JP2018113131A - Activation charging method for lead acid storage battery - Google Patents

Activation charging method for lead acid storage battery Download PDF

Info

Publication number
JP2018113131A
JP2018113131A JP2017001968A JP2017001968A JP2018113131A JP 2018113131 A JP2018113131 A JP 2018113131A JP 2017001968 A JP2017001968 A JP 2017001968A JP 2017001968 A JP2017001968 A JP 2017001968A JP 2018113131 A JP2018113131 A JP 2018113131A
Authority
JP
Japan
Prior art keywords
lead
storage battery
positive electrode
msv
charging method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017001968A
Other languages
Japanese (ja)
Inventor
光廣 佐想
Mitsuhiro Saso
光廣 佐想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cross Technology Labo Co Ltd
Original Assignee
Cross Technology Labo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cross Technology Labo Co Ltd filed Critical Cross Technology Labo Co Ltd
Priority to JP2017001968A priority Critical patent/JP2018113131A/en
Publication of JP2018113131A publication Critical patent/JP2018113131A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an activation charging method for a stopping or used lead acid storage battery.SOLUTION: The lead acid storage battery is configured to: irradiate a positive electrode 1 positioned therein with gamma rays of an intensity of 2 msV or more and 100 msV or less; oxidative-decompose lead sulfate on the positive electrode for charging by an oxidation reaction; remove a non-conductor film consisted of lead sulfate of the positive electrode 1 of a used storage battery with an electromotive force thereof of 10 V or less to recover it until 12 V is obtained; and add a reaction accelerator to electrolyte to accelerate removal of the non-conductive film of the positive electrode 1.SELECTED DRAWING: Figure 1

Description

本発明は、使用中あるいは使用済の鉛蓄電池の活性化充電方法に関する。   The present invention relates to a method for activating and charging lead-acid batteries in use or used.

鉛蓄電池は自動車、フォークリフトなどの輸送機器、ゴルフカートなどの電動車両、各種非常用電源などに広く用いられている。   Lead storage batteries are widely used in transportation equipment such as automobiles and forklifts, electric vehicles such as golf carts, and various emergency power supplies.

鉛畜電池の寿命を律速している大きな問題点は、鉛蓄電池の使用中に電極表面に高抵抗物質である硫酸鉛が付着蓄積して、実質作用を有する電極面積が狭まってしまうことによって内部抵抗が増大し、電圧低下などの特性劣化を引き起こし、結果として十分な電池特性を発揮することができなくなり、正常な特性を発揮することができる寿命期間が短縮してしまうことにある。このような現象はサルフェーション現象と呼ばれており、鉛蓄電池を使用開始した直後からその現象は徐々に進行してゆくため、鉛蓄電池の特性劣化の主要原因のひとつとなっている。   The major problem that limits the life of lead-acid batteries is that lead sulfate, which is a high-resistance substance, adheres and accumulates on the electrode surface during use of lead-acid batteries, and the internal electrode area that has a substantial effect is reduced. As a result, the resistance increases, causing deterioration of characteristics such as a voltage drop. As a result, sufficient battery characteristics cannot be exhibited, and the life period in which normal characteristics can be exhibited is shortened. Such a phenomenon is called a sulfation phenomenon, and since the phenomenon gradually proceeds immediately after the start of use of the lead storage battery, it is one of the main causes of deterioration of the characteristics of the lead storage battery.

このようにしてサルフェーション現象によって特性劣化を引き起こした鉛蓄電池は、正常に機能すべき電極表面が絶縁物質で覆われているために、通常、電解液を交換したり、充電操作を繰り返しても、特性改善を図ることは困難であるとされている。   In this way, the lead storage battery that has caused the deterioration of characteristics due to the sulfation phenomenon, the electrode surface that should function normally is covered with an insulating material, so even if the electrolyte is changed or the charging operation is repeated, It is considered difficult to improve the characteristics.

従来、このような内部抵抗が大きくなって寿命が短縮したり、あるいはすでに寿命が尽きたセルをもつ鉛蓄電池は、セル単位に分解し、電極の再生プロセスの実施および清掃や電極の交換等を行なっていたが、分解コスト、清掃交換コストは電池買い替えと、さほど変わらない水準であるため、実際には新品に交換することが多く、使用済鉛蓄電池の安価で効果的な特性改善技術が切望されている。実際に延命あるいは再生すべき鉛蓄電池の状態はさまざまであるが、電流を流すことによって、再利用が可能になる場合を除き、放置される場合がほとんどである。そこで、通常の鉛蓄電池の再生処理においても、できるだけ確実に延命あるいは再生を実現するための適切な電気化学的な処理の確立が望まれている。そこで、電解液に反応促進剤を添加し、さらに、大電流を流すことによって、鉛蓄電池の電極表面に生成した高抵抗物質の剥離および溶解を行う方法が提案されている(特許文献1)。   Conventionally, lead-acid batteries that have such internal resistances that increase their lifetime or shorten their lifetime, or have cells that have already expired, are disassembled into cell units, and are subjected to electrode regeneration processes, cleaning, electrode replacement, etc. However, the cost of disassembling and cleaning / replacement is almost the same as the replacement of batteries. Actually, they are often replaced with new ones, and there is a keen desire for cheap and effective characteristics improvement technology for used lead-acid batteries. Has been. There are various states of lead-acid batteries that actually prolong life or regenerate, but in most cases, they are left unless they can be reused by passing current. Therefore, it is desired to establish an appropriate electrochemical treatment for realizing life extension or regeneration as reliably as possible even in the regeneration treatment of a normal lead-acid battery. Therefore, a method has been proposed in which a reaction accelerator is added to the electrolytic solution and a high current is applied to peel off and dissolve the high-resistance substance generated on the electrode surface of the lead-acid battery (Patent Document 1).

特開2005−174888号公報JP 2005-174888 A

しかしながら、鉛蓄電池は、他の蓄電池と比較すると充放電サイクルの増加による影響はあまり大きくないが、正極に二酸化鉛、負極に鉛、電解液に硫酸を用いているという構造上、過放電した際には負極の金属に硫酸鉛の硬い結晶(サルフェーション)が発生し、著しく劣化が起きると再生は困難であり、このサルフェーションを極力抑えるためには、「使用後速やかに充電する」「過放電を行わない」といった適切な使用を心懸けることが重要となる。特に、鉛蓄電池にはメモリー機能が存在しないため、放電深度が浅い段階で充電を行うことが特に有効と言える。   However, when compared to other storage batteries, lead storage batteries are not significantly affected by the increase in charge / discharge cycles, but due to the structure of using lead dioxide for the positive electrode, lead for the negative electrode, and sulfuric acid for the electrolyte, In the case of lead sulfate hard crystals (sulfation) occur in the metal of the negative electrode, and it is difficult to regenerate if it deteriorates significantly. To suppress this sulfation as much as possible, "charge immediately after use" "overdischarge" It is important to consider proper use such as “do not do”. In particular, since a lead storage battery does not have a memory function, it can be said that it is particularly effective to perform charging at a shallow depth of discharge.

こうした鉛蓄電池の課題を解決すべく、本発明者らは、鋭意研究の結果、100mSV/年以下であれば、放射線医学の基準上、人体への影響が無視でき、しかも2mSV/年、好ましくは10〜20mSV/年以上のガンマー線を鉛蓄電池の正極に照射すると、正極での酸化反応によりジュール発熱を発生せしめ、高抵抗物質の剥離を生じ、再生可能な充電反応が起こることを見出した。また、電解液中に反応促進剤としてポリビニルアルコールを添加すると、ガンマー線の照射によりポリビニルアルコールがイオン化し、この高抵抗物質の溶解が起こりやすくなるという相乗現象を見出した。   In order to solve these problems of lead-acid batteries, the present inventors, as a result of diligent research, can ignore the influence on the human body on the basis of radiology if it is 100 mSV / year or less, and 2 mSV / year, preferably It has been found that when a gamma ray of 10 to 20 mSV / year or more is irradiated to the positive electrode of a lead storage battery, Joule heat is generated due to an oxidation reaction at the positive electrode, peeling of the high resistance material occurs, and a regenerative charging reaction occurs. Further, the inventors have found a synergistic phenomenon that when polyvinyl alcohol is added as a reaction accelerator to the electrolyte, polyvinyl alcohol is ionized by irradiation with gamma rays and the high resistance substance is easily dissolved.

すなわち、本発明は、鉛蓄電池の正極に2mSV以上100mSV以下の強度のガンマー線を照射し、正極の硫酸鉛を酸化分解しつつ充電反応させることを特徴とする鉛蓄電池の活性化充電方法にある。   That is, the present invention is an activation charging method for a lead storage battery, characterized in that the positive electrode of the lead storage battery is irradiated with gamma rays having an intensity of 2 mSV or more and 100 mSV or less and the lead sulfate of the positive electrode is charged and reacted while being oxidized. .

本発明によれば、2mSV以上100mSV以下の強度のガンマー線を照射することにより、正極を不導体化している硫酸鉛を酸化分解し、10V以下となった、通常再生不能な、使用済み蓄電池を電流を流すことなく正規の12Vに向上させ、再生することができることにある。また、夜間のエンジン停止時に、ガンマー線照射により充電反応を行わせることができるので、放電深度が浅い段階で充電を行うことが可能であり、特に延命に有効と言える。   According to the present invention, a used storage battery, which is normally unrecyclable, is reduced to 10 V or less by oxidatively decomposing lead sulfate that is deconducting the positive electrode by irradiating gamma rays with an intensity of 2 mSV to 100 mSV. It is to be able to improve and regenerate to normal 12V without flowing current. In addition, since the charging reaction can be performed by irradiating gamma rays when the engine is stopped at night, charging can be performed at a stage where the depth of discharge is shallow, which is particularly effective for extending the life.

ガンマー線の照射によって正極表面に沈着した不導体膜を除去又は剥離させることができるが、反応促進剤としてポリビニルアルコールを添加しておくことにより、不導体膜の除去を促進することができる。   Although the nonconductive film deposited on the surface of the positive electrode by gamma ray irradiation can be removed or peeled off, the removal of the nonconductive film can be promoted by adding polyvinyl alcohol as a reaction accelerator.

正極および負極を左右に対向配設した鉛蓄電池の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the lead storage battery which arrange | positioned the positive electrode and the negative electrode facing right and left. 正極および負極を上下に対向配設した鉛蓄電池の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the lead storage battery which arrange | positioned the positive electrode and the negative electrode facing up and down.

鉛蓄電池には図1に示すように、正極板1と負極板2をセパレータ3を介して左右に対向配置してなる鉛蓄電池と、図2に示すように、正極板11と負極板12をセパレータ13を介して上下に対向配置してなる鉛蓄電池とがある。鉛蓄電池内部の正極に10mSVから20mSV以下の強度のガンマー線を照射可能な放射線鉱石粉末層を囲み箱状に成型し、この箱体(底のない囲みであってもよい)20、20‘を鉛蓄電池の正極板1,11の位置外側に置き、所定の硫酸又は硫酸鉛水溶液を充填し、使用中の場合はおよそ12時間、10V以下である、使用済みの場合は1週間程度放置する(充電電流を流すと回復はより早くなる)。ガンマー線の照射により正極側付着する硫酸鉛は酸化分解され、充電されて初期の電圧12ボルトに復帰する。
ガンマー線(照射)→ (正極)PbSO4 (充電)→ Pb++SO4 2-+2e-
陽極では硫酸鉛は過酸化鉛に変化し、硫酸基はバッテリ液中に戻る。
(負極)PbSO4 + 2e- (充電)→ Pb + SO4 2-
陰極では硫酸鉛は海綿状鉛に変化し硫酸基は極版からバッテリ液に戻る。
As shown in FIG. 1, the lead storage battery includes a lead storage battery in which a positive electrode plate 1 and a negative electrode plate 2 are arranged opposite to each other with a separator 3 interposed therebetween, and a positive electrode plate 11 and a negative electrode plate 12 as shown in FIG. There is a lead storage battery in which the separators 13 are arranged to face each other with a separator 13 therebetween. A radiation ore powder layer capable of irradiating gamma rays with an intensity of 10 mSV to 20 mSV or less on the positive electrode inside the lead storage battery is molded into a box shape, and this box (may be a box without a bottom) 20, 20 ′ It is placed outside the position of the positive electrode plates 1 and 11 of the lead storage battery, filled with a predetermined sulfuric acid or lead sulfate aqueous solution, approximately 10 hours or less for about 12 hours when in use, and left for about a week when used ( Recovery will be faster if charging current is applied). Lead sulfate adhering to the positive electrode side by gamma ray irradiation is oxidized and decomposed and charged to return to the initial voltage of 12 volts.
Gamma rays (irradiation) → (positive electrode) PbSO 4 (charge) → Pb + + SO 4 2− + 2e−
At the anode, lead sulfate changes to lead peroxide, and the sulfate group returns to the battery fluid.
(Negative electrode) PbSO 4 + 2e- (Charge) → Pb + SO 4 2-
At the cathode, lead sulfate changes to spongy lead, and the sulfate group returns from the extreme plate to the battery fluid.

電解液に反応促進剤としてポリビニルアルコールを添加すると、正極の不導体膜の除去を促進する。ポリビニルアルコールは、電極表面の洗浄効果が大きく、電極表面に付着した硫酸鉛を分解・除去するための反応促進剤として著しい役割を果たす。また、ポリビニルアルコールは、硫酸鉛が剥離した電極表面を皮膜効果によって保護する作用があり、新しく表面が露出した電極表面部分に再び硫酸鉛のような高抵抗物質が付着して特性を劣化せしめることを妨げる効果がある。また、この種反応促進剤はイオン化して用いるのが好ましい。このように、ポリビニルアルコールを含む水溶液を添加し、適切なガンマー線照射条件操作を組み合わせることによって、充電により再生できない鉛蓄電池でも12Vの起電力が回復し、再生可能となる。   When polyvinyl alcohol is added as a reaction accelerator to the electrolytic solution, the removal of the nonconductive film of the positive electrode is promoted. Polyvinyl alcohol has a great cleaning effect on the electrode surface and plays a significant role as a reaction accelerator for decomposing and removing lead sulfate adhering to the electrode surface. Polyvinyl alcohol also has the effect of protecting the electrode surface from which lead sulfate has been peeled off by a film effect, and a high-resistance substance such as lead sulfate adheres again to the electrode surface part where the new surface is exposed, causing the characteristics to deteriorate. There is an effect to prevent. Moreover, it is preferable to use this kind of reaction accelerator after ionization. Thus, by adding an aqueous solution containing polyvinyl alcohol and combining appropriate gamma ray irradiation condition operations, a 12 V electromotive force can be recovered and regenerated even in a lead storage battery that cannot be regenerated by charging.

また、使用中の鉛蓄電池の場合は、わずかに電極表面に付着した硫酸鉛を除去して鉛蓄電池の特性を改善することができ、夜間のエンジンが休止中であっても、放電深度が浅い段階で充電を行うことが可能であり、延命処理が可能である。   Also, in the case of lead-acid batteries in use, the lead sulfate battery characteristics can be improved by slightly removing the lead sulfate adhering to the electrode surface, and the discharge depth is shallow even when the engine at night is at rest. Charging can be performed in stages, and life extension processing is possible.

本発明では、正極へのガンマー線の照射により活性化し、充電を達成することができるが、反応促進剤を用いて、充電反応を促進してもよい。さらに、鉛蓄電池に電気的エネルギーを加えつつ充電することも可能である。   In the present invention, activation can be achieved by irradiating the positive electrode with gamma rays and charging can be achieved. However, a reaction accelerator may be used to accelerate the charging reaction. Further, it is possible to charge the lead storage battery while adding electric energy.

反応促進剤であるポリビニルアルコール水溶液は、次のようにして調整できる。
水(軟水)50リットルを30分間撹拌し、温度を40℃まで上げ、原料ポリビニルアルコール2kgを入れ、90℃まで加温する。そのままさらに、10分間攪拌し続け、均質化する。
The aqueous polyvinyl alcohol solution that is a reaction accelerator can be prepared as follows.
Stir 50 liters of water (soft water) for 30 minutes, raise the temperature to 40 ° C., add 2 kg of raw polyvinyl alcohol, and warm to 90 ° C. Continue stirring for another 10 minutes and homogenize.

反応促進剤の添加量は照射ガンマー線の強度によって調整すべきである。ガンマー線の強度が強い場合はやや希釈されたものを使用し、弱い場合はそのまま使用される。   The addition amount of the reaction accelerator should be adjusted according to the intensity of irradiation gamma rays. If the intensity of the gamma ray is strong, use a slightly diluted one, and if it is weak, use it as it is.

ガンマー線の強度は100mSV/年まで上げることができる。回復時間との関係もあるが、通常10mSV〜20mSV/年が好ましい。   The intensity of gamma rays can be increased up to 100 mSV / year. Although there is a relationship with the recovery time, it is usually preferably 10 mSV to 20 mSV / year.

1,11・・・正極、2,12・・・負極、3,13・・・セパレータ、
20,20・・・ガンマー線照射箱
1, 11 ... positive electrode, 2, 12 ... negative electrode, 3, 13 ... separator,
20, 20 ... Gamma irradiation box

Claims (3)

鉛蓄電池において、鉛蓄電池内部の正極に2mSV以上100mSV以下の強度のガンマー線を照射し、正極側の硫酸鉛を酸化分解し、酸化反応により充電することを特徴とする鉛蓄電池の活性化充電方法。   In a lead-acid battery, the positive charge inside the lead-acid battery is irradiated with gamma rays having an intensity of 2 mSV to 100 mSV, the lead sulfate on the positive electrode side is oxidatively decomposed, and charged by an oxidation reaction. . 鉛蓄電池の起電力が、10V以下である、使用済み蓄電池を、正極の硫酸鉛からなる不導体膜を除去して12Vまで回復させる請求項1記載の鉛蓄電池の活性化充電方法。   2. The activated charging method for a lead storage battery according to claim 1, wherein an electromotive force of the lead storage battery is 10V or less, and the used storage battery is recovered to 12V by removing the non-conductive film made of lead sulfate of the positive electrode. 反応促進剤を電解液に添加し、正極の不導体膜の除去を促進する請求項1又は2の鉛蓄電池の活性化充電方法。
3. The lead-acid battery activation charging method according to claim 1 or 2, wherein a reaction accelerator is added to the electrolytic solution to promote removal of the non-conductive film of the positive electrode.
JP2017001968A 2017-01-10 2017-01-10 Activation charging method for lead acid storage battery Pending JP2018113131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001968A JP2018113131A (en) 2017-01-10 2017-01-10 Activation charging method for lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001968A JP2018113131A (en) 2017-01-10 2017-01-10 Activation charging method for lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2018113131A true JP2018113131A (en) 2018-07-19

Family

ID=62912409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001968A Pending JP2018113131A (en) 2017-01-10 2017-01-10 Activation charging method for lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2018113131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085938A (en) * 2019-04-10 2019-08-02 刘孝军 A kind of waste and old lead acid accumulator sulfuric acid circulation utilization method
CN110544799A (en) * 2019-09-25 2019-12-06 天能集团(河南)能源科技有限公司 Method for rapidly recovering capacity of lead-acid storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085938A (en) * 2019-04-10 2019-08-02 刘孝军 A kind of waste and old lead acid accumulator sulfuric acid circulation utilization method
CN110544799A (en) * 2019-09-25 2019-12-06 天能集团(河南)能源科技有限公司 Method for rapidly recovering capacity of lead-acid storage battery
CN110544799B (en) * 2019-09-25 2020-12-04 天能集团(河南)能源科技有限公司 Method for rapidly recovering capacity of lead-acid storage battery

Similar Documents

Publication Publication Date Title
JP2018026209A (en) Charging method and charging system for nickel hydrogen battery
JP4565362B1 (en) Prevention and regeneration device for storage capacity deterioration due to electrical treatment of lead acid battery
JPWO2004030138A1 (en) Method for removing lead sulfate film from lead acid battery
JP2018113131A (en) Activation charging method for lead acid storage battery
JP2017045621A (en) Capacity recovery method for lithium ion secondary battery
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
JP3723795B2 (en) Recycling method for lead acid battery
JP2005327737A (en) Method for regenerating storage battery
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP6774700B2 (en) Lead-acid battery regeneration device
JP2001118611A (en) Regeneration method of lead accumulator battery by electric treatment
JP5616043B2 (en) Lead acid battery regeneration method and lead acid battery regeneration device used in the method
JP6271585B2 (en) Electrochemical cell or battery with reduced impedance and method for producing the same
JP2004079374A (en) Battery regeneration method and regeneration apparatus
JP2010129538A (en) Method for reproducing lead storage battery and reproducing apparatus thereof
JP6751879B2 (en) Lead-acid battery regeneration device
WO2001056106A1 (en) Method of regenerating lead storage batteries
JP2005174888A (en) Method for prolonging life of or method for regenerating lead storage battery
JP2004152522A (en) Method for lead storage battery regeneration and device used for it
JP2010062007A (en) Method of regenerating lead-acid battery
JP2011119197A (en) Gel-system lead-acid battery
KR20120073744A (en) Method for manufacturing secondary electric cell and secondary electric cell thereof
JP2023039751A (en) Manufacturing method of lithium ion secondary battery and manufacturing apparatus of the lithium ion secondary battery
JP2006339030A (en) Method of recovering lead battery by electrical treatment
JPH11185832A (en) Life restoring method of lithium ion battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170623