JPS6269469A - Fuel cell power generation equipment - Google Patents

Fuel cell power generation equipment

Info

Publication number
JPS6269469A
JPS6269469A JP60208083A JP20808385A JPS6269469A JP S6269469 A JPS6269469 A JP S6269469A JP 60208083 A JP60208083 A JP 60208083A JP 20808385 A JP20808385 A JP 20808385A JP S6269469 A JPS6269469 A JP S6269469A
Authority
JP
Japan
Prior art keywords
gas
reforming
reformer
fuel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60208083A
Other languages
Japanese (ja)
Other versions
JPH0636368B2 (en
Inventor
Kazuhito Koyama
一仁 小山
Narihisa Sugita
杉田 成久
Haruichiro Sakaguchi
坂口 晴一郎
Koji Shiina
孝次 椎名
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60208083A priority Critical patent/JPH0636368B2/en
Publication of JPS6269469A publication Critical patent/JPS6269469A/en
Publication of JPH0636368B2 publication Critical patent/JPH0636368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To attain a reformation ratio of about 100% even if the temperature of reformation is lowered, by providing an external and an internal reformers. CONSTITUTION:In a complex-reformation fuel cell power generation equipment, fuel is reformed by an external reformer 8 and an internal reformer 7 provided in the anode chamber of the equipment. If the equipment is of the molten carbonate type and operates at a temperature of 650 deg.C, the operation temperature of the external reformer 8 is set about 650 deg.C to reform about 60$ of the initial fuel therein (the ratio of reformation is about 60%), and the rest of the fuel is reformed by the internal reformer 7 in the anode chamber of the equipment, namely, about 40% of the initial fuel is reformed by the internal reformer, so that the ratio of reformation of all the fuel is about 100%. The operation temperatures of he external and the internal reformers can thus be made lower so that the reforming reaction load on reforming catalysts is reduced. This results in lengthening the total life of the reformers.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池発電装置に係り、特に溶融炭酸塩等を
電解質として高温で作動される燃料電池発電装置であっ
て、外部改質器および内部改質器を備えたものに関する
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel cell power generation device, and more particularly to a fuel cell power generation device that operates at high temperatures using molten carbonate or the like as an electrolyte, and includes an external reformer and an internal reformer. Regarding those equipped with a reformer.

〔発明の背景〕[Background of the invention]

従来燃料電池発電装置は、外部改質型の改質器と内部改
質型の改質器のように改質方式によって二つに大別され
た方式のものを備えていた。
Conventional fuel cell power generation apparatuses have been equipped with two types of reformers based on reforming methods, such as an external reformer type and an internal reformer type.

外部改質型改質器は文字どおり燃料電池発電装置のアノ
ード室で必要とする水素の製造を、燃料電池発電装置以
外の機器で行うものである。一方内部改質型の改質器は
、燃料電池発電装置の内部であるアノード室内で直接も
しくは間接に水素を製造させるものである。これら二つ
の改質器は。
External reforming type reformers literally produce the hydrogen required in the anode chamber of a fuel cell power generation system using equipment other than the fuel cell power generation system. On the other hand, an internal reformer produces hydrogen directly or indirectly in an anode chamber inside a fuel cell power generation device. These two reformers are.

燃料電池発電装置に用いられた場合に次のような特徴点
を有する。
When used in a fuel cell power generation device, it has the following features.

外部改質型の改質器では、燃料電池発電装置の本体であ
る電池スタックの他に、改質装置が別個に設けられてい
る。この改質装置は燃料の改質率を高くするため、5o
oc程度の高温のもとて触媒を用いて炭化水素等の燃料
を水蒸気により改質し、水素を得るいわゆる水蒸気改質
装置が主流である。
In an external reformer, a reformer is provided separately in addition to the cell stack that is the main body of the fuel cell power generation device. This reformer increases the fuel reforming rate by 5o
The mainstream is a so-called steam reformer that reformes a fuel such as a hydrocarbon with steam using a catalyst at a high temperature of about 30°C to obtain hydrogen.

このような水蒸気改質装置は、従来より化学工業で実施
されてきたこともあって、燃料電池発電装置に比較して
実績塵も高く、また技術的にも、信頼性の点でもある程
度の実用的な水準に達していると考えられている。
This type of steam reformer has traditionally been used in the chemical industry, has a higher track record than fuel cell power generators, and has a certain level of practicality in terms of technology and reliability. It is believed that the standard has been reached.

しかし、この外部改質型の改質器の場合には、改質触媒
の寿命向上の課題の他、改質部と発電部が別構成となっ
ているため、燃料電池発電装置に用いた場合にはプラン
ト面積が大きくなり、装置構成の面では複雑となる問題
がある。特に改質反応は高温のもとで行われるため、触
媒の寿命がどうしても短かくなりそのために触媒の交換
をしなければならない。したがって、触媒の交換の間燃
料電池発電装置の稼動が停止されることがある。
However, in the case of this external reforming type reformer, in addition to the issue of extending the life of the reforming catalyst, the reforming section and the power generation section are separate structures, so it is difficult to use it in a fuel cell power generation device. However, there are problems in that the plant area becomes large and the equipment configuration becomes complicated. In particular, since the reforming reaction is carried out at high temperatures, the life of the catalyst is inevitably shortened and the catalyst must be replaced. Therefore, operation of the fuel cell power generator may be stopped while the catalyst is replaced.

一方、内部改質型の改質器では、燃料電池発電装置内の
アノード室内に改質部を有しているため。
On the other hand, an internal reformer has a reforming section inside the anode chamber of the fuel cell power generation device.

外部改質型に比べ構成機器を減らすことができ、装置の
構成面では簡易化されコンパクトになることおよび吸熱
反応を伴う燃料の改質時に電池反応による発熱を有効利
用し、電池冷却を同時に行える等の有利な点をもつ。し
かし、内部改質器のみで改質反応を行おうとすると、ア
ノード室において電池反応も改質反応も行わなければな
らないため、この7ノード室が大型化し結局電池本体が
大型化する虞れがある。またアノード室が大型化するた
めに、このアノード室の強度を高めなければならないと
いう問題もある。さらに、アノード室内の改質触媒の再
生置換が困難となることから装置全体における燃料電池
発電装置の信頼性の向上および寿命の同上の点から言っ
て問題がある。
Compared to the external reforming type, the number of components can be reduced, the equipment is simpler and more compact, and when reforming fuel that involves an endothermic reaction, the heat generated by the cell reaction can be used effectively to cool the cell at the same time. It has the following advantages. However, if an attempt is made to carry out the reforming reaction using only the internal reformer, both the cell reaction and the reforming reaction must be carried out in the anode chamber, which may result in the 7-node chamber becoming larger and ultimately causing the battery itself to become larger. . Furthermore, since the anode chamber becomes larger, there is also the problem that the strength of the anode chamber must be increased. Furthermore, since it becomes difficult to regenerate and replace the reforming catalyst in the anode chamber, there is a problem in terms of improving the reliability of the fuel cell power generation device as a whole and shortening the life of the device.

以上のような外部改質型及び内部改質型のシステムの概
略構成は[工nternal Reforming f
orNatural Gas Fueled Mo1t
en CarbonateFuel  CeN5 ()
RI−801012B、1981年12月。
The schematic configuration of the external reforming type and internal reforming type systems as described above is described in [Internal Reforming System].
orNatural Gas Fueled Molt
en CarbonateFuel CeN5 ()
RI-801012B, December 1981.

Energy l(、esearch Corp 、 
p、 2〜p、 8 Jこの文献に見られるように、外
部改質型の改質器と内部改質型の改質器は互忙異なった
位置づけや考え方がなされており、従来においては外部
改質型の改質器と内部改質型の改質器が複合されたよう
な思想は全く示されていない。この事実は。
Energy l(, search corp,
p, 2-p, 8 J As seen in this document, external reformer and internal reformer have different positions and concepts, and conventionally, external reformer and internal reformer are There is no idea of a combination of a reforming type reformer and an internal reforming type reformer. This fact is.

外部改質型の改質器が実用化により近い位置づけにある
という考えのもとにその開発が踏襲されているという経
過と、内部改質型の改質器がもつとも簡素なシステム構
成で実現できるという位置づけにある考え方のもとに、
その開発が踏襲されているという異なった経緯に基づく
ものである。
The process of development has been based on the idea that external reformers are closer to practical use, and internal reformers can be realized with a simple system configuration. Based on this position of thinking,
Its development is based on a different background.

以上のように内部改質型の改質器と外部改質型の改質器
はそれぞれ異なった有利な点および不利な点を有し、単
独でおのおのを用いた場合触媒を交換しなければならな
いととに基づく電池の運転停止および内部改質型の改質
器におけるような電池構成の複雑化等の問題から燃料電
池発電装置全体として、運転効率等の点でその信頼性が
充分でないという問題があった。
As mentioned above, internal reformer and external reformer have different advantages and disadvantages, and if each is used alone, the catalyst must be replaced. The problem is that the reliability of the fuel cell power generation system as a whole is not sufficient in terms of operating efficiency, etc. due to problems such as battery operation stoppage due to oxidation and complication of the battery configuration such as in internal reformer type reformers. was there.

〔発明の目的〕[Purpose of the invention]

本発明は、上記外部改質型の改質器および内部改質型の
改質器のもつ欠点を除き、それぞれのもつ有利な点を取
り込み、装置全体の信頼性を高めた改質器を備えてなる
燃料電池発電装置を提供することにおる。
The present invention provides a reformer that eliminates the disadvantages of the external reformer and internal reformer, incorporates the advantages of each, and improves the reliability of the entire device. Our objective is to provide a fuel cell power generation device that will

〔発明の概要〕[Summary of the invention]

本発明は燃料電池発電装置において、改質触媒を保持し
、当該改質触媒に炭化水素等を含んでなる燃料を流通し
て当該燃料を改質反応により水素富化ガスに改質する外
部改質装置と、前記アノード室内部に設けられ、改質触
媒を保持し、当該改質触媒に前記水素富化ガスを流通し
、改質反応により当該水素富化ガス中に含まれる未改質
ガスを水素ガスに改質する内部改質装置とを備えてなる
ことを特徴とする燃料電池発電装置である。
The present invention provides a fuel cell power generation device in which a reforming catalyst is held, a fuel containing hydrocarbons, etc. is passed through the reforming catalyst, and the fuel is reformed into hydrogen-enriched gas through a reforming reaction. a reforming device, which is provided inside the anode chamber, holds a reforming catalyst, flows the hydrogen-enriched gas through the reforming catalyst, and converts unreformed gas contained in the hydrogen-enriched gas through a reforming reaction. This is a fuel cell power generation device characterized by comprising an internal reformer for reforming hydrogen gas into hydrogen gas.

上記本発明においては、外部改質型の改質器を備えた燃
料電池発電装置における燃料の改質率の最大値が熱力学
的な化学平衡のもとて温度・圧力等により一義的に決定
され、改質率としてはその値を越えられないため、燃料
の改質率を最大に維持すべく改質装置の運転条件を5o
oc程度の高温にしなければならないことと、その一方
で、溶融炭酸塩を電解質とする内部改質型の改質器を備
えた燃料電池発電装置においては、アノード室内で水素
が消費されるために化学平衡が推移し、その結果電池の
作動温度である650C程度の温度でも燃料の改質率は
その時の温度の化学平衡時の改質率の最大値を越えて犬
きくすることができることとの二点を組合せて構成した
複合改質型燃料電池発電装置としている。すなわち、こ
の複合改質型燃料電池発電装置では、燃料の改質を外部
改質装置と燃料電池発電装置のアノード室内の内部改質
装置との二部署に分担させている。この結果。
In the present invention, the maximum value of the fuel reforming rate in a fuel cell power generation device equipped with an external reformer is uniquely determined by temperature, pressure, etc. under thermodynamic chemical equilibrium. Since the reforming rate cannot exceed that value, the operating conditions of the reformer are adjusted to 5o in order to maintain the maximum fuel reforming rate.
On the other hand, in a fuel cell power generation system equipped with an internal reformer that uses molten carbonate as an electrolyte, hydrogen is consumed in the anode chamber. The chemical equilibrium changes, and as a result, even at a temperature of about 650C, which is the operating temperature of the battery, the reforming rate of the fuel can exceed the maximum value of the reforming rate at the chemical equilibrium at that temperature. This is a composite reforming fuel cell power generation device constructed by combining two parts. That is, in this combined reforming type fuel cell power generation device, the reforming of the fuel is divided into two departments: an external reformer and an internal reformer in the anode chamber of the fuel cell power generation device. As a result.

例えば、650Cで作動する溶融炭酸塩聾の燃料電池発
電装置の場合は、外部改質装置の運転温度も65(l程
度とし、ここで初期燃料の約60%を改質しく=改質率
約60%)、残燃料を燃料電池発電装置のアノード室の
内部改質部により改質する。つまり、アノード室の改質
部で初期燃料の約40%を改質することよシ全体として
は約100%の改質率とすることができる。したがって
、外部および内部改質器にとっては運転温度が低くてす
み、改質反応による改質触媒への負担が低減されるので
、改質装置全体として寿命が伸びることになる。またア
ノード室を改質部とした燃料電池発電装置すなわち内部
改質型燃料電池発電装置にとっても、改質反応による改
質触媒への負担が低減されることによる寿命向上や改質
触媒の活性劣化による再生・置換等の保守を外部改質器
側に委ねることができる。したがって、触媒交換による
装置の稼動停止や、装置構成の複雑化を防ぐことができ
、燃料電池発電装置としての信頼性が向上する。
For example, in the case of a molten carbonate-deaf fuel cell power generation system that operates at 650C, the operating temperature of the external reformer is also about 65L, and about 60% of the initial fuel is reformed here = reformation rate of about 60%), the remaining fuel is reformed in the internal reforming section of the anode chamber of the fuel cell power generation device. In other words, by reforming about 40% of the initial fuel in the reforming section of the anode chamber, an overall reforming rate of about 100% can be achieved. Therefore, the operating temperature of the external and internal reformers is low, and the load on the reforming catalyst due to the reforming reaction is reduced, so that the life of the reformer as a whole is extended. In addition, for fuel cell power generation devices that use the anode chamber as the reforming section, that is, internal reforming type fuel cell power generation devices, the load on the reforming catalyst due to the reforming reaction is reduced, which improves the lifespan and reduces the activity of the reforming catalyst. Maintenance such as regeneration and replacement can be entrusted to the external reformer. Therefore, it is possible to prevent the device from shutting down due to catalyst replacement and from complicating the device configuration, and the reliability of the fuel cell power generation device is improved.

〔発明の実施例〕[Embodiments of the invention]

次に本発明に係る燃料電池発電装置の実施例を、添付図
面だ従って詳説する。以下の実施例では、溶融炭酸塩を
電解質とし電池作動温度がほぼ650Cである溶融炭酸
塩型燃料電池発電装置について説明する。また、燃料と
してメタンを用い、改質装置として゛は水蒸気で、この
メタンを水素ガスに改質する水蒸気改質装置を用いた場
合について説明する。なお、本発明は、他の原料あるい
は改質方法の場合にも、以下の実施例と同様に実施でき
るものである。
Next, embodiments of the fuel cell power generation device according to the present invention will be described in detail with reference to the accompanying drawings. In the following example, a molten carbonate fuel cell power generation device using molten carbonate as an electrolyte and having a cell operating temperature of approximately 650C will be described. Also, a case will be described in which methane is used as the fuel and a steam reformer is used as the reformer, where ``is steam'' and reformes the methane into hydrogen gas. It should be noted that the present invention can be implemented in the same manner as in the following examples in the case of other raw materials or reforming methods.

第1図(a)ti、本発明の第一の実施例を示す系統図
である。
FIG. 1(a)ti is a system diagram showing a first embodiment of the present invention.

第1図(a)において、燃料電池発電装置1ri電解質
板2を挾むアノード3とカソード4、さら忙アノード3
を方囲して成るアノード室5、カソード4を方囲して成
るカソード室6から構成される。
In FIG. 1(a), an anode 3 and a cathode 4 sandwiching an electrolyte plate 2 in a fuel cell power generation device 1ri, and a busy anode 3
It consists of an anode chamber 5 surrounding the cathode 4, and a cathode chamber 6 surrounding the cathode 4.

アノード室5内には、メタンと水蒸気から水素に富んだ
ガスへの改質を促進するための改質触媒が保持されてい
る内部改質装置7が設けられている。
An internal reformer 7 is provided within the anode chamber 5 in which a reforming catalyst is held to promote the reforming of methane and water vapor into hydrogen-rich gas.

改質触媒としては、例えばNiを用いることができる。For example, Ni can be used as the reforming catalyst.

一方、外部改質装置8はその内部に反応管9を有し1反
応管9を加熱する熱媒体を流通させるための配管11お
よび12が備えられている。反応管9にはアノード室5
の場合と同様に、メタンと水蒸気から水素に富んだガス
への改質を速やかに行うだめの改質触媒10が保持され
ている。また、外部改質装置8の反応管9の一端と内部
改質装置7の一端とを流体的に連結するための配管14
が設けられている。外部改質装置8の反応管9のもう一
つの端には、メタンと水蒸気が混合した原料ガスが流入
するだめの配管13が設けられている。
On the other hand, the external reformer 8 has a reaction tube 9 therein, and is equipped with pipes 11 and 12 through which a heat medium for heating one reaction tube 9 flows. The reaction tube 9 has an anode chamber 5
As in the case of , a reforming catalyst 10 is maintained which rapidly reforms methane and steam to hydrogen-rich gas. Also, piping 14 for fluidly connecting one end of the reaction tube 9 of the external reformer 8 and one end of the internal reformer 7.
is provided. The other end of the reaction tube 9 of the external reformer 8 is provided with a reservoir pipe 13 into which a raw material gas containing a mixture of methane and steam flows.

一方、燃料電池発電装置1のアノード室5の外部改質装
置8の他端側には、アノードの排ガスを流出するための
配管15が設けら几ている。なお、本実施例の構成にお
いては1反応管9やアノード室5はどちらも単数もしく
は複数により構成されていて良い。
On the other hand, on the other end side of the external reformer 8 of the anode chamber 5 of the fuel cell power generation device 1, a pipe 15 for discharging the exhaust gas from the anode is provided. In the configuration of this embodiment, each of the reaction tubes 9 and the anode chambers 5 may be composed of a single unit or a plurality of units.

アノード室5内にくる外部改質装置8の構成として第2
図に示すように直接型(a)図、間接型(b)図が存在
する。直接型ではアノード室5内に改質用触媒がそのま
ま保持され、改質ガス14がさらに改質触媒によって改
質された水素富化ガス30が直接アノード3に供給され
るようになっている。
As a configuration of the external reformer 8 that comes inside the anode chamber 5, the second
As shown in the figure, there are a direct type (a) diagram and an indirect type (b) diagram. In the direct type, the reforming catalyst is held as it is in the anode chamber 5, and the hydrogen-enriched gas 30 obtained by further reforming the reformed gas 14 with the reforming catalyst is supplied directly to the anode 3.

一方間接型の場合は、アノード3と改質触媒が保持され
ている層との間に水素富化ガス流通用空間32が設けら
れ外部改質装置8で改質されたガス14がさらに改質さ
れて生ずる水素富化ガス30が一旦空間32に流通され
、ここから水素富化ガス30がアノード3に供給される
ようになっている。
On the other hand, in the case of an indirect type, a space 32 for hydrogen-enriched gas circulation is provided between the anode 3 and the layer holding the reforming catalyst, and the gas 14 reformed in the external reformer 8 is further reformed. The resulting hydrogen-enriched gas 30 is once passed through a space 32, from which the hydrogen-enriched gas 30 is supplied to the anode 3.

次に本実施例の動作について説明する。第1図の(b)
図では、同第1図の(a)図の反応流体変位に対応させ
て、その変位における反応流体温度とメタン改質率との
関係を示している。記号A−Eは各6位点を示し1反応
流体とは原料ガスからアノードガスまでの一連の流体を
指している。また、メタン改質率とは、供給メタン量か
ら改質後の残メタン量を引いたものを供給メタン量で除
し、100を乗じてパーセント表記とした値を指してい
る。
Next, the operation of this embodiment will be explained. (b) in Figure 1
The figure shows the relationship between the reaction fluid temperature and the methane reforming rate at the displacement of the reaction fluid shown in FIG. 1(a). Symbols A to E indicate each of the six points, and one reaction fluid refers to a series of fluids from the raw material gas to the anode gas. In addition, the methane reforming rate refers to a value obtained by subtracting the amount of methane remaining after reforming from the amount of methane supplied, dividing the result by the amount of methane supplied, and multiplying the result by 100, expressed as a percentage.

まず、動作条件として圧カフata、供給原料のスチー
ムカーボン比(Hto / CHaモル比)4とし、外
部改質装置8の入口ガス温度を約480cにて原料を配
管13により外部改質装置8の反応管9に流入させる。
First, the operating conditions are a pressure cuff ata, a steam carbon ratio (Hto/CHa molar ratio) of the feed material, and a raw material is transferred to the external reformer 8 through the pipe 13 with the inlet gas temperature of the external reformer 8 being approximately 480 °C. It is made to flow into the reaction tube 9.

外部改質装置8に設けられた配管11からは約1000
C以上の高温熱媒体が外部改質装置8内に流入されてお
シ1反応管9に熱を供給している。反応管9に入った反
応ガスのいくらかが改質触媒10の存在下で下記のα)
式および(2)式のごとく反応し、全体として吸熱を伴
いながらメタンの水蒸気改質が促進される。
Approximately 1,000 yen from the pipe 11 installed in the external reformer 8
A high-temperature heat medium of C or higher flows into the external reformer 8 and supplies heat to the reaction tube 9 of the first reactor. Some of the reaction gas that entered the reaction tube 9 is converted into the following α) in the presence of the reforming catalyst 10.
The reactions occur as shown in equations and (2), and the steam reforming of methane is promoted while being endothermic as a whole.

CHa+Hs04CO+3Hz−”49.3kcal/
mot−α)CO+Hz04COz+Hz+9.8kc
at/mot ”(2)このとき、配管11より外部改
質装置8に流入した高温加熱媒体は、上記反応(1)、
 (2)のための熱を与えながら次第に降温し、配管1
2より外部改質装置8の外へ流出する。その経路は第1
図Φ)図のDE曲線で示される。一方、反応管9内を流
通する反応ガスは、同図(b)のAB曲線の途中経路に
示されているように徐々に昇温し、650C程度となっ
て反応管9の出口を通過し、さらに若干昇温して、外部
改質装置8から配管14を通シ出て行く。このときのメ
タン改質率として、およそ55%程度を得る。反応ガス
は配管14を通過するときにいくらかの放熱損失によシ
若干降温した後、燃料電池発電装置1のアノード室5内
の内部改質装置に流入する。燃料電池発電装置1では全
体として水素と酸素からの水の生成反応((3)式)す
なわち発熱反応が起きており、何らかの冷却手段を講じ
なければならない。
CHa+Hs04CO+3Hz-”49.3kcal/
mot-α)CO+Hz04COz+Hz+9.8kc
at/mot" (2) At this time, the high temperature heating medium flowing into the external reformer 8 from the pipe 11 causes the above reaction (1),
While providing heat for (2), the temperature gradually decreases, and the pipe 1
2 and flows out of the external reformer 8. The route is the first
Figure Φ) is shown by the DE curve in the figure. On the other hand, the reaction gas flowing through the reaction tube 9 gradually rises in temperature as shown in the middle path of the AB curve in FIG. , the temperature is further increased slightly, and it exits from the external reformer 8 through the pipe 14. At this time, a methane reforming rate of about 55% is obtained. The reactant gas cools down slightly due to some heat loss while passing through the pipe 14, and then flows into the internal reformer in the anode chamber 5 of the fuel cell power generator 1. In the fuel cell power generation device 1 as a whole, a water production reaction from hydrogen and oxygen (equation (3)), that is, an exothermic reaction occurs, and some cooling means must be taken.

燃料電池発電装置の運転温度を650Cとすると、発電
装置は650C以上に昇温しでしまうが、残メタンと水
蒸気が改質触媒を保持した内部改質装置7内で前述の(
1)、 (2)式の反応が起こり吸熱することと、カン
ード室6を流通する酸化剤ガスである空気による除熱作
用によシ約650Cの電池作動温度に保たれる。このと
きの温度変化は第1図伽)のBe曲線のようになる。ま
た、アノード室5内を流通するアノードガス中の残メタ
ンは内部改質装置7内改質触媒の存在下で水蒸気改質に
より同図中)のメタン改質率Xの曲線で示す如く、はぼ
100%改質される。そして、電池反応を終了したアノ
ードガスはアノード室5より配管15を通って燃料電池
発電装置1の外へ流出されるとともに、燃料電池発電装
置1より電気出力が取り出される。
If the operating temperature of the fuel cell power generation device is 650C, the temperature of the power generation device will rise above 650C, but the residual methane and water vapor will react as described above in the internal reformer 7 holding the reforming catalyst.
The battery operating temperature is maintained at about 650 C due to the reactions of formulas 1) and (2) occurring and absorbing heat, and the heat removal effect of the air, which is an oxidizing gas, flowing through the canard chamber 6. The temperature change at this time is as shown in the Be curve in Figure 1). In addition, residual methane in the anode gas flowing in the anode chamber 5 is reformed by steam in the presence of the reforming catalyst in the internal reformer 7, as shown by the curve of the methane reforming rate X in the figure. Almost 100% modified. Then, the anode gas that has completed the cell reaction flows out of the fuel cell power generation device 1 from the anode chamber 5 through the pipe 15, and an electrical output is taken out from the fuel cell power generation device 1.

本実施例によれば、改質装置と燃料電池発電装置との動
作温度レベルをほぼ同じにできるので。
According to this embodiment, the operating temperature level of the reformer and the fuel cell power generation device can be made almost the same.

改質装置から得られる水素に富む高温のガスを燃料電池
発電装置へ流入させる前に降温させるための熱交換器が
いらなくなるという効果と、アノード室5で必要とする
アノードガスとして、外部改質装置8における改質ガス
(約5soc)を利用できるために、アノードガスを予
熱するための予熱器を必要としない。また、外部改質装
置8においては、改質温度が約6500であるので、改
質装置の耐熱性を緩和することができる結果、改質装置
の反応管材料等をより低コストにすることができるとい
う効果がある。
The advantage is that there is no need for a heat exchanger to lower the temperature of the high temperature hydrogen-rich gas obtained from the reformer before it flows into the fuel cell power generation device, and external reformer gas is used as the anode gas required in the anode chamber 5. Since the reformed gas (approximately 5 soc) in the device 8 is available, no preheater is required to preheat the anode gas. In addition, in the external reformer 8, the reforming temperature is approximately 6500°C, so the heat resistance of the reformer can be relaxed, and as a result, the cost of reaction tube materials etc. of the reformer can be lowered. There is an effect that it can be done.

次に、本発明の他の実施例を第3図に基づいて説明する
。なお、第1図(a)と異なる点について説明する。
Next, another embodiment of the present invention will be described based on FIG. Note that differences from FIG. 1(a) will be explained.

本実施例では外部改質装置8内の反応管9を加熱すべく
く配管11より流入する熱媒体は燃焼器16の燃焼ガス
である。この燃焼器16はバーナ方式あるいは触媒燃焼
方式のどちらであっても良)ハ。燃焼器16は配管11
により外部改質装置8と連結されておシ、また燃焼器1
6には、空気を供給するための配管17とアノード室5
の一端に設けられたアノード排ガスを導く配管15とが
合流する配管18が接続されている。なお、各配管には
流れる反応流体の流量を制御するパルプが適所に設けら
れていて良い。また、この複合改質型燃料電池発電装置
の起動時には、前記配管17が燃焼器16の燃料をも導
く通路であって良く、その結果配管17は空気および燃
料用の通路として働きうる。さらに、配管11がなく、
外部改質装置8と燃焼器16が一体化した構成でも良い
In this embodiment, the heat medium flowing from the pipe 11 to heat the reaction tube 9 in the external reformer 8 is the combustion gas from the combustor 16 . This combustor 16 may be of either a burner type or a catalytic combustion type). The combustor 16 is connected to the pipe 11
is connected to the external reformer 8 and also to the combustor 1.
6 includes a pipe 17 for supplying air and an anode chamber 5
A pipe 18 is connected to the pipe 15 which is provided at one end and which is connected to a pipe 15 that guides the anode exhaust gas. Note that each pipe may be provided with a pulp at an appropriate position to control the flow rate of the flowing reaction fluid. Further, when starting up this combined reforming fuel cell power generation device, the pipe 17 may also serve as a passage for guiding the fuel of the combustor 16, and as a result, the pipe 17 can function as a passage for air and fuel. Furthermore, there is no piping 11,
A configuration in which the external reformer 8 and the combustor 16 are integrated may also be used.

次に本実施例の定常時における動作について説明する。Next, the operation of this embodiment in steady state will be explained.

外部改質装置8および燃料電池発電装置1はともに約6
50C程度で動作しており、外部改質装置8の反応管9
を加熱する熱媒体は、配管17により導かれる空気とア
ノード室5での電池反応を終え配管15に−よシ導かれ
る未反応水素を含むアノード排ガスとを燃焼器16にお
いて燃焼させた燃焼ガスである。この燃焼ガスは反応管
9に熱を供給したのち、改質装置8に設けられた配管1
2を経て改質装置8の外へ流出する。その他の動作につ
いては第1図(a)の動作に準する。
The external reformer 8 and the fuel cell power generator 1 are both about 6
It operates at about 50C, and the reaction tube 9 of the external reformer 8
The heating medium for heating is the combustion gas obtained by combusting in the combustor 16 air led through the pipe 17 and anode exhaust gas containing unreacted hydrogen that is led to the pipe 15 after the battery reaction in the anode chamber 5. be. After this combustion gas supplies heat to the reaction tube 9, it is transferred to the piping 1 provided in the reformer 8.
2 and flows out of the reformer 8. Other operations are similar to those shown in FIG. 1(a).

本実施例によれば、第1図(a)において説明した効果
に加えて、アノード排ガスを改質装置8の反応管9加熱
用の燃料として使用することができるので1発電装置全
体の熱効率を向上することができる効果がある。
According to this embodiment, in addition to the effects explained in FIG. 1(a), the anode exhaust gas can be used as fuel for heating the reaction tube 9 of the reformer 8, so that the thermal efficiency of the entire power generation device can be improved. There are effects that can be improved.

本発明の第3の実施例を第4図により説明する。A third embodiment of the present invention will be explained with reference to FIG.

第2図と異なる点について説明する。Points different from FIG. 2 will be explained.

本実施例では外部改質装置8の反応管9に熱を供給し終
った燃焼ガスを改質装置8の外に導く配管12と、カソ
ード4に供給される酸化剤ガスである空気を導く配管1
9とが合流する配管2oを燃料電池発電装置1のカソー
ド室6の一端に連結して設け、さらにカソード室6の他
端にカソードガスが流出する配管21を設けたことを特
徴とする。
In this embodiment, there is a pipe 12 that guides the combustion gas that has finished supplying heat to the reaction tube 9 of the external reformer 8 to the outside of the reformer 8, and a pipe that leads air, which is the oxidizing gas, to be supplied to the cathode 4. 1
9 is connected to one end of the cathode chamber 6 of the fuel cell power generation device 1, and a pipe 21 through which cathode gas flows out is provided at the other end of the cathode chamber 6.

本実施例の動作は、第3図において説明した動作にカソ
ード側の反応流体の動作が加わったものとして説明され
る。すなわち、燃料電池発電装置1のカソード室6に流
れるカソードガス組成としては数%〜数十%の二酸化炭
素が含まれていることが要求される一方、外部改質装置
8の反応管9を加熱し終えた燃焼器16からの燃焼ガス
中に燃焼反応で生成された二酸化炭素が相当量含まれて
いることから、配管12を流通する燃焼ガスと配管19
を流通する空気とを混合し、配管20を経由させてカソ
ードへ二酸化炭素と酸素を含むガスを送り込むものであ
る。そして、カソード4で反応を終えたカソード排ガス
は、配管21を通り燃料電池発電装置11の外へ放出さ
れる。
The operation of this embodiment will be explained by adding the operation of the reaction fluid on the cathode side to the operation described in FIG. 3. That is, the composition of the cathode gas flowing into the cathode chamber 6 of the fuel cell power generation device 1 is required to contain several percent to several tens of percent carbon dioxide, while the reaction tube 9 of the external reformer 8 is heated. Since the combustion gas from the combustor 16 that has finished burning contains a considerable amount of carbon dioxide generated by the combustion reaction, the combustion gas flowing through the pipe 12 and the pipe 19
The gas containing carbon dioxide and oxygen is mixed with the flowing air and sent to the cathode via piping 20. Then, the cathode exhaust gas that has completed the reaction at the cathode 4 is discharged to the outside of the fuel cell power generation device 11 through the pipe 21.

本実施例によれば、カソードで必要となる二酸化炭素を
、改質装置8の反応管9を加熱するための燃焼器からの
燃焼ガスから得たので、特別な二酸化炭素発生器を必要
としないという効果と、カソードに供給されるガスには
燃焼ガスが混合されているために予熱されるという効果
がある。
According to this embodiment, the carbon dioxide required for the cathode is obtained from the combustion gas from the combustor for heating the reaction tube 9 of the reformer 8, so a special carbon dioxide generator is not required. In addition, since the gas supplied to the cathode is mixed with combustion gas, it is preheated.

第5図に本発明の第4の実施例を示す。第1図(a)と
異なる点について説明する。
FIG. 5 shows a fourth embodiment of the present invention. The differences from FIG. 1(a) will be explained.

本実施例では外部改質装[8と流体的に連結させた水素
ガス分離装置22を設けたことを一特徴とする。外部改
質装置8はその内部に反応管9を有し、反応管9を加熱
する熱媒体を流通させるための配管11および12が設
けられている。反応管9にはメタンと水蒸気から水素に
富んだガスへの改質を速やかに行うための改質触媒10
が保持されている。反応管9の管軸方向の中間点には反
応管9内の反応ガスを抽気するだめの配管23および2
5が設けられ、さらにそれぞれ抽気したガスの一部を反
応管内に戻すための配管24および26が設けられてい
る。これらの配管23.24゜25および26の改質袋
fIt8の他端側は水素ガス分離袋[22に連結されて
いる。水素ガス分離袋f22にはさらに分離されて得ら
れた水素ガスを導くための配管27が設けられておシ、
その配管27の他端は、改質袋f8の反応管9と燃料電
池発電装置1のアノード室5内の内部改質装置7とを連
結している配管14に合流するように設けられている。
One feature of this embodiment is that a hydrogen gas separation device 22 is provided which is fluidly connected to an external reforming device [8]. The external reformer 8 has a reaction tube 9 therein, and piping 11 and 12 for circulating a heat medium for heating the reaction tube 9 are provided. In the reaction tube 9, there is a reforming catalyst 10 for quickly reforming methane and water vapor into hydrogen-rich gas.
is retained. At the midpoint of the reaction tube 9 in the axial direction, there are pipes 23 and 2 for extracting the reaction gas in the reaction tube 9.
5, and piping 24 and 26 for returning a portion of the extracted gas into the reaction tube, respectively. The other ends of the reforming bag fIt8 of these pipes 23, 24° 25 and 26 are connected to the hydrogen gas separation bag [22]. The hydrogen gas separation bag f22 is further provided with a pipe 27 for guiding the hydrogen gas obtained by separation.
The other end of the pipe 27 is provided to join the pipe 14 that connects the reaction tube 9 of the reforming bag f8 and the internal reformer 7 in the anode chamber 5 of the fuel cell power generation device 1. .

次に本実施例の動作について説明する。配管13よシ改
質装f;18の反応管9内に流入されたメタンと水蒸気
との混合反応ガスは、配管11内を流通し、改質装置8
に流入する熱媒体から熱を供給されながら1反応管9内
に保持されている改質触媒10のもとて改質反応を起こ
し、水素富化ガスとなる。その水素を含んだガスの一部
は、反応管9の管軸方向の中間点に設けられた配管23
を通って水素ガス分離装置22に導かれ、水素ガスと水
素ガス以外のガスに分離される。分離された水素ガスは
水素ガス分離装置22によシ配管27に送入され、水素
ガス以外のガスは配管24を通して反応管9内に戻され
る。ここで反応管9内のガス組成は分離は分離され除か
れた水素ガスの分だけ前述(1)、 (2)式の反応の
平衡が推移し、水素をさらに生成する方向の反応が促進
される。同様に反応管9の管軸方向のもう一つの中間点
に設けた配管25を通して反応管9内のガスの一部が水
素ガス分離装置22に導かれ、水素ガスと水素ガス以外
のガスに分離され1分離された水素ガスは配管27に送
入され、水素ガス以外のガスは配管26を通して反応管
9内に戻される。これによってさらに前述(1)、 (
2)式の反応が右方向へ移行し、水素ガスの生成が促進
される。このように外部改質装置8の動作温度における
平衡反応率を上まわる改質率の結果として得られ、未反
応のメタンと分離された水素富化ガスは配管27内を流
通し。
Next, the operation of this embodiment will be explained. The mixed reaction gas of methane and water vapor that has flowed into the reaction tube 9 of pipe 13 and reformer f;
While being supplied with heat from the heat medium flowing into the reactor tube 9, a reforming reaction occurs under the reforming catalyst 10 held in one reaction tube 9, resulting in a hydrogen-enriched gas. A part of the hydrogen-containing gas is transferred to a pipe 23 provided at a midpoint in the axial direction of the reaction tube 9.
The hydrogen gas is guided through the hydrogen gas separation device 22 and separated into hydrogen gas and gases other than hydrogen gas. The separated hydrogen gas is fed into the pipe 27 by the hydrogen gas separation device 22, and gases other than hydrogen gas are returned into the reaction tube 9 through the pipe 24. Here, the gas composition in the reaction tube 9 is separated and the equilibrium of the reactions in equations (1) and (2) described above shifts by the amount of hydrogen gas that is removed, and the reaction in the direction of producing more hydrogen is promoted. Ru. Similarly, a part of the gas in the reaction tube 9 is led to the hydrogen gas separation device 22 through a pipe 25 provided at another midpoint in the axial direction of the reaction tube 9, and is separated into hydrogen gas and gases other than hydrogen gas. The separated hydrogen gas is sent to the pipe 27, and gases other than the hydrogen gas are returned to the reaction tube 9 through the pipe 26. As a result of this, the above-mentioned (1), (
2) The reaction in the equation shifts to the right, and the generation of hydrogen gas is promoted. The hydrogen-enriched gas thus obtained as a result of the reforming rate exceeding the equilibrium reaction rate at the operating temperature of the external reformer 8 and separated from unreacted methane flows through the pipe 27 .

反応管9内で得られ、配管14内を通る改質ガスと合流
し、アノード室内の内部改質装置7に供給される。その
結果、さらに改質反応を受け、はぼ100%の改質を受
けた水素富化ガスとなり、この水素富化ガスはアノード
ガスとして利用される。
It is obtained in the reaction tube 9, merges with the reformed gas passing through the pipe 14, and is supplied to the internal reformer 7 in the anode chamber. As a result, the gas is further subjected to a reforming reaction to become a hydrogen-enriched gas that has undergone nearly 100% reforming, and this hydrogen-enriched gas is used as an anode gas.

なお、水素ガス分離装置22の分離性能が良いほど、改
質率を高くすることができる。また、外部改質装置8と
水素ガス分離装置22とは一体に構成されていても良く
1反応ガスを抽気するための配管は本実施例での本数に
限らない。
Note that the better the separation performance of the hydrogen gas separation device 22, the higher the reforming rate can be. Further, the external reformer 8 and the hydrogen gas separation device 22 may be integrally configured, and the number of pipes for extracting one reaction gas is not limited to the number in this embodiment.

本実施例によれば、第1図の(a)の実施例による効果
に加えて、改質装置に連結した水素ガス分離装置を設け
たので、改質装置の改質率を向上することによシ1反応
平衡時よりも多い水素ガスを生成することがCきる。ま
た水素ガス分離装置を操作することにより、反応の改質
率や改質装置と燃料電池装置との間の改質反応の分担率
を制御することができ、燃料電池発電装置の運転範囲が
大きく、すなわち柔軟性のある燃料電池発電装置とする
ことができる。また1分離した水素を他の目的に使用す
ることもできる。
According to this embodiment, in addition to the effects of the embodiment shown in FIG. Option 1: It is possible to generate more hydrogen gas than during reaction equilibrium. In addition, by operating the hydrogen gas separation device, it is possible to control the reforming rate of the reaction and the sharing ratio of the reforming reaction between the reformer and the fuel cell device, increasing the operating range of the fuel cell power generation device. In other words, a flexible fuel cell power generation device can be achieved. Furthermore, the separated hydrogen can also be used for other purposes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る燃料電池発電装置によ
れば、外部改質装置と内部改質装置とを組合わせている
ために、改質温度を下げてもほぼ100%の改質率を得
ることができる。したがって改質装置の運転温度を下げ
ることができるために、[F]改質装置構成材料の耐熱
性に対する寿命および信頼性を向上することができる、
■改質触媒の改質反応による負担が低減されるので、触
媒寿命が伸び、触媒の再生、置換による燃料電池発電装
置の停止を防ぐことができる、■改質触媒の活性劣化に
よる再生、置換を主に外部改質装置側に委ねることがで
きるので、構造の複雑な内部改質装置における改質触媒
の再生、置換等の頻度を少なくすることができる5等の
各種効果を有し、燃料電池発電装置全体としての寿命お
よび信頼性を向上することができる。
As explained above, according to the fuel cell power generation device according to the present invention, since the external reformer and the internal reformer are combined, the reforming rate can be maintained at almost 100% even if the reforming temperature is lowered. Obtainable. Therefore, since the operating temperature of the reformer can be lowered, [F] the life and reliability of the heat resistance of the constituent materials of the reformer can be improved;
■The burden of the reforming reaction on the reforming catalyst is reduced, extending the catalyst life and preventing the fuel cell power generation system from stopping due to catalyst regeneration and replacement. ■Regeneration and replacement due to deterioration of the reforming catalyst's activity. Since this can be mainly entrusted to the external reformer, it has various effects such as reducing the frequency of regeneration and replacement of the reforming catalyst in the internal reformer, which has a complicated structure. The lifespan and reliability of the battery power generator as a whole can be improved.

また、外部改質装置のみを有する燃料電池発電装置と比
較して、必要触媒量を低減することができるので発電装
置製造のコストを少なくすることができる。
Furthermore, compared to a fuel cell power generation device having only an external reformer, the required amount of catalyst can be reduced, so the cost of manufacturing the power generation device can be reduced.

また、内部改質装置のみを有する燃料電池発電装置に比
較して、■アノード室内の内部改質装置に直接原料を供
給するのではなく、外部改質装置で得られた水素富化ガ
スを供給するので、アノードでの電流密度分布および温
度分布などの格差が少なくなる、■燃料の改質の第1段
階を外部改質装置にて行うのでアノード室内での炭素析
出を一層防止できる1等の各種効果を有し、全体として
寿命、信頼性を向上することができる。
In addition, compared to a fuel cell power generation system that only has an internal reformer, ■ instead of supplying raw materials directly to the internal reformer in the anode chamber, hydrogen-enriched gas obtained from an external reformer is supplied. As a result, differences in current density distribution and temperature distribution at the anode are reduced. ■The first stage of fuel reforming is performed in an external reformer, which further prevents carbon deposition in the anode chamber. It has various effects and can improve overall lifespan and reliability.

さらて、内部改質装置に導入される外部改質装置で改質
を受けた水素富化ガスは、改質反応下で加熱されている
ために、燃料電池の電池反応を有効に進行させるために
アノードガスを予熱する予熱器を必要としない。したが
って、燃料電池発電装置の保守が容易になる。
Furthermore, since the hydrogen-enriched gas that has been reformed in the external reformer and introduced into the internal reformer is heated during the reforming reaction, it is difficult for the cell reaction of the fuel cell to proceed effectively. No preheater is required to preheat the anode gas. Therefore, maintenance of the fuel cell power generation device becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、第3図ないし第5図は本発明に係る燃料
電池発電装置の各実施例の系統図、第1図(b)は、第
1図(a)の反応流体変位における反応流体温度と、メ
タン改質率を示すグラフ、第2図は内部改質装置を備え
たアノード室の構造例を示す断面構成図である。 1・・・燃料電池発電装置、5・・・アノード室、6・
・・カンード室、7.10・・・改質触媒、8・・・改
質装置、9・・・反応管、11.12.13,14,1
5゜17.18,19,20.21・・・配管%16・
・・燃焼器、22・・・水素ガス分離装置。
FIG. 1(a), FIG. 3 to FIG. 5 are system diagrams of each embodiment of the fuel cell power generation device according to the present invention, and FIG. 1(b) shows the reaction fluid displacement in FIG. 1(a). A graph showing reaction fluid temperature and methane reforming rate. FIG. 2 is a cross-sectional configuration diagram showing an example of the structure of an anode chamber equipped with an internal reforming device. 1... Fuel cell power generation device, 5... Anode chamber, 6...
... Cando chamber, 7.10... Reforming catalyst, 8... Reformer, 9... Reaction tube, 11.12.13, 14, 1
5゜17.18, 19, 20.21...Piping%16・
...Combustor, 22...Hydrogen gas separation device.

Claims (1)

【特許請求の範囲】 1、電解質板を挾持して相対向配置されたアノードおよ
びカソードからなる単位電池を、セパレータを介して複
数個積層して電池スタックを構成し、前記アノードと前
記セパレータのガス流路用溝によって形成されるアノー
ド室に燃料である水素ガスを供給し、前記カソードと前
記セパレータのガス流路用溝とによって形成されるカソ
ード室に酸化剤ガスを供給することにより電気を発生さ
せてなる燃料電池発電装置において、改質触媒を保持し
、当該改質触媒に炭化水素等を含んでなる燃料を流通し
て当該燃料を改質反応により水素富化ガスに改質する外
部改質装置と、前記アノード室内部に設けられ、改質触
媒を保持し、当該改質触媒に前記水素富化ガスを流通し
、改質反応により当該水素富化ガス中に含まれる未改質
燃料を水素ガスに改質する内部改質装置とを備えてなる
ことを特徴とする燃料電池発電装置。 2、特許請求の範囲第1項において、改質を受けた反応
ガス中の未改質燃料から水素ガスを分離するための水素
ガス分離装置を備え、上記外部改質装置で改質された改
質ガスを当該水素ガス分離装置に導入することにより水
素ガスを分離し、当該分離された水素ガスを上記内部改
質装置に導入することを特徴とする燃料電池発電装置。 3、特許請求の範囲第2項において、上記水素ガス分離
装置で分離された未改質燃料を外部改質装置に抽気して
これを改質し、改質後の反応ガスを水素分離装置に導入
することを特徴とする燃料電池発電装置。
[Scope of Claims] 1. A battery stack is constructed by stacking a plurality of unit batteries each consisting of an anode and a cathode facing each other with an electrolyte plate sandwiched between them, with a separator in between, and the gas between the anode and the separator is stacked. Electricity is generated by supplying hydrogen gas, which is a fuel, to an anode chamber formed by a flow path groove, and supplying an oxidizing gas to a cathode chamber formed by the cathode and the gas flow groove of the separator. In the fuel cell power generation device, an external reformer that holds a reforming catalyst, distributes fuel containing hydrocarbons, etc. to the reforming catalyst, and reforms the fuel into hydrogen-enriched gas through a reforming reaction. a reforming device, which is provided inside the anode chamber, holds a reforming catalyst, flows the hydrogen-enriched gas through the reforming catalyst, and converts unreformed fuel contained in the hydrogen-enriched gas through a reforming reaction. A fuel cell power generation device comprising: an internal reformer for reforming hydrogen gas into hydrogen gas. 2. In claim 1, a hydrogen gas separation device for separating hydrogen gas from unreformed fuel in the reformed reaction gas is provided, and the reformed fuel reformed in the external reformer is provided with a A fuel cell power generation device characterized in that hydrogen gas is separated by introducing a quality gas into the hydrogen gas separation device, and the separated hydrogen gas is introduced into the internal reforming device. 3. In claim 2, the unreformed fuel separated by the hydrogen gas separation device is extracted to an external reformer and reformed, and the reformed reaction gas is sent to the hydrogen separation device. A fuel cell power generation device characterized in that it is introduced.
JP60208083A 1985-09-20 1985-09-20 Fuel cell power generator Expired - Lifetime JPH0636368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60208083A JPH0636368B2 (en) 1985-09-20 1985-09-20 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208083A JPH0636368B2 (en) 1985-09-20 1985-09-20 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JPS6269469A true JPS6269469A (en) 1987-03-30
JPH0636368B2 JPH0636368B2 (en) 1994-05-11

Family

ID=16550359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208083A Expired - Lifetime JPH0636368B2 (en) 1985-09-20 1985-09-20 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH0636368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429958A2 (en) * 1989-11-25 1991-06-05 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using molten carbonate fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193371A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Fuel cell power generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193371A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Fuel cell power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429958A2 (en) * 1989-11-25 1991-06-05 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using molten carbonate fuel cell

Also Published As

Publication number Publication date
JPH0636368B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US20180115003A1 (en) Sofc-based system for generating electricity with closed-loop circulation of carbonated species
JP5485666B2 (en) Fuel cell system
JPS62148303A (en) Manufacture of hydrogen-containing gas, continuous supply ofhydrogen fuel to fuel cell, reaction equipment and fuel cellsystem
JPS61193371A (en) Fuel cell power generator
KR20080000674A (en) Fuel cell system
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JP6899363B2 (en) Fuel cell system with in-block reforming
JP2003187849A (en) Solid polymer fuel cell power generator
JPH09237635A (en) Solid electrolyte fuel cell
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP4940567B2 (en) Polymer electrolyte fuel cell system
KR101250418B1 (en) fuel processor of fuel cell
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
JP6755424B1 (en) Fuel cell system
JPS6269469A (en) Fuel cell power generation equipment
WO2000039875A1 (en) A hydrocarbon fueled power plant employing a proton exchange membrane (pem) fuel cell
JPS6134865A (en) Fuel cell power generating system
JPH02188406A (en) Carbon monoxide converter
JP6800367B1 (en) Fuel cell system
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP3997476B2 (en) Fuel cell power generator
JPS63231878A (en) Power generating method by fuel cell and its system
JPH04101364A (en) Fuel cell
JP2751526B2 (en) Molten carbonate fuel cell power generator