JPH0533731B2 - - Google Patents
Info
- Publication number
- JPH0533731B2 JPH0533731B2 JP20955485A JP20955485A JPH0533731B2 JP H0533731 B2 JPH0533731 B2 JP H0533731B2 JP 20955485 A JP20955485 A JP 20955485A JP 20955485 A JP20955485 A JP 20955485A JP H0533731 B2 JPH0533731 B2 JP H0533731B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- water
- laser beam
- speed
- scattered light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 238000006073 displacement reaction Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
〔産業上の利用分野〕
この発明は、水温測定装置に関し、詳しくはレ
ーザ光を用いた間接水温測定装置に関する。
〔従来の技術〕
海洋観測、漁業資源探査等においては、水中の
水温測定は重要な意義を有する。
従来、上記のような場合の水中の水温測定手段
としては、例えば温度センサを付設したベローズ
を水中に投下し、深度と共に増加する水圧をベロ
ーズの変形量により検知しこれを深度情報とし
て、またその時の感知温度を温度情報としてこれ
らを船上でキヤツチする手段、或いは、温度セン
サを取りつけた重錘を水中に投下し、深度情報を
重錘の沈下速度と時間との関係で積分により算出
し、その時の感知温度を温度情報として船上でキ
ヤツチする手段等が知られている。
〔従来の技術の問題点〕
しかしながら、上記手段は前者の手段にあつて
は、耐水、耐水圧構造とする必要上、装置が大型
となり取り扱いが困難となり、また装置自体も高
価となるといつた欠点がある。
また、後者の手段は、上記のような欠点は無い
半面、重錘の沈下速度の把握が正確に行い難く、
その結果精度が悪くなるといつた欠点がある。
さらに、上記いずれの手段も、深度情報と温度
情報とが別々の手段により測定されるからこれら
相互間に時間的、距離的誤差が有つても検出の仕
様が無く、更に、温度情報は温度センサに依るか
ら測定には応答時間を必要とし、このため仮に深
度情報が正確に得られても、当該温度情報が深度
情報に対応するとは限らず上記誤差検出の困難性
と相俟まつて正確な温度情報が得られないと言つ
た欠点がある。
〔この発明が解決する問題点〕
この発明は、上記問題点に鑑み、水中における
温度測定、或いは、温度分布を迅速にかつ正確に
測定できる水温測定装置を提供することを目的と
してなされたものである。
〔問題点を解決する技術〕
この発明の水温測定装置は、一定ビーム幅とさ
れたレーザ光を水中に照射するレーザ光発射装置
と、該レーザ光の水中におけるブリルアン散乱光
の帰来光を受光する受光装置と、受光したブリル
アン散乱光の周波数を測定し、水中音速に依存す
るブリルアン散乱光の周波数変位量を測定する周
波数測定装置と、予めブリルアン散乱光の周波数
変位と音速との相関データを記憶させた記憶回路
を有し、前記周波数測定装置で得た周波数変位を
検索しこれに基き音速を出力する情報検索回路
と、得た音速から温度と水中音速との相関より水
温を算出し算出結果を表示、記録する演算回路と
から構成されたことを特徴とするものである。
〔作用〕
水中にレーザ光を照射すると、レーザ光に依つ
て超音波が発生し、これに伴つてレーザ光が散乱
する。
このレーザ光の散乱はブリルアン散乱として一
般に周知であり、またこのレーザ光のブリルアン
散乱は超音波の伝播速度によつて周波数変位を受
けることも知られている。
従つて、ある一定の周波数としたレーザ光を水
中に照射し、水中から帰来するブリルアン散乱光
の周波数を測定し、得た変位周波数と前記一定の
周波数とを比較し変位量を知ることが出来れば、
この変位量からブリルアン散乱を生じた深度にお
ける水中音速が算出可能であり、さらにこの水中
音速から温度と音速との相関関係より水温を算出
することが可能となる。
しかし、ブリルアン散乱光の変位周波数を測定
し得ても、これを基に超音波の伝播速度を算出
し、さらに該演算値から水中の温度を算出するの
は容易ではなく、多点観測の場合には演算処理に
時間が掛かりすぎ、例えば、魚撈中などで魚の泳
層を水温を情報として探索しつつ網入れする場合
等には到底実用に耐えない。
そこで、ブリルアン散乱光の超音波に依存する
周波数変位量の絶対性に着目し、周波数変位量と
音速との相関値を予め算出しこれをデータとして
記憶させておき、音速を得るのに算出によらず、
検索により求め、該値を水温算出の基礎値とする
ことにより迅速な水温表示を可能としたのであ
る。
〔実施例〕
次に、この発明の実施例について説明する。
第1図はこの発明の方法を実施するための装置
の構成ブロツク図である。
第1図に示した装置は、レーザ光発射部1とレ
ーザ光受光部2及び記憶演算回路3から構成され
ている。
レーザ光発射部1は、基準発振器11よりの発
振パルスが、分周器12を介して入力されるレー
ザ用トリガ信号発生回路13、トリガ信号により
一定発振波長のレーザ光を発生させるレーザ光発
生回路14、レーザ光を高圧パルス化する高圧パ
ルサ15、パルス化したレーザ光を光フアイバ1
6、光コネクタ17を介し水中へ発射するレーザ
光発射レンズ18から構成されている。
また、レーザ光受光部2は結像レンズ21より
の入射光(ブリルアン散乱光)を、前記レーザ光
発射タイミングに対し一定の時間差で受光し得る
ような高速度シヤツタ管22、この高速度シヤツ
タ管22の受光がポラライザスプリツタ23を介
して入力され、この光の周波数を測定するフアブ
リ・ペロー光干渉計24、そして高速度シヤツタ
管22の作動タイミングを制御作動するための回
路として、分周器12よりの基準発振パルスをト
リガ遅延回路29A及びトリガ遅延可変回路29
Bにより遅延させ、これにより高速度シヤツタ管
22のシヤツタ22Bを制御する構成とされてい
る。
記憶演算回路3は、上記フアブリ・ペロー光干
渉計24で得た周波数よりブリルアン周波数シフ
トを検出する検出回路31、予めブリルアン周波
数シフト量と水中音速との相関がテーブルとして
記憶され前記測定ブリルアン周波数シフト量に対
応する水中音速を検索し、水中音速を出力する検
索回路32、この水中音速より水温を算出し、か
つ記憶する演算回路33、そして演算結果を表示
する表示装置34とから構成されている。
上記においてレーザ光受光部2の高速度シヤツ
タ管22を制御する基準発振パルスの遅延タイミ
ングは、レーザ光発射後ブリルアン散乱を生じた
測定位置を特定するためのものであり、対象とす
る深度距離と遅延タイミングとは一例として下表
のような関係とされる。
[Industrial Field of Application] The present invention relates to a water temperature measuring device, and more particularly to an indirect water temperature measuring device using laser light. [Prior Art] In ocean observation, fishing resource exploration, etc., underwater temperature measurement has important significance. Conventionally, as a means of measuring underwater water temperature in the above case, for example, a bellows equipped with a temperature sensor is dropped into the water, and the water pressure, which increases with depth, is detected by the amount of deformation of the bellows, and this is used as depth information, and at that time. A method is to capture the detected temperature on board the ship as temperature information, or by dropping a weight with a temperature sensor attached into the water and calculating depth information by integrating the relationship between the sinking speed of the weight and time. There is a known method for capturing the detected temperature on board the ship as temperature information. [Problems with the prior art] However, the former method has drawbacks such as the need for a water-resistant and water-pressure resistant structure, which makes the device large and difficult to handle, and the device itself is expensive. There is. In addition, although the latter method does not have the above-mentioned drawbacks, it is difficult to accurately determine the sinking speed of the weight.
As a result, there is a drawback that accuracy deteriorates. Furthermore, in any of the above methods, since depth information and temperature information are measured by separate means, there is no specification for detection even if there is a time or distance error between them. Therefore, even if depth information is obtained accurately, the temperature information does not necessarily correspond to the depth information, and together with the difficulty of error detection mentioned above, it is difficult to obtain accurate measurements. The drawback is that temperature information cannot be obtained. [Problems to be Solved by the Invention] In view of the above-mentioned problems, the present invention has been made for the purpose of providing a water temperature measuring device that can quickly and accurately measure temperature or temperature distribution in water. be. [Technology for Solving Problems] The water temperature measuring device of the present invention includes a laser beam emitting device that irradiates water with a laser beam having a constant beam width, and receives the return light of the Brillouin scattered light of the laser beam in the water. A light receiving device, a frequency measuring device that measures the frequency of the received Brillouin scattered light and the amount of frequency displacement of the Brillouin scattered light that depends on the underwater sound speed, and stores in advance correlation data between the frequency displacement of the Brillouin scattered light and the sound speed. an information retrieval circuit that has a memory circuit that searches for the frequency displacement obtained by the frequency measuring device and outputs the speed of sound based on the frequency displacement; and a calculation result that calculates the water temperature from the correlation between the temperature and the speed of sound in water from the obtained sound speed. and an arithmetic circuit for displaying and recording. [Function] When laser light is irradiated into water, ultrasonic waves are generated by the laser light, and the laser light is scattered accordingly. This scattering of laser light is generally known as Brillouin scattering, and it is also known that this Brillouin scattering of laser light undergoes frequency displacement depending on the propagation speed of the ultrasonic wave. Therefore, it is possible to find out the amount of displacement by irradiating a laser beam with a certain frequency into the water, measuring the frequency of the Brillouin scattered light returning from the water, and comparing the obtained displacement frequency with the above-mentioned certain frequency. Ba,
From this amount of displacement, it is possible to calculate the underwater sound speed at the depth where Brillouin scattering occurs, and from this underwater sound speed, it is also possible to calculate the water temperature from the correlation between temperature and sound speed. However, even if it is possible to measure the displacement frequency of the Brillouin scattered light, it is not easy to calculate the propagation velocity of the ultrasound based on this and then calculate the temperature of the water from the calculated value. It takes too much time to process the calculations, and it cannot be put to practical use, for example, when searching for fish in the swimming layer using the water temperature as information while placing nets. Therefore, we focused on the absoluteness of the amount of frequency displacement that depends on the ultrasound of Brillouin scattered light, calculated the correlation value between the amount of frequency displacement and the speed of sound in advance, stored this as data, and used it in the calculation to obtain the speed of sound. Regardless,
By finding this value through a search and using it as the basic value for calculating the water temperature, it is possible to quickly display the water temperature. [Example] Next, an example of the present invention will be described. FIG. 1 is a block diagram of an apparatus for carrying out the method of the present invention. The apparatus shown in FIG. 1 is composed of a laser beam emitting section 1, a laser beam receiving section 2, and a storage/arithmetic circuit 3. The laser beam emitting unit 1 includes a laser trigger signal generation circuit 13 to which an oscillation pulse from a reference oscillator 11 is input via a frequency divider 12, and a laser beam generation circuit that generates a laser beam of a constant oscillation wavelength by the trigger signal. 14. High-voltage pulser 15 that converts the laser beam into high-voltage pulses, and optical fiber 1 that converts the pulsed laser beam into
6. Consists of a laser beam emitting lens 18 that emits into the water via an optical connector 17. Further, the laser beam receiving section 2 includes a high-speed shutter tube 22 capable of receiving the incident light (Brillouin scattered light) from the imaging lens 21 with a certain time difference with respect to the laser beam emission timing, and this high-speed shutter tube. 22 is inputted via a polarizer splitter 23, a Fabry-Perot optical interferometer 24 measures the frequency of this light, and a frequency divider is used as a circuit for controlling the operation timing of the high-speed shutter tube 22. Trigger delay circuit 29A and trigger delay variable circuit 29
B, thereby controlling the shutter 22B of the high-speed shutter tube 22. The storage calculation circuit 3 includes a detection circuit 31 that detects a Brillouin frequency shift from the frequency obtained by the Fabry-Perot optical interferometer 24, and a detection circuit 31 that stores in advance the correlation between the amount of Brillouin frequency shift and the underwater sound velocity as a table, and stores the correlation between the amount of Brillouin frequency shift and the underwater sound velocity, and calculates the measured Brillouin frequency shift. It is comprised of a search circuit 32 that searches for the underwater sound speed corresponding to the amount and outputs the underwater sound speed, an arithmetic circuit 33 that calculates and stores the water temperature from this underwater sound speed, and a display device 34 that displays the calculation results. . In the above, the delay timing of the reference oscillation pulse that controls the high-speed shutter tube 22 of the laser beam receiver 2 is for specifying the measurement position where Brillouin scattering occurs after the laser beam is emitted, and is based on the target depth and distance. As an example, the delay timing has a relationship as shown in the table below.
【表】【table】
この発明は以上説明したように、水中の水温を
測定する場合、レーザ光を媒体とするから瞬時の
内に測定が完了し、多点観測であつても迅速に水
温データの収集が可能である。
しかも、ブリルアン周波数シフト量から水温を
算出する過程においては、計算処理ではなく検索
処理を用いるから測定結果の表示も迅速に行え、
海流観測における水温分布の測定や、魚撈中等に
おいて網入れ深度を調節するための情報源として
も十分に使用できる等種々の効果を有する。
As explained above, when measuring the water temperature in water, this invention uses laser light as a medium, so the measurement can be completed within an instant, and water temperature data can be collected quickly even when observing from multiple points. . Moreover, in the process of calculating water temperature from the amount of Brillouin frequency shift, search processing is used instead of calculation processing, so measurement results can be displayed quickly.
It has various effects, such as being able to be used to measure water temperature distribution during ocean current observation, and as an information source for adjusting netting depth during fishing.
第1図はこの発明の実施例の構成ブロツク図、
第2図はブリルアン周波数シフト量と水中超音波
の速度及び周波数の相関を示すグラフである。
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is a graph showing the correlation between the amount of Brillouin frequency shift and the speed and frequency of underwater ultrasound.
Claims (1)
するレーザ光発射装置と、該レーザ光の水中にお
けるブリルアン散乱光の帰来光を受光する受光装
置と、受光したブリルアン散乱光の周波数を測定
し、水中音速に依存するブリルアン散乱光の周波
数変位量を測定する周波数測定装置と、予めブリ
ルアン散乱光の周波数変位と音速との相関データ
を記憶させた記憶回路を有し、前記周波数測定装
置で得た周波数変位を検索しこれに基き音速を出
力する情報検索回路と、得た音速から温度を水中
音速との相関より水温を算出し算出結果を表示、
記録する演算回路とから構成されたことを特徴と
する水温測定装置。1. A laser beam emitting device that irradiates a laser beam with a constant beam width into water, a light receiving device that receives the return light of the Brillouin scattered light in the water of the laser beam, and measures the frequency of the received Brillouin scattered light, It has a frequency measuring device for measuring the amount of frequency displacement of Brillouin scattered light depending on the underwater sound speed, and a storage circuit in which correlation data between the frequency displacement of Brillouin scattered light and the sound speed is stored in advance, and the frequency displacement amount obtained by the frequency measuring device An information retrieval circuit that searches for frequency displacement and outputs the speed of sound based on this, calculates water temperature from the obtained sound speed by correlating it with the underwater sound speed, and displays the calculation results.
A water temperature measuring device comprising: a recording arithmetic circuit;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20955485A JPS6269130A (en) | 1985-09-20 | 1985-09-20 | Water temperature measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20955485A JPS6269130A (en) | 1985-09-20 | 1985-09-20 | Water temperature measuring instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6269130A JPS6269130A (en) | 1987-03-30 |
JPH0533731B2 true JPH0533731B2 (en) | 1993-05-20 |
Family
ID=16574741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20955485A Granted JPS6269130A (en) | 1985-09-20 | 1985-09-20 | Water temperature measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6269130A (en) |
-
1985
- 1985-09-20 JP JP20955485A patent/JPS6269130A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6269130A (en) | 1987-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050150309A1 (en) | Blood flow velocity measurement | |
WO2017177967A1 (en) | Underwater detection system and underwater detection method | |
JPH0235954B2 (en) | ||
US4922467A (en) | Acoustic detection apparatus | |
JPS58173478A (en) | Method and device for measuring standoff in boring hole | |
JP2002500767A (en) | Method and apparatus for detecting an object | |
US5379270A (en) | Acoustic-optic sound velocity profiler | |
Hanafy et al. | Quantitative real-time pulsed Schlieren imaging of ultrasonic waves | |
CN110243320A (en) | A kind of Tunnel Lining Cracks depth non-contact measurement method and device | |
CN108037311A (en) | A kind of high-precision seawater velocity measuring method based on acoustooptical effect | |
KR100832839B1 (en) | Thickness measurement instrumentation and method using ultrasonic longitudinal wave and shear wave | |
CN205787179U (en) | A kind of undersea detection system | |
JPH0533731B2 (en) | ||
EP0462149B1 (en) | Acoustic detection apparatus | |
US3174128A (en) | Combined depth monitoring and seismic surveying apparatus | |
JP3052532B2 (en) | Ultrasonic transmission inspection equipment | |
JPH0554897B2 (en) | ||
US20210302555A1 (en) | Lidar polarimetry | |
RU2092802C1 (en) | Method of determination of pressure levels and spatial positioning of noise emitting sources of moving object | |
EP0048623A2 (en) | Underwater seismic testing | |
JPH05237108A (en) | Ultrasonic transmission inspecting instrument | |
Ohta | A precise and continuous monitoring system of the distance between the near-bottom instruments and the sea floor | |
JPH08285704A (en) | Inner temperature measuring apparatus | |
RU140840U1 (en) | MULTI-BEAM ECHO SOUNDER-2 | |
RU2720268C1 (en) | Laser range finder |