JP2006339030A - Method of recovering lead battery by electrical treatment - Google Patents

Method of recovering lead battery by electrical treatment Download PDF

Info

Publication number
JP2006339030A
JP2006339030A JP2005162338A JP2005162338A JP2006339030A JP 2006339030 A JP2006339030 A JP 2006339030A JP 2005162338 A JP2005162338 A JP 2005162338A JP 2005162338 A JP2005162338 A JP 2005162338A JP 2006339030 A JP2006339030 A JP 2006339030A
Authority
JP
Japan
Prior art keywords
current value
pulse current
electrode
charging current
lead sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162338A
Other languages
Japanese (ja)
Inventor
Masaki Yahara
正樹 矢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHARGE KK
Original Assignee
CHARGE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHARGE KK filed Critical CHARGE KK
Priority to JP2005162338A priority Critical patent/JP2006339030A/en
Publication of JP2006339030A publication Critical patent/JP2006339030A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of recovering performance by electrical treatment and securing a long term durability life without disassembling a lead battery deteriorated in performance due to effect of lead sulfate (PbSO4) crystal solid generated on the surface of the electrode. <P>SOLUTION: In this revival method, the pulse current and charging current are flowed simultaneously, and the pulse current value is made 0.1-2 A and the charging current value is made 2-10 A in which the positive electrode (PbO2) and the negative electrode (Pb) being an active material of the electrode plate are not damaged even if they are kept flowing for a long time, thereby a durability life expected can be achieved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、性能が劣化した鉛バッテリーを電気的処理により性能を回復させる方法に関する。 The present invention relates to a method for recovering performance of a lead battery with degraded performance by electrical treatment.

自動車やフォークリフトなどに積載された鉛バッテリーは放電する事によりライトの作動、フォークリフトの爪の移動及び走行などを行う。使用後は自動車などに備わっている発電機によって充電される。しかし、これらの放電と充電を繰り返すうちにバッテリーの陽極(PbO2)と陰極(Pb)表面に硫酸鉛(PbSO4)結晶被膜が生成される。これは、不導体の性質を有し、充電しても十分な電圧まで達することなく性能を劣化させる。このような状態になったバッテリーを蘇生させる方法として、パルス電流を流しながら充電のための充電電流を流す方法が多く採用されている(例えば、特許文献1参照)。パルス電流は、上記硫酸鉛結晶皮膜を分解除去するためのものであり、電極表面を覆う硫酸鉛結晶皮膜はパルス電流の衝撃力によって破壊除去される。 Lead batteries mounted on automobiles, forklifts, etc. discharge to operate lights, move forklift claws and run. After use, it is charged by a generator installed in a car. However, a lead sulfate (PbSO4) crystal film is formed on the surfaces of the anode (PbO2) and the cathode (Pb) of the battery while repeating these discharges and charges. This has a non-conductive nature and degrades performance without reaching a sufficient voltage when charged. As a method of reviving a battery in such a state, a method of supplying a charging current for charging while supplying a pulse current is often employed (see, for example, Patent Document 1). The pulse current is for decomposing and removing the lead sulfate crystal film, and the lead sulfate crystal film covering the electrode surface is destroyed and removed by the impact force of the pulse current.

特開2004−134139号公報JP 2004-134139 A

以上特許文献では充電電流値10〜50A、パルス電流値9〜40Aなどの実施例が述べられており、これらの値に関しても別の多くの提案がなされている。また充電電流値、パルス電流値以外のパルス電流の波形、更にはインターバルを有する充放電処理など各種条件の提案がなされている。しかしこれらの条件で蘇生されたバッテリーは再使用時の耐用年数は新品の場合の電動フォークリフト用で約5年に比べ、かなり短いのが現状である。(また自動車などで使用後の充電で完全なレベルまでの充電が出来ない状況も発生することがある。)また上記条件で蘇生された場合、電極表面を覆う硫酸鉛結晶皮膜は完全に除去されず一部は残ったままになり易く、さらに電極表面の凹凸が激しくなり、一部は穴が開き破損することも起こっている。このような状況において、バッテリーの耐用年数の延長、電極表面の硫酸鉛結晶皮膜の完全除去及び電極表面の破損低減が極めて大きな技術目標となっている。 In the above patent documents, examples of charging current values of 10 to 50 A, pulse current values of 9 to 40 A and the like are described, and many other proposals have been made regarding these values. Various conditions such as a charging current value, a waveform of a pulse current other than the pulse current value, and a charging / discharging process having an interval have been proposed. However, batteries that have been revived under these conditions are used for electric forklifts when they are new and are considerably shorter than about 5 years. (In addition, there may be situations where charging to the full level is not possible after use in automobiles.) When revived under the above conditions, the lead sulfate crystal film covering the electrode surface is completely removed. In some cases, a part of the electrode tends to remain, and the unevenness of the electrode surface becomes severe, and a part of the hole opens and breaks. Under such circumstances, extension of the service life of the battery, complete removal of the lead sulfate crystal film on the electrode surface, and reduction of damage on the electrode surface are extremely important technical goals.

電極板表面に硫酸鉛(PbSO4)の結晶が生成して、性能が劣化した鉛バッテリーの性能を回復する方法において、電流2〜10Aを充電電流値として、硫酸鉛結晶皮膜を分解除去するためのパルス電流値0.1〜2Aを同時に使用する事を特徴とする鉛バッテリーの電気的処理による蘇生方法。 In a method for recovering the performance of a lead battery in which lead sulfate (PbSO4) crystals are generated on the electrode plate surface and the performance is deteriorated, the lead sulfate crystal film is decomposed and removed with a current of 2 to 10 A as a charging current value. A resuscitation method by electrical treatment of a lead battery characterized by simultaneously using a pulse current value of 0.1 to 2A.

本発明は、従来から適用されている充電電流値、パルス電流値に比べ大きく異なる新規の値を選択することにより、蘇生後のバッテリーの耐用年数は新品の場合と遜色ないレベルに到達するとともに電極表面の硫酸鉛結晶皮膜の完全除去および電極表面の破損防止を達成する事ができた。 In the present invention, by selecting a new value that is significantly different from the charging current value and the pulse current value that have been applied conventionally, the useful life of the battery after resuscitation reaches a level comparable to that of a new battery and the electrode It was possible to completely remove the lead sulfate crystal film on the surface and prevent damage to the electrode surface.

上述した技術目標を達成すべく、発明者は充電電流値とパルス電流値の両者について、これまで実施されている値も含めた極めて広い範囲で種々の組み合わせの研究を系統的に行い、以下に述べる如く両者の最適の組み合わせを決定した。 In order to achieve the above technical goal, the inventor systematically researched various combinations of both charging current value and pulse current value in a very wide range including the values that have been implemented so far. The optimal combination of both was determined as described.

先ず、電極表面を覆う硫酸鉛結晶皮膜の分解除去を行う役目のパルス電流値を詳細に検討した。性能が劣化した鉛バッテリー(フォークリフト用、定格容量500Ah/5h)に対し、充電電流を5Aと固定してパルス電流値を0.05〜20Aまで変化させ蘇生時間を100時間で処理を行った。その結果を図1に示す。図1はパルス電流値の変化に対する電極表面の硫酸鉛結晶皮膜の分解除去状況並びに電極破損程度を肉眼観察して評価した結果である。 First, the pulse current value for performing the decomposition removal of the lead sulfate crystal film covering the electrode surface was examined in detail. The lead battery (for forklift, rated capacity 500Ah / 5h) with deteriorated performance was processed at 100 hours by changing the pulse current value from 0.05 to 20A with the charging current fixed at 5A. The result is shown in FIG. FIG. 1 shows the result of visual observation and evaluation of the state of decomposition and removal of the lead sulfate crystal film on the electrode surface and the degree of electrode breakage with respect to changes in the pulse current value.

硫酸鉛結晶皮膜の分解除去状況はパルス電流値が0.1A未満では殆ど除去されないがこれ以上となると除去が急速に始まり、電流値の増加と共に除去が大きく進展することが判明した。 It has been found that the lead sulfate crystal film is hardly removed when the pulse current value is less than 0.1 A, but the removal starts rapidly when the pulse current value exceeds 0.1 A, and the removal progresses greatly as the current value increases.

また同時に調査した電極破損程度はパルス電流値が2A以下では殆ど発生しないがこれを超えると急増する結果を得た。 Further, the degree of electrode damage investigated at the same time hardly occurred when the pulse current value was 2 A or less, but when it exceeded this, the result increased rapidly.

以上の結果により、パルス電流値は硫酸鉛結晶皮膜の分解除去のためには0.1A以上が必要であり、一方電極破損防止のためには2A以下とすることが判明し最適パルス電流値の範囲は0.1〜2Aが決定された。尚、好ましくは0.5〜1.5Aである。 Based on the above results, it was found that the pulse current value should be 0.1 A or more for decomposing and removing the lead sulfate crystal film, while it is 2 A or less for preventing electrode damage. A range of 0.1-2A was determined. In addition, Preferably it is 0.5-1.5A.

上記研究は、充電電流値が5Aの場合であるが、これ以外の別の電流値を採用してもほぼ同じ結果であった。 The above research is for a charging current value of 5 A, but the results were almost the same even when other current values were adopted.

以上の知見より0.1A以上のパルス電流値で発生する衝撃力は硫酸鉛結晶皮膜自身の強さあるいは皮膜と電極との密着力を上回ると解釈できる。一方、電極破損については、電極表面を覆う硫酸鉛結晶皮膜は必ずしも均一な厚さでなく、薄い部分では早く皮膜除去が進み、その部分は電極肌が露出し通電が集中し電極破損の基点となると考えられる。そして、パルス電流値が2Aを超えるとその衝撃力が電極材料であるPbO2あるいはPbの強度を上回ると推定される。 From the above knowledge, it can be interpreted that the impact force generated at a pulse current value of 0.1 A or more exceeds the strength of the lead sulfate crystal coating itself or the adhesion between the coating and the electrode. On the other hand, with regard to electrode breakage, the lead sulfate crystal film covering the electrode surface is not necessarily uniform in thickness, and the film removal progresses quickly in the thin part. It is considered to be. When the pulse current value exceeds 2A, the impact force is estimated to exceed the strength of PbO2 or Pb that is an electrode material.

次に、蘇生のための充電を行う役目である充電の電流値を詳細に検討した。性能の劣化したバッテリー(フォークリフト用、定格容量500Ah/5h)に対し、実例1で得られた最適パルス電流値範囲の1.0Aを固定して充電電流値を1A〜50Aまで変化させ、蘇生時間を500〜10時間の処理を行った。その結果を図2に示す。 Next, the current value of charging, which is the role of charging for resuscitation, was examined in detail. For a battery with degraded performance (for forklifts, rated capacity 500Ah / 5h), change the charging current value from 1A to 50A by fixing the optimum pulse current value range of 1.0A obtained in Example 1, and resuscitation time For 500 to 10 hours. The result is shown in FIG.

図2は充電電流値の変化に対する蘇生後の耐用年数を評価した結果である。充電電流が小さくなると共に耐用年数は急激に長くなり、10A以下で新品バッテリーの耐用年数である約5年に近い4.5年を実現することができた。そして充電電流が2A未満になると耐用年数の増加は飽和する。   FIG. 2 shows the results of evaluating the service life after resuscitation with respect to changes in the charging current value. As the charging current decreased, the service life increased rapidly, and it was possible to realize 4.5 years, which is approximately 5 years, which is the service life of a new battery, at 10 A or less. When the charging current is less than 2A, the increase in the service life is saturated.

以上の知見より、充電電流値は新品バッテリーの耐用年数である約5年に近い4.5年を確保するためには10A以下で行い、一方2A未満になると耐用年数の増加は飽和し、一定量の規格電流値の充電を満足させるため蘇生時間の延長を招くことにより、最適充電電流値の範囲は2〜10Aが決定された。尚、好ましくは4〜8Aである。 Based on the above findings, the charging current value is set to 10 A or less in order to secure 4.5 years, which is close to the useful life of a new battery, about 5 years. On the other hand, when it becomes less than 2 A, the increase in the service life is saturated and constant. The range of optimal charging current values was determined to be 2 to 10 A by inducing the resuscitation time to satisfy the charging of the standard current amount. In addition, Preferably it is 4-8A.

尚、本発明の充電電流とパルス電流を同時に使用する蘇生方法の性能回復工程として、バッテリーの有する電気量を制限容量(放電終止電圧)まで放出させる処理すなわち放電処理を行う事もできる。これにより、電極表面に生成する硫酸鉛結晶皮膜の分解除去がより促進される。 In addition, as a performance recovery process of the resuscitation method using the charging current and the pulse current of the present invention at the same time, a process for discharging the amount of electricity of the battery to a limited capacity (discharge end voltage), that is, a discharging process can be performed. Thereby, the decomposition removal of the lead sulfate crystal film produced | generated on the electrode surface is accelerated | stimulated more.

充電電流値5Aを固定した各パルス電流値の電極板損傷と硫酸鉛結晶除去状況。Electrode plate damage and lead sulfate crystal removal status for each pulse current value with a fixed charging current value of 5A. パルス電流値1.0Aを固定した各充電電流値の耐用年数。The service life of each charging current value with a fixed pulse current value of 1.0A.

符号の説明Explanation of symbols

1・・・・グラフ右目盛りの硫酸鉛結晶除去を示す。
2・・・・グラフ左目盛りの電極板破損を示す。
1... Lead sulfate crystal removal on the right scale of the graph.
2 .... Shows the electrode plate breakage on the left scale of the graph.

Claims (1)

電極板表面に硫酸鉛(PbSO4)の結晶が生成して、性能が劣化した鉛バッテリーの性能を回復する方法において、電流2〜10Aを充電電流値として、硫酸鉛結晶皮膜を分解除去するためのパルス電流値0.1〜2Aを同時に使用する事を特徴とする鉛バッテリーの電気的処理による蘇生方法。
In a method for recovering the performance of a lead battery in which lead sulfate (PbSO4) crystals are generated on the electrode plate surface and the performance is deteriorated, the lead sulfate crystal film is decomposed and removed with a current of 2 to 10 A as a charging current value. A resuscitation method by electrical treatment of a lead battery characterized by simultaneously using a pulse current value of 0.1 to 2A.
JP2005162338A 2005-06-02 2005-06-02 Method of recovering lead battery by electrical treatment Pending JP2006339030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162338A JP2006339030A (en) 2005-06-02 2005-06-02 Method of recovering lead battery by electrical treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162338A JP2006339030A (en) 2005-06-02 2005-06-02 Method of recovering lead battery by electrical treatment

Publications (1)

Publication Number Publication Date
JP2006339030A true JP2006339030A (en) 2006-12-14

Family

ID=37559413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162338A Pending JP2006339030A (en) 2005-06-02 2005-06-02 Method of recovering lead battery by electrical treatment

Country Status (1)

Country Link
JP (1) JP2006339030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598605A (en) * 2018-05-09 2018-09-28 林洪福 Lead-acid battery restorative procedure
WO2019026013A1 (en) * 2017-08-02 2019-02-07 Synergy Cooling Esco (Hk) Limited Monitoring and restoration management system for lead acid batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026013A1 (en) * 2017-08-02 2019-02-07 Synergy Cooling Esco (Hk) Limited Monitoring and restoration management system for lead acid batteries
CN108598605A (en) * 2018-05-09 2018-09-28 林洪福 Lead-acid battery restorative procedure

Similar Documents

Publication Publication Date Title
JP3510795B2 (en) How to recycle lead-acid batteries
JP3902212B2 (en) Apparatus and method for removing lead sulfate film produced in lead acid battery
US20060220616A1 (en) Device for removing lead sulfide deposited on electrode surfaces of lead storage battery
KR101714184B1 (en) Method for activating stack of fuel cell
CN108475790B (en) Copper foil, method for manufacturing the same, electrode including the copper foil, and secondary battery including the electrode
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
US20200136198A1 (en) Method and device for increasing battery life and prevention of premature battery failure
JP2005327737A (en) Method for regenerating storage battery
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP2006339030A (en) Method of recovering lead battery by electrical treatment
WO2009048146A1 (en) Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery
WO2008047956A1 (en) Recycling method of waste battery
JP6774700B2 (en) Lead-acid battery regeneration device
Zhang et al. Effects of pressure evolution on the decrease in the capacity of lithium-ion batteries
JP6751879B2 (en) Lead-acid battery regeneration device
JP2010062007A (en) Method of regenerating lead-acid battery
WO2001056106A1 (en) Method of regenerating lead storage batteries
JP2009009920A (en) Refining method of electrolyte for lead battery and regenerating method of members
JP2011119197A (en) Gel-system lead-acid battery
JP2020113369A (en) Manufacturing method of battery
CN1617381A (en) Removing device for lead sulphate film formed on lead accumulator
Kozawa et al. Basic understanding of the low current charge and high current charge for lead-acid batteries
KR20120035242A (en) The regenerating system of battery
JP2008218371A (en) Multi-electrode storage battery
JP2004356080A (en) Formation method for battery jar of lead-acid storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061204