JPH0636368B2 - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JPH0636368B2
JPH0636368B2 JP60208083A JP20808385A JPH0636368B2 JP H0636368 B2 JPH0636368 B2 JP H0636368B2 JP 60208083 A JP60208083 A JP 60208083A JP 20808385 A JP20808385 A JP 20808385A JP H0636368 B2 JPH0636368 B2 JP H0636368B2
Authority
JP
Japan
Prior art keywords
gas
reforming
hydrogen
hydrogen gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60208083A
Other languages
Japanese (ja)
Other versions
JPS6269469A (en
Inventor
一仁 小山
成久 杉田
晴一郎 坂口
孝次 椎名
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60208083A priority Critical patent/JPH0636368B2/en
Publication of JPS6269469A publication Critical patent/JPS6269469A/en
Publication of JPH0636368B2 publication Critical patent/JPH0636368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電装置に係り、特に溶融炭酸塩等を
電解質として高温で作動し外部改質器および内部改質器
を備え、外部改質器に水素ガス分離装置を設けた燃料電
池発電装置に関する。
Description: TECHNICAL FIELD The present invention relates to a fuel cell power generator, and in particular, it operates at high temperature using molten carbonate or the like as an electrolyte and is equipped with an external reformer and an internal reformer. The present invention relates to a fuel cell power generation device in which a hydrogen gas separation device is provided in a pouch.

〔発明の背景〕[Background of the Invention]

従来の燃料電池発電装置は、外部改質型の改質器と内部
改質型の改質器のように改質方式によって二つに大別さ
れた方式のものを備えていた。
Conventional fuel cell power generators have been classified into an external reforming type reformer and an internal reforming type reformer.

外部改質型の改質器は文字どおり燃料電池発電装置のア
ノード室で必要とする水素の製造を、燃料電池発電装置
以外の機器で行うものである。
The external reforming reformer literally produces hydrogen required in the anode chamber of the fuel cell power generator by a device other than the fuel cell power generator.

一方内部改質型の改室器は、燃料電池発電装置の内部で
あるアノード室内で直接もしくは間接に水素を製造する
ものである。これら二つの改質器は、燃料電池発電装置
に用いられた場合に次のような特徴を有する。
On the other hand, the internal reforming type room reformer directly or indirectly produces hydrogen in the anode chamber inside the fuel cell power generator. These two reformers have the following features when used in a fuel cell power generator.

外部改質型の改質器では、燃料電池発電装置の本体であ
る電池スタックの他に改質装置が別個に設けられてい
る。この改質装置は燃料の改質率を高くするため、80
0℃程度の高温のもとで触媒を用いて炭化水素等の燃料
を水蒸気により改質し、水素を得るいわゆる水蒸気改質
装置が主流である。このような水蒸気改質装置は、従来
より化学工業で採用されてきたこともあって、年老電池
発電装置に比較して実績も多く、また技術的にも、信頼
性の点でもある程度の実用的な水準に達している。
In the external reforming type reformer, a reforming device is separately provided in addition to the cell stack which is the main body of the fuel cell power generation device. This reformer increases the reforming rate of fuel by 80%.
A so-called steam reforming apparatus, which obtains hydrogen by reforming fuel such as hydrocarbon with steam using a catalyst at a high temperature of about 0 ° C., is the mainstream. Since such a steam reformer has been used in the chemical industry for a long time, it has more achievements compared to the aged battery power generator, and it is technically and practically used to some extent in terms of reliability. Has reached a standard.

しかし、この外部改質型の改質器の場合には、改質触媒
の寿命向上の課題の他、改質部と発電部が別構成となっ
ているため、燃料電池発電装置に用いた場合にはプラン
ト面積が大きくなり、装置構成の面では複雑となる問題
がある。特に改質反応は高温のもとで行われるため、触
媒の寿命がどうしても短かくなりそのために一定期間毎
に触媒の交換をしなければならない。したがって、触媒
の交換期間は燃料電池発電装置の運転を停止することが
ある。
However, in the case of this external reforming type reformer, in addition to the problem of improving the life of the reforming catalyst, the reforming section and the power generation section have different configurations. Has a problem that the plant area becomes large and the apparatus configuration becomes complicated. In particular, since the reforming reaction is carried out under high temperature, the life of the catalyst is inevitably short, and therefore the catalyst must be replaced at regular intervals. Therefore, the operation of the fuel cell power generator may be stopped during the catalyst replacement period.

一方、内部改質型の改質器では、燃料電池発電装置内の
アノード室内に改質部を有しているため、外部改質型に
比べ構成機器を減らすことができ、装置の構成面では簡
易化されコンパクトになることおよび吸熱反応を伴う燃
料の改質時に電池反応による発熱を利用し、電池冷却を
同時に行える等の有利な点をもつ。しかし、内部改質器
のみで改質反応を行おうとすると、アノード室において
電池反応も改室反応も行わなればならないため、このア
ノード室が大型化し結局電池本体が大型化する恐れがあ
る。またアノード室が大型化するために、このアノード
室の強度の高めなければならないという問題もある。さ
らに、アノード室内の改質触媒の再生、交換が困難にな
ることから装置全体における燃料電池発電装置の信頼性
の向上および寿命の向上の点から言って問題がある。
On the other hand, the internal reforming type reformer has a reforming section inside the anode chamber in the fuel cell power generator, so that it is possible to reduce the number of components compared to the external reforming type, and in terms of the configuration of the device. It has advantages such as simplification and compactness, and use of heat generated by a cell reaction at the time of reforming a fuel accompanied by an endothermic reaction so that the cell can be cooled at the same time. However, if the reforming reaction is to be performed only by the internal reformer, a battery reaction and a room reforming reaction have to be performed in the anode chamber, so that the anode chamber may become large and the battery main body may eventually become large. There is also a problem that the strength of the anode chamber must be increased in order to increase the size of the anode chamber. Furthermore, since it is difficult to regenerate and replace the reforming catalyst in the anode chamber, there is a problem in terms of improving the reliability and life of the fuel cell power generator in the entire apparatus.

以上のような外部改質型及び内部改質型のプロセスの構
成は文献「Internal Reforming for Natural Gas
Fueled Moften Carbonate Fuel Cells GRI−
80/0126,1981,12,Energy Research
Corp,p,2〜p,8」に見られるように、外部改質
型の改質器と内部改質型の改質器は互に異なった位置づ
けや考え方がなされており、従来においては外部改質型
の改質器と内部改質型の改質器が複合されたような思想
は全く示されていない。この事実は、外部改質型の改質
器が実用化により近い位置づけにあるという考えのもと
にその開発が踏襲されているという経過と、内部改質型
の改質器がもっとも簡素なプロセス構成で実現できると
いう位置づけにある考え方のもとに、その開発が踏襲さ
れているという異なった経緯に基づくものである。
The structure of the external reforming type process and the internal reforming type process described above is described in the document “Internal Reforming for Natural Gas”.
Fueled Carbonate Fuel Cells GRI-
80/0126, 1981, 12, Energy Research
"Corp, p, 2 to p, 8", the external reforming type reformer and the internal reforming type reformer have different positions and ideas from each other. The idea that the reformer reformer and the internal reformer reformer are combined is not shown at all. This fact indicates that the development of the external reforming type reformer follows the idea that the external reforming type reformer is positioned closer to practical use, and that the internal reforming type reformer has the simplest process. It is based on a different process in which its development is followed based on the idea that it can be realized by configuration.

以上のように内部改質型の改質器と外部改質型の改質器
はそれぞれ異なった有利な点および不利な点を有し、単
独でおのおのを用いた場合触媒を交換しなければならな
いことに基づく電池の運転停止および内部改質型の改質
器におけるような電池構成の複雑化等の問題から燃料電
池発電装置全体として、運転効率等の点でその信頼性が
充分でないという問題があった。
As described above, the internal reforming type reformer and the external reforming type reformer have different advantages and disadvantages, and the catalyst must be exchanged when each is used alone. Due to such problems as cell shutdown and complication of the cell structure in an internal reforming type reformer, there is a problem that the fuel cell power generator as a whole is not sufficiently reliable in terms of operation efficiency and the like. there were.

〔発明の目的〕[Object of the Invention]

本発明は、改質器を備えた燃料電池発電装置の改質性能
の向上と、運転の柔軟性の増加を図ることを目的とす
る。
It is an object of the present invention to improve the reforming performance of a fuel cell power generator equipped with a reformer and increase the flexibility of operation.

〔発明の概要〕[Outline of Invention]

本発明は、外部改質装置と内部改質装置とを備えた燃料
電池発電装置において、外部改質装置内を流通するガス
を引き出し、この引き出されたガス中の水素ガスを分離
し、この分離された水素ガスを内部改質装置へ供給する
と共に、水素ガスを分離後のガスを外部改質装置へ戻す
水素ガス分離装置を設けたことを特徴とするものであ
る。
The present invention relates to a fuel cell power generator including an external reformer and an internal reformer, draws out gas flowing through the external reformer, separates hydrogen gas in the drawn-out gas, and separates the separated hydrogen gas. It is characterized in that a hydrogen gas separation device for supplying the generated hydrogen gas to the internal reforming device and for returning the gas after separating the hydrogen gas to the external reforming device is provided.

〔発明の実施例〕Example of Invention

本発明に係る燃料電池発電装置の実施例を、添付図面に
従って詳説する。
An embodiment of a fuel cell power generator according to the present invention will be described in detail with reference to the accompanying drawings.

以下の実施例では、溶融炭酸塩を電解質とし電池作動温
度がほぼ650℃である溶融炭酸塩型燃料電池発電装置
について説明する。また、燃料としてメタンを用い、改
質装置としては水蒸気で、このメタンを水素ガスに改質
する水蒸気改質装置を用いた場合について説明する。な
お、本発明は、メタン以外の原料あるいは改質方法の場
合にも、以下の実施例と同様に実施できるものである。
In the following examples, a molten carbonate fuel cell power generator having a molten carbonate as an electrolyte and a cell operating temperature of about 650 ° C. will be described. Also, a case will be described in which methane is used as fuel, steam is used as the reforming device, and a steam reforming device that reforms this methane into hydrogen gas is used. The present invention can be carried out in the same manner as in the following examples even in the case of a raw material other than methane or a reforming method.

まず、本実施例の構成について説明する。First, the configuration of this embodiment will be described.

第1図は、本発明の実施例の構成を示す系統図である。FIG. 1 is a system diagram showing a configuration of an embodiment of the present invention.

第1図において、燃料電池発電装置1は電解質板2を挾
むアノード3とカソード4、さらにアノード3を方囲し
て成るアノード室5、カソード4を方囲して成るカソー
ド室6から構成される。アノード室5内には、メタンと
水蒸気から水素に富んだガスへの改質反応を促進するた
めの改質触媒が保持されている内部改質装置7が設けら
れている。改質触媒としては、例えばNiを用いること
ができる。
In FIG. 1, a fuel cell power generator 1 comprises an anode 3 and a cathode 4 that sandwich an electrolyte plate 2, an anode chamber 5 that surrounds the anode 3, and a cathode chamber 6 that surrounds the cathode 4. It Inside the anode chamber 5, an internal reforming device 7 is provided, which holds a reforming catalyst for promoting a reforming reaction from methane and steam to a gas rich in hydrogen. For example, Ni can be used as the reforming catalyst.

一方、外部改質装置8はその内部に反応管9を有し、反
応管9を加熱する触媒体を流通させるための配管11お
よび12が備えられている。反応管9にはアノード室5
の場合と同様に、メタンと水蒸気から水素に富んだガス
への改質反応を促進するための改質触媒10が保持され
ている。また、外部改質装置8の反応管9の一端と内部
改質装置7の一端とを流体的に連結するための配管14
が設けられている。外部改質装置8の反応管9のもう一
つの端には、メタンと水蒸気が混合した原料ガスが流入
するための配管13が設けられている。一方、燃料電池
発電装置1のアノード室5の外部改質装置8の他端側に
は、アノード3の排ガスを流出するための配管15が設
けられている。
On the other hand, the external reformer 8 has a reaction tube 9 inside and is provided with pipes 11 and 12 for circulating a catalyst body that heats the reaction tube 9. Anode chamber 5 in reaction tube 9
Similar to the above case, the reforming catalyst 10 for promoting the reforming reaction from methane and steam to a gas rich in hydrogen is held. A pipe 14 for fluidly connecting one end of the reaction tube 9 of the external reformer 8 and one end of the internal reformer 7
Is provided. At the other end of the reaction tube 9 of the external reforming device 8, a pipe 13 for introducing a raw material gas in which methane and steam are mixed is provided. On the other hand, a pipe 15 for flowing out the exhaust gas of the anode 3 is provided at the other end side of the external reforming device 8 in the anode chamber 5 of the fuel cell power generator 1.

本発明は外部改質装置8と流体的に連結させた水素ガス
分離装置22を設けたことを特徴とする。外部改質装置
8の反応管9の管軸方向の中間点には反応管9内の反応
ガスを抽気するための配管23および25が設けられ、
さらにそれぞれ抽気したガスの一部を反応管内に戻すた
めの配管24および26が設けられている。これらの配
管23,24,25および26の改質装置の他端側は水
素ガス分離装置22に連結されている。水素ガス分離装
置22にはさらに分離されて得られた水素ガスを導くた
めの配管27が設けられており、その配管27の他端
は、改質装置8の反応管9と燃料電池発電装置1のアノ
ード質5内の内部改質装置7とを連結している配管14
に合流するように設けられている。
The present invention is characterized in that a hydrogen gas separation device 22 which is fluidly connected to the external reforming device 8 is provided. Pipes 23 and 25 for extracting the reaction gas in the reaction tube 9 are provided at an intermediate point in the tube axis direction of the reaction tube 9 of the external reformer 8.
Further, pipes 24 and 26 for returning a part of the extracted gas into the reaction tube are provided. The other ends of the reformers of these pipes 23, 24, 25 and 26 are connected to the hydrogen gas separator 22. The hydrogen gas separation device 22 is provided with a pipe 27 for guiding the hydrogen gas obtained by further separation, and the other end of the pipe 27 has the reaction pipe 9 of the reformer 8 and the fuel cell power generator 1 14 connecting the internal reformer 7 in the anode material 5 of
It is provided so that it will join.

次に本実施例の動作について説明する。Next, the operation of this embodiment will be described.

配管13より改質装置8の反応管9内に流入したメタン
と水蒸気との混合反応ガスは、配管11内を流通し、改
質装置8に流入する熱媒体から熱を供給されながら、反
応管9内に保持されている改質触媒10のもとで改質反
応を起こし、水素富化ガスとなる。その水素を含んだガ
スの一部は、反応管9の管軸方向の中間点に設けられた
配管23を通って水素ガス分離装置22に導かれ、水素
ガスと水素ガス以外のガスに分離される。分離された水
素ガスは配管27を介して配管14に送入され、水素ガ
ス以外のガスは配管24を通して反応管9内に戻され
る。ここで反応管9内のガス組成は分離され除かれた水
素ガスの分だけ水蒸気改質反応の平衡が推移し、水素を
さらに生成する方向の反応が促進される。同様に反応管
9の管軸方向のもう一つの中間点に設けた配管25を通
して反応管9内のガスの一部が水素ガス分離装置22に
導かれ、水素ガスと水素ガス以外のガスに分離され、分
離された水素ガスは配管27を介して配管14に送入さ
れ、水素ガス以外のガスは配管26を通して反応管9内
に戻される。これによってさらに水蒸気改質反応が推移
し、水素ガスの生成が促進される。このように外部改質
装置8の動作温度における平衡反応率を上まわる改質率
の結果として得られ、未反応のメタンと分離された水素
富化ガスは配管27内を流通し、反応管9内で得られ配
管14内を通る改質ガスと合流し、アノード室内の内部
改質装置7に供給される。その結果、さらに改質反応が
進み、ほぼ100%改質した水素化富化ガスとなり、こ
の水素富化ガスはアノードガスとして利用される。
The mixed reaction gas of methane and steam that has flowed into the reaction tube 9 of the reformer 8 through the pipe 13 flows through the pipe 11 and is supplied with heat from the heat medium that flows into the reformer 8 while the reaction tube A reforming reaction is caused under the reforming catalyst 10 held in 9 to become a hydrogen-rich gas. A part of the gas containing hydrogen is introduced into the hydrogen gas separation device 22 through a pipe 23 provided at an intermediate point in the axial direction of the reaction tube 9, and separated into hydrogen gas and a gas other than hydrogen gas. It The separated hydrogen gas is sent to the pipe 14 through the pipe 27, and the gas other than the hydrogen gas is returned to the reaction pipe 9 through the pipe 24. Here, the gas composition in the reaction tube 9 shifts the equilibrium of the steam reforming reaction by the amount of the separated and removed hydrogen gas, and the reaction in the direction of further producing hydrogen is promoted. Similarly, a part of the gas in the reaction tube 9 is guided to the hydrogen gas separation device 22 through a pipe 25 provided at another middle point in the tube axis direction of the reaction tube 9 and separated into hydrogen gas and a gas other than hydrogen gas. The separated and separated hydrogen gas is fed into the pipe 14 through the pipe 27, and the gas other than the hydrogen gas is returned into the reaction pipe 9 through the pipe 26. As a result, the steam reforming reaction further progresses, and the production of hydrogen gas is promoted. Thus, the hydrogen-enriched gas obtained as a result of the reforming rate exceeding the equilibrium reaction rate at the operating temperature of the external reformer 8 and separated from unreacted methane flows through the pipe 27, and the reaction tube 9 It is merged with the reformed gas obtained inside and passing through the pipe 14, and is supplied to the internal reformer 7 in the anode chamber. As a result, the reforming reaction proceeds further, and the hydrogenated enriched gas is almost 100% reformed, and this hydrogen enriched gas is used as the anode gas.

なお、水素ガス分離装置22の分離性能が良いほど、改
質率を高くすることができる。また、外部改質装置8と
水素ガス分離装置22とは一体に構成されていても良
く、反応ガスを抽気するための配管は本実施例での本数
に限定されるものではない。
The better the separation performance of the hydrogen gas separation device 22, the higher the reforming rate. Further, the external reforming device 8 and the hydrogen gas separation device 22 may be integrally configured, and the number of pipes for extracting the reaction gas is not limited to the number in this embodiment.

本実施例によれば、改質装置に連結した水素ガス分離装
置を設けたので、改質装置の改質率が向上することによ
り、反応平衡時よりも多い水素ガスを生成することがで
きる。また水素ガス分離装置を操作することにより、反
応の改質率や改質装置と燃料電池装置との間の改質反応
の分担率を制御することができ、燃料電池発電装置の運
転範囲が大きく、すなわち柔軟性のある燃料電池発電装
置とすることができる。また、分離した水素を他の目的
に使用することもできる。
According to the present embodiment, since the hydrogen gas separation device connected to the reformer is provided, the reforming rate of the reformer is improved, so that more hydrogen gas can be produced than at the reaction equilibrium. By operating the hydrogen gas separation device, the reforming rate of the reaction and the sharing rate of the reforming reaction between the reforming device and the fuel cell device can be controlled, and the operating range of the fuel cell power generation device can be increased. That is, a flexible fuel cell power generator can be provided. Also, the separated hydrogen can be used for other purposes.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係る燃料電池発電装置によ
れば、外部改質装置と水素ガス分離装置を組み合わせて
外部改質装置内のガスから水素を分離することにより、
水素の分圧が低下するから水素を生成する改質反応が促
進され改質性能が向上する効果が得られる。
As described above, according to the fuel cell power generator of the present invention, by separating the hydrogen from the gas in the external reformer by combining the external reformer and the hydrogen gas separator,
Since the partial pressure of hydrogen decreases, the reforming reaction for producing hydrogen is promoted, and the effect of improving the reforming performance can be obtained.

また、水素ガス分離装置を操作してそれぞれの改質装置
の分担率を制御することにより、運転の柔軟性が増加す
る効果が得られる。
Further, by operating the hydrogen gas separation device to control the share of each reforming device, the effect of increasing the flexibility of operation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る燃料電池発電装置の実施例の系統
図である。 1……燃料電池発電装置、5……アノード室、 6……カソード室、7,10……改質触媒、 8……改質装置、9……反応管、 11,12,13,14,15,23,24、 25,26,27……配管、16……燃焼器、 22……水素ガス分離装置。
FIG. 1 is a system diagram of an embodiment of a fuel cell power generator according to the present invention. 1 ... Fuel cell power generator, 5 ... Anode chamber, 6 ... Cathode chamber, 7,10 ... Reforming catalyst, 8 ... Reforming device, 9 ... Reaction tube, 11, 12, 13, 14, 15, 23, 24, 25, 26, 27 ... Piping, 16 ... Combustor, 22 ... Hydrogen gas separation device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 椎名 孝次 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 野口 芳樹 東京都千代田区神田駿河台4丁目6番地 株式会社日立製作所内 (56)参考文献 特開 昭61−193371(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Shiina 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Institute of Mechanical Research, Hiritsu Manufacturing Co., Ltd. (72) Yoshiki Noguchi 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. In-house (56) Reference JP-A-61-193371 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解質板を挟持して相対向配置されたアノ
ード及びカソードからなる単位電池を、セパレータを介
して複数個積層して電池スタックを構成し、前記アノー
ドと前記セパレータのガス流路用溝によって形成される
アノード室に燃料である水素ガスを供給し、前記カソー
ドと前記セパレータのガス流路用溝によって形成される
カソード室に燃料である酸化剤ガスを供給して発電する
燃料電池と、 改質触媒を保持し、該改質触媒に炭化水素を含んでなる
燃料を流通して該燃料を改質反応により水素富化ガスに
改質する外部改質装置と、 前記アノード室内部に設けられ、改質触媒を保持し、該
改質触媒に前記水素富化ガスを流通し、改質反応により
該水素富化ガス中に含まれる未改質燃料を水素ガスに改
質する内部改質装置とを備えてなる燃料電池発電装置に
おいて、 前記外部改質装置内を流通するガスを引き出し、該引き
出されたガス中の水素ガスを分離し、該分離された水素
ガスを前記内部改質装置へ供給すると共に、該水素ガス
を分離後のガスを前記外部改質装置へ戻す水素ガス分離
装置を設けたことを特徴とする燃料電池発電装置。
1. A battery stack is constructed by stacking a plurality of unit cells each comprising an anode and a cathode, which are arranged opposite to each other with an electrolyte plate sandwiched therebetween, with a separator interposed therebetween, and a gas flow path for the anode and the separator. A fuel cell for supplying hydrogen gas, which is a fuel, to an anode chamber formed by the groove, and supplying an oxidant gas, which is a fuel, to the cathode chamber, which is formed by the gas passage groove of the cathode and the separator, to generate electricity. An external reforming device that holds a reforming catalyst and circulates a fuel containing a hydrocarbon through the reforming catalyst to reform the fuel into a hydrogen-rich gas by a reforming reaction; An internal reformer that is provided and holds a reforming catalyst, circulates the hydrogen-enriched gas through the reforming catalyst, and reforms unreformed fuel contained in the hydrogen-enriched gas into hydrogen gas by a reforming reaction. With quality device In the fuel cell power generation device according to, a gas flowing in the external reforming device is drawn, hydrogen gas in the drawn gas is separated, and the separated hydrogen gas is supplied to the internal reforming device, A fuel cell power generator comprising a hydrogen gas separation device for returning the gas after separation of the hydrogen gas to the external reforming device.
【請求項2】前記水素ガス分離装置から前記外部改質装
置へ水素ガスを分離後のガスを戻した位置より下流から
前記外部改質装置内を流通するガスを前記水素ガス分離
装置へ供給する手段と、該ガス供給手段により供給され
たガスより前記水素ガス分離装置で水素ガスを分離後の
ガスを前記外部改質装置へ戻す手段とを設けたことを特
徴とする特許請求の範囲第1項に記載の燃料電池発電装
置。
2. A gas flowing in the external reforming apparatus is supplied to the hydrogen gas separating apparatus from a position downstream from a position where the gas after separating the hydrogen gas from the hydrogen gas separating apparatus to the external reforming apparatus is returned. A means for returning the gas after the hydrogen gas is separated from the gas supplied by the gas supply means by the hydrogen gas separation device to the external reforming device. A fuel cell power generator according to item.
JP60208083A 1985-09-20 1985-09-20 Fuel cell power generator Expired - Lifetime JPH0636368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60208083A JPH0636368B2 (en) 1985-09-20 1985-09-20 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208083A JPH0636368B2 (en) 1985-09-20 1985-09-20 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JPS6269469A JPS6269469A (en) 1987-03-30
JPH0636368B2 true JPH0636368B2 (en) 1994-05-11

Family

ID=16550359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208083A Expired - Lifetime JPH0636368B2 (en) 1985-09-20 1985-09-20 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH0636368B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2899709B2 (en) * 1989-11-25 1999-06-02 石川島播磨重工業株式会社 Molten carbonate fuel cell power generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581662B2 (en) * 1985-02-20 1997-02-12 三菱電機株式会社 Fuel cell generator

Also Published As

Publication number Publication date
JPS6269469A (en) 1987-03-30

Similar Documents

Publication Publication Date Title
JP6397502B2 (en) Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method
AU760235B2 (en) Solid oxide fuel cell which operates with an excess of fuel
US5380600A (en) Fuel cell system
US20050112425A1 (en) Fuel cell for hydrogen production, electricity generation and co-production
US20110244341A1 (en) Power Generation Apparatus
JP3781942B2 (en) Solid oxide fuel cell system
JPS61114478A (en) Fuel cell device
US7648541B2 (en) Desulfurisation of fuel
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
JPH03225770A (en) Fuel battery power plant
JPH0395867A (en) Solid electrolyte fuel cell
KR20120092503A (en) High-temperature fuel cell system
CN108604695B (en) Energy storage with engine REP
JPH05163180A (en) Methanol synthesis using hydrocarbon gas as raw material
JP2791568B2 (en) Fuel cell power generation system
JPH09237635A (en) Solid electrolyte fuel cell
JP3784751B2 (en) Solid oxide fuel cell system
JPH0636368B2 (en) Fuel cell power generator
KR101782677B1 (en) Internal reforming- fuel cell system
US20050019626A1 (en) High-efficiency fuel processor via steam integration from a water-cooled stack
CN116845304A (en) Hydrogen generation using a fuel cell system with REP
JPH04101364A (en) Fuel cell
JPH0665060B2 (en) Molten carbonate fuel cell power generation system
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JP2001146405A (en) Apparatus for reforming fuel and method for operating the same