example 6
A used lead storage battery (FB15-D8AC-M1B (400 AH / 5HR); manufactured by GS) was regenerated according to the lead storage battery regeneration method of the present invention.
AEW-800ST (manufactured by Aichi Electric Co., Ltd.) was used as the charger, and a 6 kW heater was used as the discharger.
At the time of carrying in, a total of 280 ml of the SRS liquid was injected into the battery having a specific gravity of the electrolytic solution of 1.215, the first charge was performed, and then the battery was discharged (first discharge, discharge time: 30 minutes). The specific gravity average value of the electrolyte solution in each cell was 1.230.
[0040]
Subsequently, the second charge / discharge was performed, and after the second discharge, a total of 280 ml of the SRS solution was added to perform the third charge. After the third charge, discharge was performed again (third discharge, discharge time: 1 hour 45 minutes, specific gravity average value: 1.230).
After the third discharge, the fourth charge / discharge was performed, and then the electrolyte solution was replaced and the fifth charge was performed. After the fifth charge, discharge was performed again (fifth discharge, discharge time: 2 hours, specific gravity average value: 1.267). Further, after 6th charge, the specific gravity of the electrolyte was measured and found to be 1.259.
[0041]
The results are shown in FIG. 6 (electrolyte specific gravity value for each cell) and Table 8 (change in voltage over time during discharge using a 6 kW heater).
[Table 8]
Figure 0004293587
[0042]
【The invention's effect】
Many conventional techniques deal with the early stage of sulfation (non-conductive coating), but this method of the present invention can return the capacity of a lead-acid battery that can no longer be used in sulfation as if it were new.
Furthermore, the method of the present invention uses the same lead storage battery for more than 10 years because it can be regenerated any number of times as long as the electrode is normal, depending on the degree of deterioration of the electrode plate due to overcharge / discharge in the lead storage battery. It is possible.
Since the method of the present invention chemically decomposes the nonconductive film attached to the electrode surface, the electrode is not damaged as in the conventional physical method. Moreover, if it is a new lead acid battery, it will become difficult to raise | generate sulfation and it can also extend a lifetime.
The method of the present invention reacts with sulfation (lead sulfate crystals) adhering to the electrode, and does not adversely affect the electrode itself in the lead-acid battery, but decomposes the sulfation in order to decompose the sulfation (to the electrode). Can be suppressed by the effect of the organic solution (SRS solution).
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a lead-acid battery regeneration device of the present invention.
FIG. 2 is a graph showing the effect of the lead storage battery regeneration method of the present invention.
FIG. 3 is a graph showing the effect of the lead storage battery regeneration method of the present invention.
FIG. 4 is a graph showing the effect of the lead storage battery regeneration method of the present invention.
FIG. 5 is a graph showing the effect of the lead storage battery regeneration method of the present invention.
FIG. 6 is a graph showing the effect of the lead storage battery regeneration method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Charger 2 Charge / discharge control device 3 Tank 4 Heater 5 Inlet 6 Outlet 7 Leg

Claims (3)

電極に付着した不態皮膜を分解して鉛蓄電池を再生する方法であって、
(1)再生すべき鉛蓄電池の電圧を測定し、定格電圧の80%を超える場合は、定格電圧の50〜80%になるまで放電する工程、次いで、
(2)充電時間が5時間以上であり、かつ定格電圧の80%を超えるように鉛蓄電池を充電する工程、
を2回以上繰り返すことを含む、前記方法。
A method of reproducing a lead-acid battery by disassembling the nonconducting state film deposited on the electrode,
(1) Measure the voltage of the lead storage battery to be regenerated, and if it exceeds 80% of the rated voltage, discharge the battery until it reaches 50 to 80% of the rated voltage;
(2) charging the lead-acid battery so that the charging time is 5 hours or more and exceeds 80% of the rated voltage;
Repeating the above two or more times.
工程(1)の放電が、定格電圧の80%になるまで行われることを特徴とする、請求項1に記載の方法。  The method according to claim 1, characterized in that the discharging in step (1) is carried out until 80% of the rated voltage is reached. さらに、パルスまたはマイクロカーボンにより電極に付着した不導体膜を物理的に除去する不導体皮膜除去手段、および/または、不導体膜を化学的に除去できる物質を添加する不導体皮膜除去手段を併用することを特徴とする、請求項1または2に記載の方法。 In addition, a non-conductive film removing means for physically removing the non-conductive film attached to the electrode by pulse or microcarbon and / or a non-conductive film removing means for adding a substance capable of chemically removing the non-conductive film are used in combination. The method according to claim 1 or 2 , characterized in that:
JP2002313930A 2002-10-29 2002-10-29 Lead-acid battery regeneration method and apparatus used therefor Expired - Lifetime JP4293587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313930A JP4293587B2 (en) 2002-10-29 2002-10-29 Lead-acid battery regeneration method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313930A JP4293587B2 (en) 2002-10-29 2002-10-29 Lead-acid battery regeneration method and apparatus used therefor

Publications (3)

Publication Number Publication Date
JP2004152522A JP2004152522A (en) 2004-05-27
JP2004152522A5 JP2004152522A5 (en) 2005-10-27
JP4293587B2 true JP4293587B2 (en) 2009-07-08

Family

ID=32458393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313930A Expired - Lifetime JP4293587B2 (en) 2002-10-29 2002-10-29 Lead-acid battery regeneration method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4293587B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008345B2 (en) * 2006-06-16 2012-08-22 中本 明 Battery solution for storage battery or its replenisher
JP5636535B2 (en) * 2010-11-12 2014-12-10 フコクインダストリー株式会社 Charging / discharging device and method for regenerating lead-acid battery using the charging / discharging device
JP5352843B1 (en) 2013-03-12 2013-11-27 ケイテクエンジニアリング株式会社 Method for improving the performance of stationary lead-acid batteries

Also Published As

Publication number Publication date
JP2004152522A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3510795B2 (en) How to recycle lead-acid batteries
US8907674B2 (en) System and method for determining degradation of rechargeable lithium ion battery
CN101031810A (en) Method of estimating the state-of-charge and of the use time left of a rechargeable battery, and apparatus for executing such a method
TW200415366A (en) Method and device for determining the charge that can be drawn from an energy accumulator
JP2010020906A (en) Uniform charge system for lead-acid batteries
JP2012195161A (en) Battery system, vehicle, and capacity recovery method of lithium ion secondary battery
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
JP4293587B2 (en) Lead-acid battery regeneration method and apparatus used therefor
JP2009016324A (en) Regenerating method for lead storage battery and its device
KR101004762B1 (en) A bettery restoration unit and restoration method
JP2004079374A (en) Battery regeneration method and regeneration apparatus
KR20170140121A (en) A method for recycling and managing industrial lead battery
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
EP1184928A1 (en) Method of regenerating lead storage batteries
JP2018113131A (en) Activation charging method for lead acid storage battery
JP2003189498A (en) Charging method and charger of secondary battery
KR20120010805A (en) Method for recoverying and charging battery
JP2006073448A (en) Method for regenerating lead-acid battery and method for regenerating lead electrode
JP2018085278A (en) Control system
JP4608581B2 (en) Lead storage battery regeneration processing method and apparatus
Wang et al. Design fuzzy SOC estimation for sealed lead-acid batteries of electric vehicles in Reflex TM
JP2015041445A (en) Regeneration method of alkaline secondary battery
JP2004200129A (en) Device and method for controlling discharge of lead storage battery
JP2004179097A (en) Uniform charging system of lead battery
JP6411606B1 (en) Recycling method for sealed lead-acid battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4293587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term