JPH04297888A - Underwater laser radar - Google Patents

Underwater laser radar

Info

Publication number
JPH04297888A
JPH04297888A JP3087825A JP8782591A JPH04297888A JP H04297888 A JPH04297888 A JP H04297888A JP 3087825 A JP3087825 A JP 3087825A JP 8782591 A JP8782591 A JP 8782591A JP H04297888 A JPH04297888 A JP H04297888A
Authority
JP
Japan
Prior art keywords
light
section
sea
laser beam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3087825A
Other languages
Japanese (ja)
Inventor
Shigeru Nagarego
流 郷   繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP3087825A priority Critical patent/JPH04297888A/en
Publication of JPH04297888A publication Critical patent/JPH04297888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To obtain a novel measuring apparatus which can measure the temperature of seawater in addition to detection of the depth of the sea, the state of the seabed, fish schools, etc. CONSTITUTION:A light-transmitting unit 10 transmitting a pulse-shaped laser light of a prescribed wavelength into the sea, a first light-receiving unit 20 receiving a reflected light of this transmitted laser light from the sea, and a second light-receiving unit 30 receiving a Raman scattered light of the transmitted laser light from the sea and outputting a difference in a light reception level in respect to a plurality of different wavelengths set in the vicinity of a transmitted wave length, are provided. A distance calculating unit 40 calculating a distance to a target or the like based on a required time from transmission of the laser light by the light-transmitting unit to reception of the reflected light, and a temperature calculating unit 40 calculating the temperature of the sea from the difference in the light reception level outputted from the second light-receiving unit, are provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、海洋の深度、海底の
様子、魚群の探知、海水温の観測など海洋の調査に広汎
に利用可能な海中用レーザレーダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater laser radar which can be widely used for ocean research such as ocean depth, seabed condition, fish school detection, and seawater temperature observation.

【0002】0002

【従来の技術】従来、海洋の深度、海底の様子、魚群の
探知、などには超音波レーダ装置が利用されている。
2. Description of the Related Art Conventionally, ultrasonic radar devices have been used to detect the depth of the ocean, the state of the seabed, and schools of fish.

【0003】0003

【発明が解決しようとする課題】上記従来の超音波レー
ダは、測定精度、取扱の容易さ、信頼性、測定に必要な
時間、価格など種々の点でほぼ満足すべき状況にある。 しかしながら、この超音波レーダでは、魚群の生態の観
測の場合のように、海洋の深度、海底の様子、魚影の濃
さの観測などと同時にしばしば必要になる海水温の観測
を行うことができず、温度センサの投入などによる温度
観測作業が別途必要になるという問題がある。
SUMMARY OF THE INVENTION The conventional ultrasonic radar described above is generally satisfactory in various respects such as measurement accuracy, ease of handling, reliability, time required for measurement, and cost. However, with this ultrasonic radar, it is not possible to observe seawater temperature, which is often necessary, at the same time as observing the depth of the ocean, the appearance of the seafloor, and the density of fish shadows, as in the case of observing the ecology of schools of fish. First, there is a problem in that a separate temperature observation work is required, such as by installing a temperature sensor.

【0004】サーミスタなどの温度センサを使用して深
度方向の海水温の分布を測定しようとすれば、温度セン
サを船舶から鉛直下方に垂らす必要がありこのため船舶
を停止させなければならず、測定に時間がかかるという
問題がある。
[0004] If a temperature sensor such as a thermistor is used to measure the distribution of seawater temperature in the depth direction, it is necessary to hang the temperature sensor vertically downward from the ship, which requires the ship to stop. The problem is that it takes time.

【0005】[0005]

【課題を解決するための手段】本発明の海中用レーザレ
ーダは、a.海中に所定波長のパルス状のレーザ光を送
出する送光部と、b1.この送出されたレーザ光の反射
光を海中から受ける第1の受光部と、b2.前記送出さ
れたレーザ光のラマン散乱光を海中から受け、前記所定
波長の近傍に設定された複数の異なる波長について受光
レベルを出力する第2の受光部と、c1.前記送光部に
よるレーザ光の送出後前記第1の受光部による反射光の
受光までの時間差に基き海中でレーザ光を反射させた標
的までの距離を算定する距離算定部と、c2.前記第2
の受光部から出力される受光レベルの差から海水の温度
を算定する温度算定部とを備えている。
Means for Solving the Problems The underwater laser radar of the present invention has the following features: a. a light transmitting section that transmits a pulsed laser beam of a predetermined wavelength into the sea; b1. a first light receiving section that receives reflected light of the transmitted laser light from underwater; b2. a second light receiving unit that receives the Raman scattered light of the transmitted laser light from underwater and outputs received light levels for a plurality of different wavelengths set in the vicinity of the predetermined wavelength; c1. a distance calculation unit that calculates the distance to the target from which the laser beam is reflected in the sea based on the time difference between when the laser beam is transmitted by the light transmission unit and when the reflected light is received by the first light reception unit; c2. Said second
and a temperature calculation section that calculates the temperature of seawater from the difference in the light reception levels output from the light reception sections.

【0006】[0006]

【実施例】図1は、本発明の一実施例に係わる海中用レ
ーザレーダの構成を示すブロック図であり、10は送光
部、20は第1の受光部、30は第2の受光部、40は
距離と温度の算定部である。
[Embodiment] FIG. 1 is a block diagram showing the configuration of an underwater laser radar according to an embodiment of the present invention, in which 10 is a light transmitting section, 20 is a first light receiving section, and 30 is a second light receiving section. , 40 is a distance and temperature calculating section.

【0007】送光部10は、海中に送出する大出力のパ
ルス状のレーザ光を発生するYAGレーザ11と、これ
に励起用の電気パルス信号を供給するパルスジェネレー
タ12と、YAGレーザ11から出力されるパルス状の
レーザ光の一部を分割するビームスプリッタ13と、こ
のビームスプリッタで分割されたレーザ光を電気信号に
変換する受光ヘッド14と、この受光ヘッドから出力さ
れる電気信号を増幅する増幅器15とを備えている。
The light transmitting unit 10 includes a YAG laser 11 that generates a high-output pulsed laser beam to be transmitted into the sea, a pulse generator 12 that supplies an electric pulse signal for excitation to the YAG laser 11, and an output from the YAG laser 11. A beam splitter 13 that splits a part of the pulsed laser light that is generated, a light receiving head 14 that converts the laser light split by this beam splitter into an electrical signal, and amplifying the electrical signal output from this light receiving head. The amplifier 15 is also provided.

【0008】第1の受光部20は、送光部10から海中
に送出されたレーザ光の反射光とレーザ光の経路の海水
から放出されるラマン散乱光とが混じったものを海中か
ら受けて反射光のみを選択的に透過させる光学フィルタ
21と、この光学フィルタを透過した反射光を電気信号
に変換する受光ヘッド22と、この変換された電気信号
を増幅する増幅器23と、上記海中から受けた反射光と
散乱光の一部を第2の受光部に分配するビームスプリッ
タ24とを備えている。
[0008] The first light receiving unit 20 receives from the sea a mixture of the reflected light of the laser beam sent into the sea from the light transmitting unit 10 and the Raman scattered light emitted from the seawater in the path of the laser beam. An optical filter 21 that selectively transmits only the reflected light, a light receiving head 22 that converts the reflected light that has passed through this optical filter into an electrical signal, and an amplifier 23 that amplifies the converted electrical signal. The beam splitter 24 distributes a portion of the reflected light and scattered light to the second light receiving section.

【0009】第2の受光部30は、送光部10から海中
に送出されたレーザ光の反射光とラマン散乱光とが混じ
ったものを海中から受けて特定の第1,第2の波長のラ
マン散乱光のみを選択的に透過させる光学フィルタ31
a,31bと、これらの光学フィルタを透過した散乱光
を電気信号に変換する受光ヘッド32a,32bと、こ
の変換された電気信号を増幅する差動増幅器33a,3
3bと、上記海中から受けた反射光と散乱光の一部を光
学フィルタ31a,31bに分配するビームスプリッタ
34と反射鏡35とを備えている。
[0009] The second light receiving unit 30 receives from the sea a mixture of reflected light and Raman scattered light of the laser beam sent into the sea from the light transmitting unit 10, and detects specific first and second wavelengths. Optical filter 31 that selectively transmits only Raman scattered light
a, 31b, light receiving heads 32a, 32b that convert the scattered light transmitted through these optical filters into electrical signals, and differential amplifiers 33a, 3 that amplify the converted electrical signals.
3b, a beam splitter 34 and a reflecting mirror 35 which distribute part of the reflected light and scattered light received from the sea to the optical filters 31a and 31b.

【0010】距離と温度の算定部40は、上記各増幅器
15,23,33a,33bから出力されるアナログ電
圧値を所定の時間間隔でサンプリングしながらディジタ
ル信号に変換するサンプリング部41と、このサンプリ
ングされたデータを内蔵のRAMに保存しながら処理す
るパソコン42と、このパソコン42が作成・編集した
データを保存するフロッピーディスク43とを備えてい
る。
The distance and temperature calculation unit 40 includes a sampling unit 41 that converts the analog voltage values output from the amplifiers 15, 23, 33a, and 33b into digital signals while sampling them at predetermined time intervals, and The computer 42 includes a personal computer 42 that processes the data while storing it in a built-in RAM, and a floppy disk 43 that stores the data created and edited by the personal computer 42.

【0011】送光部のYAGレーザ11から放射される
レーザ光の波形の典型的なものは、半値幅10ns〜1
5nsの孤立パルスの形状を呈しており、波長532n
mの第2高調波が選択的に放射される。ビームスプリッ
タ13を透過したパルス状のレーザ光は、典型的には、
収束レンズを保持しつつ海中への水密性の導光路を形成
する送光用の鏡筒(図示省略)を通して海中に入射され
る。
The typical waveform of the laser beam emitted from the YAG laser 11 of the light transmitting section has a half width of 10 ns to 1
It has the shape of a 5 ns isolated pulse and has a wavelength of 532 nm.
The second harmonic of m is selectively radiated. The pulsed laser light transmitted through the beam splitter 13 is typically
The light enters the sea through a light transmitting lens barrel (not shown) that holds a converging lens and forms a watertight light guide path into the sea.

【0012】海中に入射したレーザ光の経路内に魚群な
ど不透光性の標的が存在すればそのような魚群からの反
射光が発生し、そのような魚群などによって反射される
ことなく海底まで到達すれば海底からの反射光が発生す
る。このようにして発生した反射光は、入射光と逆向き
の経路を辿って第1,第2の受光部20,30に入射す
る。第1,第2の受光部20,30の前段には、典型的
には、収束レンズの保持を海中しつつ海中への水密性の
導光路を形成する受光用の鏡筒(図示省略)が配置され
る。この受光用の鏡筒と送光用の鏡筒は、典型的には、
それぞれの光軸が測定範囲の最遠点近傍において交差す
るように隣接して互いにほぼ平行に一体化して配置され
る。
[0012] If there is a non-transparent target such as a school of fish in the path of the laser beam entering the sea, reflected light from such a school of fish will occur, and the light will reach the sea floor without being reflected by such a school of fish. Once it reaches the surface, light will be reflected from the ocean floor. The reflected light thus generated enters the first and second light receiving sections 20 and 30 following a path in the opposite direction to that of the incident light. In front of the first and second light receiving sections 20 and 30, there is typically a light receiving lens barrel (not shown) that holds a converging lens underwater and forms a watertight light guiding path into the sea. Placed. The lens barrel for receiving light and the lens barrel for transmitting light are typically
They are arranged adjacent to each other and substantially parallel to each other so that their respective optical axes intersect near the farthest point of the measurement range.

【0013】レーザ光の経路の海中からは上記反射光に
加えてラマン散乱光が発生する。このラマン散乱光のス
ペクトル(ラマンスペクトル)は、送光部10から送出
される原レーザ光からの波数のずれ量(cmー1)とし
て表わされる波長と、この波長の成分のレベルの相対値
との関係で表現される。海水のラマンスペクトルは、図
2に示すようなものとなり、温度に依存して変化する。 レーザ光の経路に沿って発生した散乱光の一部は、入射
光と逆向きの経路を辿って第1,第2の受光部20,3
0に入射する。
[0013] In addition to the above-mentioned reflected light, Raman scattered light is generated from the underwater path of the laser beam. The spectrum of this Raman scattered light (Raman spectrum) is the relative value of the wavelength expressed as the amount of deviation (cm-1) in wave number from the original laser beam sent out from the light transmitting section 10 and the level of the component of this wavelength. It is expressed in the relationship of The Raman spectrum of seawater is as shown in Figure 2, and changes depending on temperature. A part of the scattered light generated along the path of the laser beam follows a path in the opposite direction to the incident light and reaches the first and second light receiving sections 20 and 3.
0.

【0014】ビームスプリッタ24を透過して第1の受
光部20に入射する反射光と散乱光は、送光部10から
送出されたレーザ光の波長と等しい波長の反射光のみを
選択的に透過する光学フィルタ21を通して受光ヘッド
22に導かれる。受光ヘッド22は、アバランシェ・フ
ォト・ダイオード(APD)や、光電子増倍管などで構
成され、入射した反射光をそのレベルに応じた電圧値の
電気信号に変換し、サンプリング部41に供給する。
The reflected light and scattered light that pass through the beam splitter 24 and enter the first light receiving section 20 selectively transmit only the reflected light having a wavelength equal to the wavelength of the laser beam sent out from the light transmitting section 10. The light is guided to the light-receiving head 22 through an optical filter 21 . The light receiving head 22 is composed of an avalanche photo diode (APD), a photomultiplier tube, and the like, and converts the incident reflected light into an electrical signal with a voltage value corresponding to the level of the reflected light, and supplies the electrical signal to the sampling section 41 .

【0015】サンプリング部41は、パルスジェネレー
タ12からのトリガによって動作を開始し、パソコン4
2から距離測定の動作モードが指定されている場合には
、増幅器23から出力されるアナログ電圧値をパルスの
半値幅よりも十分狭い所定の時間間隔でサンプリングし
ながらディジタル信号に変換し、このディジタルデータ
をパソコン41に供給する。
The sampling unit 41 starts operating in response to a trigger from the pulse generator 12, and
2, when the distance measurement operation mode is specified, the analog voltage value output from the amplifier 23 is converted into a digital signal while being sampled at a predetermined time interval sufficiently narrower than the half-width of the pulse. Data is supplied to the personal computer 41.

【0016】ポンピング用の電気信号がパルスジェネレ
ータ12からYAGレーザ11に供給されてからレーザ
光が放射されるまでの時間はポンピングのたびにばらつ
く。そこで、レーザ光の放射の時点を基準点として確定
するために、YAGレーザ11の出力の一部をビームス
プリッタ13で受光ヘッド14に導き、増幅器15を経
てサンプリング部41に供給している。
[0016] The time from when the electric signal for pumping is supplied from the pulse generator 12 to the YAG laser 11 until the laser beam is emitted varies each time the pumping is performed. Therefore, in order to determine the point of emission of the laser beam as a reference point, a part of the output of the YAG laser 11 is guided to the light receiving head 14 by the beam splitter 13, and is supplied to the sampling section 41 via the amplifier 15.

【0017】パソコン41は、サンプリング部41から
受けたディジタルデータを内蔵のRAMに保存しながら
処理することにより、レーザ光の放射時から反射光が出
現するまでの時間差を検出し、この時間差を反射光を発
生させた標的までの距離に換算して内蔵のメモリやフロ
ッピーディスク43に保存する。
The personal computer 41 processes the digital data received from the sampling section 41 while storing it in its built-in RAM, thereby detecting the time difference between the emission of the laser beam and the appearance of the reflected light, and detecting the time difference between the emission of the laser beam and the appearance of the reflected light. The distance to the target that generated the light is converted and stored in the built-in memory or floppy disk 43.

【0018】ビームスプリッタ24,34と反射鏡35
を通った反射光と散乱光は、第2の受光部30の光学フ
ィルタ31aと31bに入射する。光学フィルタ31a
と31bの透過波長は、送光部10から送出された原レ
ーザ光の波長から所定値だけずれた互いに異なる値に設
定されている。これら二つの透過波長の設定値は、図2
に示すラマンスペクトルにおいて相対レベルの温度依存
性がほぼ最大の点とほぼ最小の点、典型的には、波数の
ずれ量が3200cmー1と3400cmー1に相当す
る波長に設定される。受光ヘッド32aと32bは、前
段の光学フィルタ31aと31bを透過したラマン散乱
光を電気信号に変換する。
Beam splitters 24, 34 and reflecting mirror 35
The reflected light and scattered light that have passed through the light receiving section 30 enter the optical filters 31a and 31b of the second light receiving section 30. Optical filter 31a
The transmission wavelengths of and 31b are set to different values that are shifted by a predetermined value from the wavelength of the original laser beam sent out from the light sending section 10. The setting values of these two transmission wavelengths are shown in Figure 2.
In the Raman spectrum shown in , the points where the temperature dependence of the relative level is approximately the maximum and the points where the temperature dependence is approximately the minimum are typically set at wavelengths corresponding to wave number deviations of 3200 cm-1 and 3400 cm-1. The light receiving heads 32a and 32b convert the Raman scattered light that has passed through the optical filters 31a and 31b in the previous stage into electrical signals.

【0019】増幅器33aと33bは、受光ヘッド32
aと32bから出力される電気信号を増幅し、サンプリ
ング部41に供給する。サンプリング部41は、パソコ
ン42から温度測定の動作モードが指定されている場合
には、増幅器33aと33bのの出力を交互にサンプリ
ングしてディジタル信号に変換し、パソコン42に転送
する。パソコン41は、サンプリング部41から受けた
ディジタル信号の差分の相対値を内蔵のRAMを利用し
て処理することにより海水の温度を算定し、フロッピー
ディスク43に保存する。この海水の温度を示すラマン
散乱光は、送出レーザ光の経路に沿って次々に発生し、
深い箇所など遠い箇所で発生したものほど遅れて出現す
る。従って、サンプリング部41から出力されるディジ
タルデータの時間変化によって海中の温度分布を検出す
ることができる。
The amplifiers 33a and 33b are connected to the light receiving head 32.
The electrical signals output from a and 32b are amplified and supplied to the sampling section 41. When the temperature measurement operation mode is specified by the personal computer 42, the sampling section 41 alternately samples the outputs of the amplifiers 33a and 33b, converts them into digital signals, and transfers them to the personal computer 42. The personal computer 41 calculates the seawater temperature by processing the relative value of the difference between the digital signals received from the sampling section 41 using its built-in RAM, and stores the calculated seawater temperature on the floppy disk 43. This Raman scattered light, which indicates the temperature of the seawater, is generated one after another along the path of the transmitted laser beam.
Things that occur in deeper places or farther away appear later. Therefore, the temperature distribution in the sea can be detected based on the time change of the digital data output from the sampling section 41.

【0020】以上、送光部10と算定部40とを反射光
による標的までの距離の測定とラマン散乱光による海水
の温度の測定とに共用する構成について説明した。しか
しながら、それぞれの測定に専用の送光部と算定部とを
個々に設置し、距離測定用の送光部、受光部及び算定部
から成る距離測定系と、温度測定用の送光部、受光部及
び算定部から成る温度測定系とを設置する構成とするこ
ともできる。
The configuration in which the light transmitting section 10 and the calculating section 40 are used both for measuring the distance to a target using reflected light and for measuring the temperature of seawater using Raman scattered light has been described above. However, a dedicated light transmitting section and a calculation section are installed individually for each measurement, and a distance measurement system consisting of a light transmitting section, a light receiving section, and a calculating section for measuring distance, and a light transmitting section and a light receiving section for temperature measurement are used. It is also possible to have a configuration in which a temperature measurement system consisting of a temperature measurement section and a calculation section is installed.

【0021】[0021]

【発明の効果】本発明は上述したような構成であるから
、魚群の生態の観測の場合のように、海洋の深度、海底
の様子、魚影の濃さの観測などと同時にしばしば必要に
なる海水温の観測を船舶の航行状態の下で行うことが可
能になり、利便性が大幅に向上する。
[Effects of the Invention] Since the present invention has the above-described configuration, it is often necessary to simultaneously observe the depth of the ocean, the appearance of the seabed, and the density of fish shadows, such as in the case of observing the ecology of schools of fish. It will now be possible to observe seawater temperatures while the ship is sailing, greatly improving convenience.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の海中用レーザレーダの構成
を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of an underwater laser radar according to an embodiment of the present invention.

【図2】海水のラマンスペクトルを示す概念図である。FIG. 2 is a conceptual diagram showing a Raman spectrum of seawater.

【符号の説明】[Explanation of symbols]

10      送光部 11      YAGレーザ 12      パルスジェネレータ 20      第1の受光部 21      光学フィルタ 22      受光ヘッド 30      第2の受光部 31a,b   光学フィルタ 32a,b   受光ヘッド 33a,b   増幅器 40      距離と温度の算定部 41      サンプリング部 42      パソコン 10 Light transmitting section 11 YAG laser 12 Pulse generator 20 First light receiving section 21 Optical filter 22 Light receiving head 30 Second light receiving section 31a,b Optical filter 32a, b Light receiving head 33a,b Amplifier 40 Distance and temperature calculation section 41 Sampling section 42 PC

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】a.海中に所定波長のパルス状のレーザ光
を送出する送光部と、b1.この送出されたレーザ光の
反射光を海中から受ける第1の受光部と、b2.前記送
出されたレーザ光のラマン散乱光を海中から受け、前記
所定波長の近傍に設定された複数の異なる波長について
受光レベルを出力する第2の受光部と、c1.前記送光
部によるレーザ光の送出後前記第1の受光部による反射
光の受光までの時間差に基き海中でレーザ光を反射させ
た標的までの距離を算定する距離算定部と、c2.前記
第2の受光部から出力される受光レベルの差から海水の
温度を算定する温度算定部とを備えたことを特徴とする
海中用レーザレーダ。
[Claim 1] a. a light transmitting section that transmits a pulsed laser beam of a predetermined wavelength into the sea; b1. a first light receiving section that receives reflected light of the transmitted laser light from underwater; b2. a second light receiving unit that receives the Raman scattered light of the transmitted laser light from underwater and outputs received light levels for a plurality of different wavelengths set in the vicinity of the predetermined wavelength; c1. a distance calculation unit that calculates the distance to the target from which the laser beam is reflected in the sea based on the time difference between when the laser beam is transmitted by the light transmission unit and when the reflected light is received by the first light reception unit; c2. An underwater laser radar comprising: a temperature calculation section that calculates the temperature of seawater from a difference in light reception levels output from the second light reception section.
【請求項2】a.海中にパルス状のレーザ光を送出する
送光部と、b.この送出されたレーザ光の反射光を海中
から受ける受光部と、c.前記送光部によるレーザ光の
送出後前記受光部による反射光の受光までの時間差に基
き海中でレーザ光を反射させた標的までの距離を算定す
る距離算定部とを備えたことを特徴とする海中用レーザ
レーダ。
[Claim 2] a. a light transmitting unit that transmits a pulsed laser beam into the sea; b. a light receiving unit that receives reflected light of the transmitted laser light from underwater; c. The apparatus further comprises a distance calculation section that calculates the distance to the target from which the laser beam is reflected in the sea based on the time difference between when the laser beam is transmitted by the light transmission section and when the reflected light is received by the light reception section. Undersea laser radar.
【請求項3】a.海中に所定波長のパルス状のレーザ光
を送出する送光部と、b.この送出されたレーザ光のラ
マン散乱光を海中から受け、前記所定波長の近傍に設定
された複数の異なる波長について受光レベルを出力する
受光部とc.この受光部から出力される受光レベルの差
から海水の温度を算定する温度算定部とを備えたことを
特徴とする海中用レーザレーダ。
[Claim 3] a. a light transmitting unit that transmits a pulsed laser beam of a predetermined wavelength into the sea; b. a light receiving unit that receives the Raman scattered light of the transmitted laser light from underwater and outputs light receiving levels for a plurality of different wavelengths set in the vicinity of the predetermined wavelength; c. An underwater laser radar comprising: a temperature calculation section that calculates the temperature of seawater from the difference in the light reception level output from the light reception section.
【請求項4】前記温度算定部は、前記受光部から出力さ
れる受光レベルの差の時間的変化の様子から前記レーザ
光の進路に沿う海水の温度分布を算定することを特徴と
する請求項3記載の海中用レーザレーダ。
4. The temperature calculation section calculates the temperature distribution of the seawater along the course of the laser beam from a temporal change in a difference in light reception levels output from the light reception section. 3. The underwater laser radar described in 3.
JP3087825A 1991-03-27 1991-03-27 Underwater laser radar Pending JPH04297888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087825A JPH04297888A (en) 1991-03-27 1991-03-27 Underwater laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087825A JPH04297888A (en) 1991-03-27 1991-03-27 Underwater laser radar

Publications (1)

Publication Number Publication Date
JPH04297888A true JPH04297888A (en) 1992-10-21

Family

ID=13925732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087825A Pending JPH04297888A (en) 1991-03-27 1991-03-27 Underwater laser radar

Country Status (1)

Country Link
JP (1) JPH04297888A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160089A (en) * 1992-11-20 1994-06-07 Penta Ocean Constr Co Ltd Marine depth measuring apparatus
JP2007171179A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Light propagation method of detection target
JP2009192217A (en) * 2008-02-12 2009-08-27 National Maritime Research Institute Lidar apparatus and object detection method
JP2014139576A (en) * 2014-03-06 2014-07-31 National Maritime Research Institute Object detection method, lidar device, and environment measuring method
JP2014182025A (en) * 2013-03-19 2014-09-29 Mitsubishi Heavy Ind Ltd Fuel component-measuring apparatus and method
US9029800B2 (en) 2011-08-09 2015-05-12 Palo Alto Research Center Incorporated Compact analyzer with spatial modulation and multiple intensity modulated excitation sources
US9164037B2 (en) 2007-01-26 2015-10-20 Palo Alto Research Center Incorporated Method and system for evaluation of signals received from spatially modulated excitation and emission to accurately determine particle positions and distances
US9638637B2 (en) 2007-01-26 2017-05-02 Palo Alto Research Center Incorporated Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity
CN109764976A (en) * 2019-03-08 2019-05-17 东北大学 Fibre optical sensor that is a kind of while measuring seawater thermohaline depth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648524A (en) * 1979-09-28 1981-05-01 Mitsubishi Heavy Ind Ltd Temperature measuring method utilizing raman beam
JPS59140524A (en) * 1983-01-31 1984-08-11 Konishiroku Photo Ind Co Ltd Temperature controller
JPS61111431A (en) * 1984-11-05 1986-05-29 Furuno Electric Co Ltd Method for measuring temperature in water
JPS6269129A (en) * 1985-09-20 1987-03-30 Furuno Electric Co Ltd Water temperature measuring method
JPS6225976B2 (en) * 1980-12-16 1987-06-05 Mitsubishi Heavy Ind Ltd

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648524A (en) * 1979-09-28 1981-05-01 Mitsubishi Heavy Ind Ltd Temperature measuring method utilizing raman beam
JPS6225976B2 (en) * 1980-12-16 1987-06-05 Mitsubishi Heavy Ind Ltd
JPS59140524A (en) * 1983-01-31 1984-08-11 Konishiroku Photo Ind Co Ltd Temperature controller
JPS61111431A (en) * 1984-11-05 1986-05-29 Furuno Electric Co Ltd Method for measuring temperature in water
JPS6269129A (en) * 1985-09-20 1987-03-30 Furuno Electric Co Ltd Water temperature measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160089A (en) * 1992-11-20 1994-06-07 Penta Ocean Constr Co Ltd Marine depth measuring apparatus
JP2007171179A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Light propagation method of detection target
US9164037B2 (en) 2007-01-26 2015-10-20 Palo Alto Research Center Incorporated Method and system for evaluation of signals received from spatially modulated excitation and emission to accurately determine particle positions and distances
US9638637B2 (en) 2007-01-26 2017-05-02 Palo Alto Research Center Incorporated Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity
JP2009192217A (en) * 2008-02-12 2009-08-27 National Maritime Research Institute Lidar apparatus and object detection method
US9029800B2 (en) 2011-08-09 2015-05-12 Palo Alto Research Center Incorporated Compact analyzer with spatial modulation and multiple intensity modulated excitation sources
JP2014182025A (en) * 2013-03-19 2014-09-29 Mitsubishi Heavy Ind Ltd Fuel component-measuring apparatus and method
JP2014139576A (en) * 2014-03-06 2014-07-31 National Maritime Research Institute Object detection method, lidar device, and environment measuring method
CN109764976A (en) * 2019-03-08 2019-05-17 东北大学 Fibre optical sensor that is a kind of while measuring seawater thermohaline depth

Similar Documents

Publication Publication Date Title
CN101620273B (en) Method for detecting underwater object by relevance imaging
EP1728066B1 (en) Fluorometer
US4518254A (en) Ocean depth sounding from the air by laser beam
NL8105428A (en) METHOD AND APPARATUS FOR DETERMINING HYDROCARBONS UNDERWATER
WO2017177967A1 (en) Underwater detection system and underwater detection method
JPH04297888A (en) Underwater laser radar
CN114858264B (en) Sound velocity measurement device and method for submarine surveying and sonar surveying
JP2007085758A (en) Lidar device
KR20090121609A (en) Multi channel laser range finder
KR101879641B1 (en) Turbidity Measuring Method By Using Airbone Bathymetry LIDAR Wave Form Analysis
CN113552069A (en) Laser ultrasonic underwater target detection method and system based on interferometric synthetic aperture
JP3094917B2 (en) Optical fiber strain measurement device
CN103620340A (en) Coupled multi-wavelength confocal systems for distance measurements
RU160836U1 (en) DEVICE FOR REGISTRATION OF REINFORCEMENT STRENGTH AND REDUCTION IN THE ATMOSPHERE
CN115290175B (en) Sea water sound velocity measuring device and method and ocean distance measuring system
JP2750609B2 (en) Gas detector
US9702819B1 (en) Surface vessel wake detection
CN214585993U (en) Laser ultrasonic underwater target detection device based on interferometric synthetic aperture
CN111103592B (en) High-sensitivity point-element array correlation detection laser depth sounding system
JPH0611414A (en) Measuring method for loss in optical fiber
US3891859A (en) Pulsed, variable beam pattern optical measuring device
US4176954A (en) Equipment for measuring the length of dielectric elements transmitting optical frequencies
JP3651412B2 (en) Distance measuring device and distance measuring method
JP2012047709A (en) Optical fiber sensing system
WO2021229708A1 (en) Position measurement system, position measurement device, and position measurement method