JPS6269129A - Water temperature measuring method - Google Patents

Water temperature measuring method

Info

Publication number
JPS6269129A
JPS6269129A JP20955385A JP20955385A JPS6269129A JP S6269129 A JPS6269129 A JP S6269129A JP 20955385 A JP20955385 A JP 20955385A JP 20955385 A JP20955385 A JP 20955385A JP S6269129 A JPS6269129 A JP S6269129A
Authority
JP
Japan
Prior art keywords
water
water temperature
shutter
pulse
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20955385A
Other languages
Japanese (ja)
Other versions
JPH0554897B2 (en
Inventor
Hiroshi Nakai
弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP20955385A priority Critical patent/JPS6269129A/en
Publication of JPS6269129A publication Critical patent/JPS6269129A/en
Publication of JPH0554897B2 publication Critical patent/JPH0554897B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To accurately measure water temperature by measuring the water temperature under water by intensity of Raman scattered light depending on the water temperature of laser light. CONSTITUTION:An oscillation pulse from a reference oscillator 11 is inputted to a laser generating circuit 14 via a frequency divider 12 and a trigger signal generating circuit 13 and the laser light generated from the circuit 14 is pulsed 15 with high voltage and emitted in the water from a laser light emitting lens 18 as the pulse P via an optical fiber 16 and an optical connector 17. Then, the emitted laser light generates the Raman scattered light in the water and this light comes back to an image-forming lens 21 and is detected as the pulse P and transmitted through the photoelectric surface 22A to which semiconductor material 22B is applied and generates an afterimage on the fluorescent surface 22C and this afterimage is caught by a low afterimage type image pickup tube 23. The shutter timing of a high-speed shutter tube 22 at this time is controlled by a delay variable circuit 26 and a shutter pulse generating circuit 27 and the measurement depth is set by shutter actuation time. Further, detection information at the shutter tube 22 is processed at an information processing circuit 23 and a result is displayed 24 and recorded 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、水温測定方法に関し、詳しくはレーザ光を
用いた間接水温測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a water temperature measuring method, and more particularly to an indirect water temperature measuring method using laser light.

(従来の技術〕 海洋Icl!測、漁業資源探査等においては、水中の水
温ヨ11定は重要な意義を有する。
(Prior Art) In ocean Icl! measurements, fishery resource exploration, etc., the determination of underwater water temperature has important significance.

従来、上記のような場合の水中の水温測定方法としては
、例えば温度センサを付設したベローズを水中に投下し
、深度と共に増加する水圧をベローズの変形量により検
知しこれを深度情報として、またその時の感知温度を温
度情報としてこれらを船上でキャッチする手段、或いは
、温度センサを取りつけた重錘を水中に投下し、深度情
報を重錘の沈下速度と時間との関係で積分により算出し
、その時の感知温度を温度情報として船上でキャッチす
る手段等が知られている。
Conventionally, as a method for measuring underwater water temperature in the above case, for example, a bellows equipped with a temperature sensor is dropped into the water, and the water pressure, which increases with depth, is detected by the amount of deformation of the bellows, and this is used as depth information, and at that time. A means of capturing the detected temperature on a ship as temperature information, or dropping a weight with a temperature sensor attached into the water and calculating depth information by integrating the relationship between the sinking speed of the weight and time. There is a known method for capturing the detected temperature on board the ship as temperature information.

〔従来技術の問題点〕[Problems with conventional technology]

しかしながら、上記手段は前者の手段にあっては、耐水
、耐水圧構造とする必要上、装置が大型となり取り扱い
が困難となり、また装置自体も高価となるといった欠点
がある。
However, the former method has disadvantages in that the device is large and difficult to handle due to the need for a water-resistant and water-pressure resistant structure, and the device itself is expensive.

また、後者の手段は、上記のような欠点は無い反面、重
錘の沈下速度の把握が正確に行い難く、その結果精度が
悪くなるといった欠点がある。
Further, although the latter method does not have the above-mentioned drawbacks, it has the disadvantage that it is difficult to accurately grasp the sinking speed of the weight, resulting in poor accuracy.

さらに、上記いずれの手段も、深度情報と温度情報とが
別々の手段により測定されるからこれら相互間に時間的
、距離的誤差が有っても検出の仕様が無く、更に、温度
情報は温度センサに依るから測定には応答時間を必要と
し、このため仮に深度情報が正確に得られても、当該温
度情報が深度情報に対応するとは限らず上記誤差検出の
困難性と相俟まって正確な温度情報が得られないと言っ
た欠点がある。
Furthermore, in any of the above methods, since depth information and temperature information are measured by separate means, there is no specification for detection even if there is a time or distance error between them. Measurement depends on the sensor, so response time is required for measurement. Therefore, even if depth information is obtained accurately, the temperature information does not necessarily correspond to depth information, and coupled with the difficulty of error detection mentioned above, it is difficult to accurately measure the temperature. The drawback is that accurate temperature information cannot be obtained.

〔この発明が解決する問題点〕[Problems solved by this invention]

この発明は、上記問題点に迄み、水中における温度測定
、或いは、温度分布を迅速にかつ正確に測定できる水温
測定方法を得ることを目的としてなされたものである。
SUMMARY OF THE INVENTION This invention has been made for the purpose of solving the above-mentioned problems and providing a water temperature measuring method that can quickly and accurately measure temperature or temperature distribution in water.

〔問題点を解決する技術〕[Technology to solve problems]

この発明の水温測定方法は、一定ビーム幅とされたレー
ザ光を水中に照射し、水中における前記レーザ光のラマ
ン散乱による反射光を、光吸収端波長λ、を有し、かつ
、このλ9がレーザ散乱光のスペクトル内に存るような
半導体材料を光電面に塗布してなる高速シャッタ管で受
光し、この受光強度を測定することにより水中温度に依
存するラマン散乱光の周波数変位量を検出し、8)l′
検知情(■に基づいて水温を算出することを特徴とする
ものである。
The water temperature measuring method of the present invention irradiates water with a laser beam having a constant beam width, and the reflected light due to Raman scattering of the laser beam in the water has an optical absorption edge wavelength λ, and this λ9 is The light is received by a high-speed shutter tube whose photocathode is coated with a semiconductor material that falls within the spectrum of the laser scattered light, and by measuring the intensity of the received light, the amount of frequency shift of the Raman scattered light depending on the water temperature is detected. 8) l'
It is characterized by calculating the water temperature based on the detected information (■).

〔作用〕[Effect]

水中にレーザ光を照射するど、水中の塩分濃度、温度等
の異なる氷塊、或いは、プランクトン、その他微小な浮
遊物等によって乱反射が生じる。
When a laser beam is irradiated into water, diffuse reflection occurs due to ice blocks, plankton, and other microscopic floating objects that have different salinity concentrations and temperatures in the water.

そしてレーザ光のラマン効果として知られている光散乱
現象のラマン散乱はし・−ザ光の照射された水中の水温
によって周波ft!i、変位が生しることも知られてい
る。
Raman scattering is a light scattering phenomenon known as the Raman effect of laser light. It is also known that displacement occurs.

従って、ある一定の周波数としたレーザ光を水中に照射
し、水中から帰来するラマン散乱光の周波数を測定し、
得た変位周波数と前記一定の周波数とを比較し変位量を
知ることが出来れば、この変位量からラマン散乱を生し
た深度における水温が算出可能となる。
Therefore, by irradiating a laser beam with a certain frequency into the water and measuring the frequency of the Raman scattered light returning from the water,
If the amount of displacement can be determined by comparing the obtained displacement frequency with the above-mentioned constant frequency, it becomes possible to calculate the water temperature at the depth where Raman scattering occurs from this amount of displacement.

しかしながら、ラマン散乱光の周波数測定、及び基準周
波数との比較には、複雑な検出回路、演算回路を必要と
し、またその測定も容易でない。
However, measuring the frequency of Raman scattered light and comparing it with a reference frequency requires a complicated detection circuit and arithmetic circuit, and the measurement is also not easy.

そこで、この周波数変位量をそのまま量的に捉え、直接
的に測定し得るよう、レーザ光のラマン散乱光の受光管
としての高速シャッタ管の光電面に、光吸収端波長λ、
を有し、かつ、このλ9がレーザ散乱光のスペクトル内
に有るような半導体材料をフィルタとして塗布し、周波
数変位を受光層の大小により検知し得るようにするので
ある。
Therefore, in order to quantitatively capture and directly measure this amount of frequency displacement, the optical absorption edge wavelength λ,
A semiconductor material having λ9 within the spectrum of the laser scattered light is coated as a filter so that the frequency shift can be detected by the size of the light-receiving layer.

即ち、第1図に示すように、レーザ光の成る水中深度に
おけるラマン散乱光の発光スペクトルを2g(T+)と
すれば、この発光スペクトルλ−(T+)は、測定対象
領域の水温上昇に伴ってλ、 (Tりと長波長側に移行
する。
That is, as shown in Fig. 1, if the emission spectrum of the Raman scattered light at the depth of the water where the laser beam is formed is 2g(T+), then this emission spectrum λ-(T+) will change as the water temperature in the measurement target area increases. Then, λ, (T) shifts to the longer wavelength side.

この移行領域において光吸収端波長λ、を有しかつこの
λ9が、発光スペクトルλw(T、)〜λ9(Tz)に
あるような線型変化域■、を有する半導体光吸収材料を
フィルタとして高速シャッタ管で上記のラマン散乱光を
受光すれば、光電面に入射する光、即ち光電面の透過光
強度が、水温上昇と共に長波長側に移行したラマン散乱
光に従って増加する。
In this transition region, a semiconductor light-absorbing material having an optical absorption edge wavelength λ and a linear variation range ■ such that λ9 is in the emission spectrum λw(T, ) to λ9(Tz) is used as a filter to create a high-speed shutter. When the tube receives the Raman scattered light, the light incident on the photocathode, that is, the intensity of the transmitted light of the photocathode increases as the water temperature rises and the Raman scattered light shifts to the longer wavelength side.

従って、この入射光強度さえ測定出来ればラマン散乱光
の周波数を特に測定すること無く、その変化量が量的に
検知でき、これを基に水中のラマン散乱を生じた位置に
おける水温の測定ができるのである。
Therefore, if we can measure the intensity of this incident light, we can quantitatively detect the amount of change in the Raman scattered light without specifically measuring its frequency, and based on this, we can measure the water temperature at the location where Raman scattering occurs in the water. It is.

なお、第1図において、λ、 (TO)は、透過光強度
の測定を正確に行う為の比較パルスであり、使用レーザ
の出射光パルスとほぼ一定の透過光強度を有する長波長
レーザからの出射光パルスである。
In Fig. 1, λ, (TO) is a comparison pulse for accurately measuring the transmitted light intensity, and is a comparison pulse from a long wavelength laser whose transmitted light intensity is almost constant with the emitted light pulse of the laser used. This is an emitted light pulse.

この比較パルスを、使用レーザのパルスと交互に発射す
ることにより光コネクタIA失、水質、及び光ファイバ
の電送損失の変動等による不定誤差が除去され測定精度
の向上が図れる。
By emitting the comparison pulses alternately with the pulses of the laser used, uncertain errors due to loss of optical connector IA, water quality, fluctuations in transmission loss of the optical fiber, etc. can be removed, and measurement accuracy can be improved.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

第2図はこの発明の方法を実施するためのW 71の構
成ブロック図である。
FIG. 2 is a block diagram of a W 71 for carrying out the method of the present invention.

第2図に示した装置は、レーザ光発射部lとレーザ光受
光部2とから成る。
The device shown in FIG. 2 consists of a laser beam emitting section l and a laser beam receiving section 2. The device shown in FIG.

レーザ光発射部1は、4NJ、発振器IIよりの発振パ
ルスが、分周器12を介して人力されるレーザ用トリガ
信号発生回路13、トリガ信号により一定発振波長のレ
ーザ光を発生させるレーザ光発生回路14、レーザ光を
高圧パルス化する高圧パルサ15、パルス化したレーザ
光を光ファイバ16、光コネクタ17を介し水中へ発射
するレーザ光発射レンズ18から構成されている。
The laser beam emitting unit 1 includes a 4NJ, a laser trigger signal generation circuit 13 to which an oscillation pulse from an oscillator II is manually input via a frequency divider 12, and a laser beam generator that generates a laser beam of a constant oscillation wavelength by the trigger signal. It is comprised of a circuit 14, a high-voltage pulser 15 that converts laser light into high-pressure pulses, and a laser beam emitting lens 18 that emits the pulsed laser beam into the water via an optical fiber 16 and an optical connector 17.

また、レーザ光受光部2は結像レンズ21よりの入射光
(ラマン散乱光)を、半導体材料22Bを塗布した光電
面22Aで受ける高速度シャッタ管22、高速度シャッ
タ管22の螢光面22Cの残像を検知する低残像型撮像
管23、ラマン散乱光の帰来残像強度を検出しこれに基
づき水温を算出する情報処理回路23、この処理結果を
表示する表示記録器24及び25、並びに上記高速度シ
ャッタ管22の作動タイミングを制御するための、前記
分周器12よりの基準パルスを任意に遅延させ得る遅延
可変回路26、このパルスによりシャッタパルスを発生
させる、シャッタパルス発生回路27より構成されてい
る。
Further, the laser light receiving section 2 receives incident light (Raman scattered light) from the imaging lens 21 with a photocathode 22A coated with a semiconductor material 22B, and a fluorescent surface 22C of the high speed shutter tube 22. A low afterimage type image pickup tube 23 that detects the afterimage of the Raman scattered light, an information processing circuit 23 that detects the return afterimage intensity of the Raman scattered light and calculates the water temperature based on this, display recorders 24 and 25 that display the processing results, and the high temperature It is comprised of a variable delay circuit 26 that can arbitrarily delay the reference pulse from the frequency divider 12 for controlling the operating timing of the speed shutter tube 22, and a shutter pulse generation circuit 27 that generates a shutter pulse using this pulse. ing.

上記において、レーザ光発射部1及びレーザ光受光部2
の諸元の一例を示せばそれぞれ下表の通りである。
In the above, the laser beam emitting section 1 and the laser beam receiving section 2
Examples of the specifications are shown in the table below.

レーザ光発射部諸元表 filレーザ光発生回路14 種類      Rbレーザ光発生管 発振波長    6943人 繰返し周期   4P/l1in 励起      Xeランプ (2)高圧パルサ15(Qスイッチ) 種類    クリブトシャニン色素セル尖頭出力   
 3  MW以上 パルス幅    20n3 パルス種    ジャイアントパルス 繰返し周期   4P/lll1n (3)レーザ光発射レンズ18 ビーム広がり角 近距M  40度 遠距N 1度 レーザ光受光部諸元表 +11高速度シャッタ管22 シャッタ時間   2Qns 遅延時間    350.044〜350.888μ5
(2)光電面塗布半導体材料 種類      5i−APD (3)結像レンズ21 焦点距離   F =2.5 f=15〜150禽1(
ズーム) (4)蟻像管23 種類     イメージディセクタ 応答感度   数ns 第3図は上記実施例の作動タイミングを示したタイムチ
ャートである。
Laser light emitting unit specification table fil Laser light generation circuit 14 Type Rb laser light generator tube oscillation wavelength 6943 people Repetition period 4P/l1in Excitation Xe lamp (2) High pressure pulser 15 (Q switch) Type Krybtochanin dye cell peak output
3 MW or more Pulse width 20n3 Pulse type Giant pulse repetition period 4P/lll1n (3) Laser beam emitting lens 18 Beam spread angle Close distance M 40 degrees Long distance N 1 degree Laser beam receiver specification table + 11 High speed shutter tube 22 Shutter Time 2Qns Delay time 350.044~350.888μ5
(2) Photocathode coated semiconductor material type 5i-APD (3) Imaging lens 21 Focal length F = 2.5 f = 15-150 1 (
(4) Dovetail image tube 23 Type Image dissector response sensitivity Several ns FIG. 3 is a time chart showing the operation timing of the above embodiment.

レーザ光発生回路14により発生されたレーザ光は、高
圧パルサ15により高圧パルス化され、光ファイバ16
、光コネクタ17を経てレーザ光発射レンズ18より水
中にパルスPとして発射される。
The laser beam generated by the laser beam generation circuit 14 is converted into high-voltage pulses by the high-voltage pulser 15, and then connected to the optical fiber 16.
, and is emitted as a pulse P into the water from the laser beam emitting lens 18 via the optical connector 17.

発射レーザ光は、水中でラマン散乱を生じ、これが結像
レンズ21へと帰来し、パルスpとして検知され、半導
体材料22Bを塗布した光電面22Aを透過し螢光面2
2Cに残像を生じさせ、これが低残像型撮像管23によ
って捉えられる。この時の高速度シャック管22のシャ
ッタタイミングは、遅延可変回路26、シャッタパルス
発生回路27により制御され、シャッタ動作時間によっ
てエコ一時間、即ち測定深度が設定される。 なお、高
速度シャッタ管22での検知情報は、情報処理回路23
により処理され、結果が表示器24に表示されると共に
、記録器25に記録される。
The emitted laser beam causes Raman scattering in water, returns to the imaging lens 21, is detected as a pulse p, and is transmitted through the photocathode 22A coated with a semiconductor material 22B, and then passes through the fluorescent surface 2.
2C, which is captured by the low-afterimage type image pickup tube 23. The shutter timing of the high-speed shack tube 22 at this time is controlled by a variable delay circuit 26 and a shutter pulse generation circuit 27, and the eco time, that is, the measurement depth is set by the shutter operation time. Note that the information detected by the high-speed shutter tube 22 is sent to the information processing circuit 23.
The results are displayed on the display 24 and recorded on the recorder 25.

従って、上記遅延可変回路26、シャッタパルス発生回
路27の連続的可変制御により、水深に伴って連続した
水温が測定可能となる。
Therefore, by continuously variable control of the variable delay circuit 26 and the shutter pulse generation circuit 27, it is possible to continuously measure the water temperature as the water depth increases.

〔効果〕〔effect〕

この発明は、以上説明したように水中の水温をレーザ光
の水温に依存するラマン散乱光の強度を測定することに
より測定するから、応答時間が殆ど0となり、瞬時のう
ちに各水深における水温が測定可能であり、しかも、そ
の誤差は±0.5℃以内に収めることができ、極めて正
確な水温測定が出来るのである。
As explained above, this invention measures the water temperature in water by measuring the intensity of Raman scattered light that depends on the water temperature of the laser beam, so the response time is almost 0 and the water temperature at each water depth can be determined instantly. It is possible to measure water temperature, and the error can be kept within ±0.5°C, making it possible to measure water temperature extremely accurately.

また、ラマン散乱光の水温に依存する周波数の変位を帰
来光の強度として検知するようにしたから、複雑な周波
数測定回路も必要とせず、簡単に測定出来る等、種々の
効果を有する。
Furthermore, since the frequency displacement of the Raman scattered light that depends on the water temperature is detected as the intensity of the returning light, there is no need for a complicated frequency measurement circuit, and there are various effects such as easy measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の作用説明図、第2図はこの発明の
方法を実施する装置のブロック図、第3図は、この発明
の実施例の作動説明図である。 T2圓 zzc(蛍#:菌)
FIG. 1 is an explanatory diagram of the operation of the present invention, FIG. 2 is a block diagram of an apparatus for carrying out the method of the invention, and FIG. 3 is an explanatory diagram of the operation of an embodiment of the invention. T2 Enzzc (Firefly #: Bacteria)

Claims (1)

【特許請求の範囲】[Claims] (1)一定ビーム幅とされたレーザ光を水中に照射し、
水中における前記レーザ光のラマン散乱による反射光を
、光吸収端波長λ_9を有し、かつ、このλ_9がレー
ザ散乱光のスペクトル内に有るような半導体材料を光電
面に塗布してなる高速シャッタ管で受光し、この受光強
度を測定することにより水中温度に依存するラマン散乱
光の周波数変位量を検出し、該検知情報に基づいて水温
を算出することを特徴とする水温測定方法
(1) Irradiate the water with a laser beam with a constant beam width,
A high-speed shutter tube whose photocathode is coated with a semiconductor material that allows reflected light due to Raman scattering of the laser light in water to have an optical absorption edge wavelength λ_9, and where λ_9 is within the spectrum of the laser scattered light. A method for measuring water temperature, characterized in that the amount of frequency displacement of Raman scattered light that depends on the water temperature is detected by measuring the received light intensity, and the water temperature is calculated based on the detected information.
JP20955385A 1985-09-20 1985-09-20 Water temperature measuring method Granted JPS6269129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20955385A JPS6269129A (en) 1985-09-20 1985-09-20 Water temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20955385A JPS6269129A (en) 1985-09-20 1985-09-20 Water temperature measuring method

Publications (2)

Publication Number Publication Date
JPS6269129A true JPS6269129A (en) 1987-03-30
JPH0554897B2 JPH0554897B2 (en) 1993-08-13

Family

ID=16574722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20955385A Granted JPS6269129A (en) 1985-09-20 1985-09-20 Water temperature measuring method

Country Status (1)

Country Link
JP (1) JPS6269129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297888A (en) * 1991-03-27 1992-10-21 Koden Electron Co Ltd Underwater laser radar
JPH11173918A (en) * 1997-12-12 1999-07-02 Mitsubishi Heavy Ind Ltd Temperature distribution measuring instrument for inside of combustor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297888A (en) * 1991-03-27 1992-10-21 Koden Electron Co Ltd Underwater laser radar
JPH11173918A (en) * 1997-12-12 1999-07-02 Mitsubishi Heavy Ind Ltd Temperature distribution measuring instrument for inside of combustor

Also Published As

Publication number Publication date
JPH0554897B2 (en) 1993-08-13

Similar Documents

Publication Publication Date Title
CA1338358C (en) Method and apparatus for determining k-factor and depth measurements
EP0060280B1 (en) Ocean depth sounding from the air by laser beam
US5694931A (en) Method and apparatus for measuring concentration of absorptive constituent in scattering medium
WO2017177967A1 (en) Underwater detection system and underwater detection method
US7652773B2 (en) Enhanced detection of acousto-photonic emissions in optically turbid media using a photo-refractive crystal-based detection system
EP0956496B1 (en) Method and apparatus for detecting an object
CN108037311A (en) A kind of high-precision seawater velocity measuring method based on acoustooptical effect
US4679936A (en) Process and apparatus for measuring optical density changes and transit times in transparent materials
US3476483A (en) Motion measuring apparatus
JP2006226727A (en) Absorption measuring instrument
JPS6269129A (en) Water temperature measuring method
TUDOR et al. LiDAR sensors used for improving safety of electronic-controlled vehicles
JPS642903B2 (en)
JPH0469546A (en) Marine laser observation device using multitrace simultaneous light measurement system
US3864041A (en) Doppler-shift velocity measurement system using a two-frequency laser
JPS5582068A (en) Measuring unit for water depth using laser
US3713739A (en) Method for gauging the linear cross-sectional dimensions of moving rolled products and an apparatus for its realization
RU2790930C1 (en) Method for determining vertical intensity profile of optical turbulence in atmosphere
JPH0533731B2 (en)
SU1073639A1 (en) Method of measuring atmosphere refraction index structural constant
SU888667A1 (en) Device for measuring water absorption ratio
Hess Optical microphone for the detection of hidden helicopters
SU815492A1 (en) Method of measuring roughness of super-smooth surfaces
RU1822958C (en) Method for measuring coefficient of thermal conductivity
JP2520911B2 (en) Flow rate / flow meter