JPS6266574A - Air cooling type fuel cell - Google Patents

Air cooling type fuel cell

Info

Publication number
JPS6266574A
JPS6266574A JP60207592A JP20759285A JPS6266574A JP S6266574 A JPS6266574 A JP S6266574A JP 60207592 A JP60207592 A JP 60207592A JP 20759285 A JP20759285 A JP 20759285A JP S6266574 A JPS6266574 A JP S6266574A
Authority
JP
Japan
Prior art keywords
cooling air
flow path
cell
air
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60207592A
Other languages
Japanese (ja)
Inventor
Tadashi Komatsu
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60207592A priority Critical patent/JPS6266574A/en
Publication of JPS6266574A publication Critical patent/JPS6266574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make temperature uniform over the whole area inside a cell by forming in parallel cooling air passages in every layer, dividing into plural sections, and alternately passing cooling air from an opposite direction. CONSTITUTION:Cooling air passage 19 formed in parallel in every layer in a cell stack 1 is formed so that an inlet of the passage and an outlet are alternately positioned in an adjacent section. The flow direction of cooling air introduced from a manifold 4 or 5 is opposite in adjacent flow passages. Since the cooling air passages 19 have an opposite flow direction of cooling air between adjacent passages, heat transfer is made between high temperature region of the outlet and low temperature region of the inlet of adjacent cooling air passages inside a gas separating plate. Thereby, temperature distribution inside the cell is made uniform.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、燃料と酸化剤の反応ガスを供給して電気エ
ネルギーを取り出す燃料電池において、運転時に電池内
部に発生する生成熱を冷却空気によって除熱するように
した空冷式燃料電池、特にその冷却空気供給系統の構成
に関する。
This invention relates to an air-cooled fuel cell in which heat generated inside the cell during operation is removed by cooling air in a fuel cell that extracts electrical energy by supplying a reaction gas of fuel and an oxidizing agent, and in particular, the cooling of the fuel cell. Regarding the configuration of the air supply system.

【従来技術とその問題点】[Prior art and its problems]

周知のように燃料電池の発電時に発生する生成熱の除熱
方法としては、大別して水冷式と空冷式とがある、この
うち水冷式は、単電池の積層体としてなるセルスタック
の層内に4〜7個の単電池積層体置きに冷却板を介装し
、この冷却板に冷却水バイブを配管して外部より冷却水
を供給する方法である。この場合に燃料電池は運転温度
が高い程高い発電効率が得られるが、電池構成部材の耐
熱性、電極触媒の担体および電解質と接している電極材
料の腐食スピード等を考慮して通常は電池温度を170
〜230℃程度にコントロールして運転を行っている。 したがつて前記の冷却水は150〜200℃程度に温度
調節する必要があり、このために冷却水の供給系統には
ボイラー等を含む水温調節装置、および冷却配管内での
スケール発生を防止する純水製造装置等の付帯設備が必
要となり発電システム全体としての設備費が嵩む。 一方、空冷式は水冷式と同様に単電池の敗セル毎に冷却
空気流路を形成した冷却板を介装した方式、あるいはセ
ルスタックを構成する各単電池毎にそのガス分離板に冷
却空気流路を形成して外部から冷却空気を供給する方式
とがあるが、いずれの方式も先記した水冷式で必要とし
たボイラーや純水製造装置等を必要とせず、発電システ
ムの構成が簡単で設備費も安価で済む等の利点がある。 このように空冷式は水冷式と比べて、冷却用の熱媒であ
る空気の取扱いが簡単でかつ安全性も高く、しかも設備
がコンパクトで安価となる等の利点があり、例えば数L
OK―規模の移動用電源等として使用する燃料電池の冷
却方式として広く採用されている。 しかして空冷式の燃料電池では前記した利点のある反面
、燃料電池の温度コントロールが難しいという問題があ
る。これは燃料電池の作動温度と常温の外気をそのまま
冷却空気として使用する空気温度(外気温)との差が大
きいことに起因している。すなわち前記のように燃料電
池の作動温度は電池構成部材の許容範囲内で最高温度に
コントロールすることが望ましいが、冷却空気流路に沿
った燃料電池内部の温度分布に付いて見ると、低温外気
の導入される冷却空気流路の入口側に近い領域では温度
が低く、出口側領域に行く程電池内部の生成熱が加わっ
て温度が高まる。このために冷却空気流路の出口部分の
温度を電池の許容最高温度に抑える必要があり、この結
果として電池内部全域の温度を平均すると許容最高温度
よりかなり低くなる。しかも燃料電池の発電効率は先記
のように作動温度に比例するので、このままでは充分に
高い発電効率を得ることができない、したがって燃料電
池の発電効率を高めるには、電池内部の最高温度地点を
許容最高温度に抑えつつ、かつ電池内部全域での平均温
度をできるだけ許容最高温度に近い温度まで高めて均熱
化を図るような冷却手段を講じることが必要となる。 一方、上記問題に対処して電池内部での平均温度を高め
つつ均熱化を図る方法として、従来では電池内の冷却空
気流路出口から排出した高温の冷却空気の一部をその入
口側に還流させるように循環送風L7、入口より導入す
る冷却空気温度を高めると同時に電池内部を通過する風
量を増加させ、電池内部における冷却空気流路の入口−
出口の温度差を少なくして平均温度の上昇および温度分
布の均等化を図るようにした方法が一部で試みられてい
る。しかしながらこの冷却空気の循環送風方式では、循
環風量を多くする程電池の平均温度を上昇できる反面、
このために使用する冷却空気循環用のプロアの動力も大
きくなり発電設備全体としての綜合効率の向上が難しい
、また循環空気を通風する配管は大風量を流す必要から
その管径が大きくなり、結果として発電設備が大形化し
て空冷式の大きな特長であるコンパクト化が困難となる
。さらに加えて循環ブロアは150〜180℃の高温に
耐える大容量タイプのものが必要であり、この結果とし
て設備費の価格上昇、保全性の低下も否めない。
As is well known, there are two main methods for removing heat generated during power generation by fuel cells: water-cooled and air-cooled. This is a method in which a cooling plate is interposed between four to seven unit cell stacks, a cooling water vibrator is piped to the cooling plate, and cooling water is supplied from the outside. In this case, the higher the operating temperature of the fuel cell, the higher the power generation efficiency can be obtained, but the battery temperature is usually 170
It is operated at a controlled temperature of ~230°C. Therefore, it is necessary to adjust the temperature of the cooling water to about 150 to 200°C, and for this purpose, the cooling water supply system includes a water temperature control device including a boiler, etc., and the formation of scale in the cooling piping is prevented. Ancillary equipment such as a water purification device is required, which increases equipment costs for the entire power generation system. On the other hand, the air-cooled type, like the water-cooled type, is a type in which a cooling plate with a cooling air flow path is provided for each failed unit cell, or a cooling plate is installed in the gas separation plate for each unit cell that makes up the cell stack. There is a method of forming a flow path and supplying cooling air from the outside, but either method does not require the boiler or pure water production equipment required for the water-cooled method mentioned above, and the configuration of the power generation system is simple. This has advantages such as low equipment costs. In this way, compared to water-cooled systems, air-cooled systems have the advantage that the air, which is the heat medium for cooling, is easy to handle, is highly safe, and the equipment is compact and inexpensive.
It is widely used as a cooling method for fuel cells used as OK-scale mobile power sources. However, although air-cooled fuel cells have the above-mentioned advantages, they also have the problem that it is difficult to control the temperature of the fuel cell. This is due to the large difference between the operating temperature of the fuel cell and the air temperature (outside temperature) at which room temperature outside air is used as cooling air. In other words, as mentioned above, it is desirable to control the operating temperature of the fuel cell to the highest temperature within the allowable range of the cell components, but when looking at the temperature distribution inside the fuel cell along the cooling air flow path, it is found that The temperature is low in the area near the inlet side of the cooling air flow path where the cooling air is introduced, and the temperature increases as the heat generated inside the battery is added toward the outlet side area. For this reason, it is necessary to suppress the temperature at the exit portion of the cooling air flow path to the maximum allowable temperature of the battery, and as a result, when the temperature of the entire interior of the battery is averaged, it becomes considerably lower than the maximum allowable temperature. Moreover, as mentioned above, the power generation efficiency of a fuel cell is proportional to the operating temperature, so it is not possible to obtain a sufficiently high power generation efficiency as is. Therefore, in order to increase the power generation efficiency of a fuel cell, the highest temperature point inside the cell must be It is necessary to take a cooling means to equalize the temperature by suppressing the temperature to the maximum allowable temperature and increasing the average temperature throughout the battery interior to a temperature as close to the maximum allowable temperature as possible. On the other hand, as a method to deal with the above problem and to equalize the temperature while increasing the average temperature inside the battery, conventionally, a part of the high temperature cooling air discharged from the outlet of the cooling air flow path inside the battery is transferred to the inlet side. Circulating air L7 is used to increase the temperature of the cooling air introduced from the inlet so as to cause reflux, while at the same time increasing the amount of air passing through the inside of the battery.
Some attempts have been made to reduce the temperature difference at the outlet to increase the average temperature and equalize the temperature distribution. However, with this method of circulating cooling air, the average temperature of the battery can be raised as the amount of circulating air increases.
For this purpose, the power of the proar used for circulating cooling air becomes large, making it difficult to improve the overall efficiency of the power generation equipment as a whole.Also, the diameter of the pipes that carry the circulating air has to be large because it is necessary to flow a large amount of air. As a result, the power generation equipment becomes larger, making it difficult to make it compact, which is a major feature of air-cooled systems. In addition, the circulating blower must be of a large capacity type that can withstand high temperatures of 150 to 180 DEG C. As a result, equipment costs increase and maintainability is undeniably reduced.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、冷
却空気の通流に伴う燃料電池内部の温度分布を簡単な手
段により電池内部の全域で均等化し、これにより電池の
発電効率をより一層高めることができるようにした空冷
式燃料電池、特にその冷却空気供給系統の構成を提供す
ることを目的とする。
This invention was developed in consideration of the above points, and it is an object of the present invention to equalize the temperature distribution inside the fuel cell due to the flow of cooling air over the entire area inside the cell by a simple means, thereby further increasing the power generation efficiency of the cell. An object of the present invention is to provide an air-cooled fuel cell, in particular, a configuration of a cooling air supply system thereof.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明はセルスタック内
に形成された冷却空気流路を各層毎に左右に並ぶ複数条
の並列流路となし、かつこの並列流路を複数区分に区分
けした上で各区分の流路入口、出口を隣接区分の間で互
い違いに開口するように定め、各流路区分の間で冷却空
気を交互に逆方向より通流するように構成したことによ
り、冷却空気流路を構成している基材の熱伝導を利用し
て電池内部、特に電極面全域での温度分布の均等化を図
るようにしたものである。 すなわち上記の構成によれば、冷却空気流路の各区分単
位に付いて見れば、その流路入口側と出口側との間の空
気温度差は大であるが、隣接区分の相互間では冷却空気
流路の入口と出口が近接して並んでおり、したがって流
路を構成している基材の熱伝導により電池内部の全域で
見るとその温度分布は冷却空気流路の入口側から出口側
に至る全域で平均化される。これにより電池反応の行わ
れる燃料電極、酸化剤電極の電極面部分では冷却空気流
路の入口、出口側を通流する冷却空気温度の影響を殆ど
受けることなく電極面全域で均一な温度分布が得られる
ようになり、この結果として電極反応も電極面全域で均
等となりより一層高い発電効率が得られるようになる。
In order to achieve the above object, the present invention makes the cooling air flow path formed in the cell stack into a plurality of parallel flow paths aligned left and right for each layer, and divides the parallel flow path into a plurality of sections. The flow path inlet and outlet of each section are opened alternately between adjacent sections, and the cooling air is configured to flow alternately from opposite directions between each flow path section. The heat conduction of the base material constituting the flow path is used to equalize the temperature distribution inside the battery, especially over the entire electrode surface. In other words, according to the above configuration, when looking at each section of the cooling air flow path, the air temperature difference between the inlet side and the outlet side of the flow path is large, but there is a large difference in air temperature between adjacent sections. The inlet and outlet of the air flow path are lined up closely, and therefore, due to the heat conduction of the base material that makes up the flow path, the temperature distribution throughout the battery is from the inlet side to the outlet side of the cooling air flow path. averaged over the entire range. As a result, the electrode surfaces of the fuel electrode and oxidizer electrode, where cell reactions occur, are hardly affected by the temperature of the cooling air flowing through the inlet and outlet sides of the cooling air flow path, and a uniform temperature distribution is achieved over the entire electrode surface. As a result, the electrode reaction becomes uniform over the entire electrode surface, resulting in even higher power generation efficiency.

【発明の実施例】[Embodiments of the invention]

第1図ないし第3図はこの発明の実施例を示すものであ
り、第1図は燃料電池のセルスタックと反応ガスおよび
冷却空気供給用マニホールドとの配置構成を示した分解
斜視図、第2図は平面図として表し−た第1図における
冷却空気の供給系統図、第3図は第1図におけるセルス
タックの部分構成断面図であり、図中1はセルスタック
、2は燃料ガス供給用のマニホールド、3は酸化剤ガス
としての空気供給用のマニホールド、4および5は冷却
空気供給用のマニホールドを示す。 ここで前記セルスタック1は周知のように単電池の積層
体としてなりかつその詳細構造は第3図に示すごとくで
あり、セルスタック1を構成する各単電池11はりん酸
等の電解液を含浸保持したマトリックス12と、該マト
リックス12を挟んでその両側に対向する燃料電極13
.酸化剤電極14と、さらにこの電極13.14の外側
に重ね合わせたリブ付セパレータと呼ばれるガス分離板
15.16との積層体としてなる。ここで前記のガス分
離板15.16には電極13.14に接する内面側に燃
料ガス流路17゜酸化剤流路18が形成されている。ま
たこの反応ガス流路は第1図に明示されているようにそ
の入口から発して途中Uターンして出口に至るU字形の
流路であり、かつ燃料ガス流路17と酸化剤ガス流路1
8の入口、出口はそれぞれセルスタック1の反対側の側
面に開口し、それぞれ燃料ガス供給用のマニホールド2
.酸化剤ガス供給用のマニホールド3を通じて反応ガス
が供給される。なお第1図において燃料ガス流路17は
セルスタックの背面側に開口しており、図面上には描か
れてない。 一方、第3図に戻り各単電池11の相互間でガス分離板
15と16の重なり面には、前記した燃料ガス流路17
.酸化剤ガス流路18とは分離して左右に並列して並ぶ
複数条の流路溝からなる冷却空気流路19が形成されて
いる。この冷却空気流路19は第1図のようにセルスタ
ック1における反応ガス流路の開口する側面と直交する
他の左右側面に開口するように両側面の間にまたがって
形成されており、この冷却空気流路19の開口端に対向
してセルスタック1の左右側面にはそれぞれ冷却空気供
給用のマニホールド4および5がシール用パツキンを介
して密着配備されている。ここで前記マニホールド4,
5の内部はそれぞれ縦方向の仕切壁41.51を介して
横方向に並ぶ複数の小室に分割区分されており、かつこ
の小室には第2図に明示されているように一つ置きに空
気ブロア20に通じる冷却空気導入配管21が分岐して
接続配管され、冷却空気導入配管21の接続されてない
残りの小室はそのまま排気口42.52を通じて大気中
に開放されている。 しかも左右のマニホールド4と5では、冷却空気導入パ
イプ21の接続位置が互いに1室分だけずらして配管さ
れている。また前記マニホールド4゜5の内部に分割し
て仕切られた各小室は、セルスタンク側の各層内でガス
分離板15と16との間に並列形成された複数条の冷却
空気流路19を複数区分に区分けした上でそれぞれの区
分と対応するように仕切壁41.51を介して分割形成
されている。なお図示例では複数条の流路溝からなる冷
却空気流路19を1本ずつに区分けして1区分としてお
り、マニホールド4,5における各小室には1本の流路
溝が対応して開口している。 かかる構成になる冷却空気の供給経路により、セルスタ
ック内で各層に並んで形成された冷却空気流路19は、
隣接する区分(図示例では1本の流路溝)の間で、その
流路入口と出口が互い違いに開口位置することになり、
ここにマニホールド4あるいは5を通じて導入される冷
却空気の通流方向は第2図の矢印で示すように隣合う流
路の間で交互に逆向きとなる。すなわち図示のように空
気ブロア20により空気導入配管21を通してマニホー
ルド4内の小室INに押し込み導入された冷却空気は、
咳小室INに入口が開口するセルスタック1内の冷却空
気流路19の流路溝を左から右へ向けて通流した後にそ
の出口から反対側に配置されたマニホールド5の小室0
tlTに吐出し、ここから排気口52を通じて大気中に
放出される。これに対して空気導入バイブ21を通じて
マニホールド5における小室INに導入された冷却空気
は、該小室IN内に入口が開口する冷却空気流路19の
流路溝を右から左へ向けて通流した後にその出口から反
対側に配置されたマニホールド4の小室0υ丁へ吐出し
、ここから排気口42を通じて大気中に放出される。し
たがってセルスタック1内で左右に並列形成された複数
条の流路溝からなる冷却空気流路19には1本の流路溝
ずつ交互に冷却空気が逆向きに通流するようになる。 ここで燃料電池に燃料ガスおよび酸化剤ガスを供給して
発電を開始すれば、電極の分極や内部抵抗による発熱で
電池本体が高温に上昇するが、一方では前記した冷却空
気の供給により電池内部の生成熱はガス分離板15.1
6を伝熱して冷却空気流路19に至り、ここに通流する
冷却空気流によって系外に除熱される。この場合に各流
路溝に付いて見れば、ここに還流する冷却空気の空気温
度はその入口側で低く出口側に至る間に高温となり、そ
の人口−出口間に温度差が生じる。しかして前記のよう
に冷却空気流路19は1本毎に隣接流路溝の間で冷却空
気の通流方向が逆向きであることがら、ガス分離板の内
部では互いに近接するこれら冷却空気流路の各流路溝相
互間で出口側の高温域と入口側の低温域との間に熱移動
が行われ、電池全体での内部温度は冷却空気流路19に
沿った全域で温度分布が平均化されるようになる。した
がって電池反応の行われる電極部分に付いて見れば、そ
のf極面全域での温度が各流路溝における冷却空気の入
口−出口間温度差の影響を殆ど受けることなく許容最高
温度に近い値にほぼ均温化され、この結果として電極の
全面域での電池反応も均一となり高い発電効率が得られ
るようになる。またかがる方式によれば、均熱対策とし
て冷却空気を出口より入口へ還流するようにした従来の
空気循環方式の採用が不要となり、かつこれにより空気
循環ブロア、空気循環のための配管等の付帯設備および
その付帯設備の動力も必要なく、したがって発電設備全
体としての設備費の低減、コンパクト化と併せて発電シ
ステムの綜合効率も向上できるようになる。加えて燃料
電池の温度は冷却空気ブロア20による風量制御のみで
コントロールできるので、その[j操作が容易となり、
かつ保全性も向上する。 なお図示実施例の冷却空気経路では、冷却空気流路19
の出口からの排出空気はマニホールド4゜5における小
室OUTを経由して大気中に排気するように構成したが
、この排出空気をマニホールドを経由せずに直接大気中
に放出するようにしてもよい、また冷却空気流路19は
セルスタック1を構成する各単電池11ごとにそのガス
分離板15と16との間に形成した例を示したが、単電
池の数セル置きに冷却空気流路を形成した冷却機を介装
したものでも同様に実施適用することができるのは勿論
である。 【発明の効果] 以上述べたようにこの発明によれば、冷却空気波路を各
層毎に左右に並ぶ複数条の並列流路となし、かつこの並
列流路を複数区分に区分けした上で各区分の流路入口、
出口を隣接区分の間で互い違いに開口するように定め、
各流路区分の間で冷却空気を交互に逆方向より還流する
ように構成したことにより、電池内部での電極面方向の
温度分布が均等化され、かつその最高温度と平均温度と
の差が少なくなるので、燃料電池内部の平均温度をその
許容最高温度により近い温度に高めて運転することがで
きる。これにより従来の冷却空気循環方式を採用するこ
となく、したがって安価な設備費とコンパクトな構成で
電池の発電効率並びに発電システム全体としての綜合効
率の向上を図ることができる。
1 to 3 show embodiments of the present invention, and FIG. 1 is an exploded perspective view showing the arrangement of a fuel cell cell stack and a manifold for supplying reaction gas and cooling air, and FIG. The figure shows a cooling air supply system diagram in Figure 1 shown as a plan view, and Figure 3 is a partial cross-sectional view of the cell stack in Figure 1. In the figure, 1 is a cell stack, and 2 is a fuel gas supply system. 3 is a manifold for supplying air as an oxidant gas, and 4 and 5 are manifolds for supplying cooling air. As is well known, the cell stack 1 is a stack of single cells, and its detailed structure is as shown in FIG. An impregnated matrix 12 and fuel electrodes 13 facing on both sides of the matrix 12.
.. It is a laminate of an oxidizing agent electrode 14 and a gas separation plate 15.16 called a ribbed separator superimposed on the outside of this electrode 13.14. Here, a fuel gas flow path 17° and an oxidant flow path 18 are formed on the inner surface of the gas separation plate 15.16 in contact with the electrodes 13.14. Further, as clearly shown in FIG. 1, this reaction gas flow path is a U-shaped flow path starting from the inlet, making a U turn on the way, and ending at the outlet. 1
The inlet and outlet of 8 are respectively opened on the opposite side of the cell stack 1, and the manifold 2 for supplying fuel gas is respectively opened.
.. Reaction gas is supplied through a manifold 3 for supplying oxidant gas. Note that in FIG. 1, the fuel gas flow path 17 opens on the back side of the cell stack and is not drawn on the drawing. On the other hand, returning to FIG. 3, the above-mentioned fuel gas flow path 17 is provided on the overlapping surface of the gas separation plates 15 and 16 between each unit cell 11.
.. A cooling air flow path 19 is formed which is separated from the oxidizing gas flow path 18 and is made up of a plurality of flow path grooves arranged in parallel from side to side. As shown in FIG. 1, the cooling air flow path 19 is formed to extend between both side surfaces of the cell stack 1 so as to open to the other left and right side surfaces perpendicular to the side surface where the reaction gas flow path is opened. Manifolds 4 and 5 for supplying cooling air are disposed in close contact with the left and right side surfaces of the cell stack 1, respectively, through sealing gaskets, facing the open end of the cooling air passage 19. Here, the manifold 4,
5 is divided into a plurality of small chambers lined up in the horizontal direction via vertical partition walls 41 and 51, and each of the small chambers is filled with air every other time as shown in FIG. A cooling air introduction pipe 21 leading to the blower 20 is branched and connected, and the remaining small chambers to which the cooling air introduction pipe 21 is not connected are opened to the atmosphere through exhaust ports 42 and 52. Moreover, in the left and right manifolds 4 and 5, the connection positions of the cooling air introduction pipes 21 are shifted from each other by one room. In addition, each of the small chambers divided and partitioned inside the manifold 4.5 divides into a plurality of cooling air passages 19 formed in parallel between the gas separation plates 15 and 16 in each layer on the cellus tank side. It is divided into sections and divided into sections via partition walls 41 and 51 so as to correspond to each section. In the illustrated example, the cooling air passage 19 consisting of a plurality of passage grooves is divided into one section, and each small chamber in the manifolds 4 and 5 has one passage groove corresponding to an opening. are doing. Due to the cooling air supply path having such a configuration, the cooling air flow paths 19 formed in line with each layer in the cell stack,
Between adjacent sections (one channel groove in the illustrated example), the channel inlets and outlets are alternately opened,
The flow direction of the cooling air introduced through the manifold 4 or 5 is alternately reversed between adjacent flow paths as shown by the arrows in FIG. That is, as shown in the figure, the cooling air forced into the small chamber IN in the manifold 4 through the air introduction pipe 21 by the air blower 20 is
After flowing from left to right through the channel groove of the cooling air channel 19 in the cell stack 1 whose inlet opens to the cough chamber IN, the small chamber 0 of the manifold 5 is located on the opposite side from the outlet thereof.
tlT, from where it is discharged into the atmosphere through the exhaust port 52. On the other hand, the cooling air introduced into the small chamber IN in the manifold 5 through the air introduction vibrator 21 flows from right to left through the channel groove of the cooling air flow path 19 whose inlet opens into the small chamber IN. Afterwards, it is discharged from the outlet to the small chamber 0υ of the manifold 4 arranged on the opposite side, and from there it is discharged into the atmosphere through the exhaust port 42. Therefore, cooling air flows in opposite directions alternately through each channel in the cooling air channel 19, which is made up of a plurality of channel grooves formed in parallel on the left and right in the cell stack 1. When power generation starts by supplying fuel gas and oxidant gas to the fuel cell, the cell body rises to high temperature due to heat generation due to polarization of the electrodes and internal resistance. The heat of formation of gas separation plate 15.1
6 and reaches the cooling air flow path 19, where the heat is removed to the outside of the system by the cooling air flow flowing there. In this case, looking at each channel groove, the air temperature of the cooling air flowing back here is low at the inlet side and becomes high temperature as it reaches the outlet side, creating a temperature difference between the population and the outlet. However, as described above, since the direction of flow of cooling air is opposite between the adjacent channels in each cooling air channel 19, inside the gas separation plate, these cooling air flows close to each other. Heat transfer occurs between the high-temperature region on the outlet side and the low-temperature region on the inlet side between each flow channel of the channel, and the internal temperature of the entire battery has a temperature distribution over the entire area along the cooling air flow channel 19. will be averaged. Therefore, if we look at the electrode part where the battery reaction takes place, the temperature across the entire f-pole surface is almost unaffected by the temperature difference between the inlet and outlet of the cooling air in each flow channel, and is close to the maximum allowable temperature. As a result, the battery reaction becomes uniform over the entire area of the electrode, resulting in high power generation efficiency. In addition, the Kagaru method eliminates the need for the conventional air circulation system that recirculates cooling air from the outlet to the inlet as a heat equalization measure. There is no need for ancillary equipment or power for the ancillary equipment, and therefore, the equipment cost of the power generation equipment as a whole can be reduced, it can be made more compact, and the overall efficiency of the power generation system can also be improved. In addition, since the temperature of the fuel cell can be controlled only by controlling the air volume by the cooling air blower 20, the
Moreover, maintainability is also improved. Note that in the cooling air path of the illustrated embodiment, the cooling air flow path 19
Although the exhaust air from the outlet of the manifold is configured to be exhausted to the atmosphere via the small chamber OUT in the manifold 4.5, this exhaust air may be directly discharged to the atmosphere without going through the manifold. , and an example in which the cooling air flow path 19 is formed between the gas separation plates 15 and 16 for each unit cell 11 constituting the cell stack 1 is shown, but the cooling air flow path 19 is formed every few cells of the unit cell 1. Of course, it is also possible to use a cooling device provided with a cooling device formed therein. [Effects of the Invention] As described above, according to the present invention, the cooling air wave path is formed into a plurality of parallel flow paths aligned left and right for each layer, and the parallel flow path is divided into a plurality of sections, and each section is flow path inlet,
The outlets are staggered between adjacent sections;
By configuring the cooling air to flow alternately from opposite directions between each flow path section, the temperature distribution inside the battery in the direction of the electrode surface is equalized, and the difference between the maximum temperature and the average temperature is reduced. Therefore, the average temperature inside the fuel cell can be increased to a temperature closer to its maximum allowable temperature during operation. As a result, it is possible to improve the power generation efficiency of the battery and the overall efficiency of the power generation system as a whole without employing the conventional cooling air circulation method, and therefore with low equipment costs and a compact configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による空冷式燃料電池のセル
スタックとこれに対応する反応ガスおよび冷却空気供給
用マニホールドとの配置構成を示した分解斜視図、第2
図は第1図における冷却空気の供給系統図、第3図は第
1図におけくセルスタックの部分構成断面図である0図
において、1:セルスタック、2:燃料ガス供給用のマ
ニホールド、3:酸化剤ガス供給用のマニホールド、4
.5:冷却空気供給用のマニホールド、11:単電池、
15.16:ガス分離板、17:燃料ガス流路、18:
M他剤ガス流路、19:冷却空気流路、2o:冷却空気
供給用のプロア、21:冷却空気導入配管、41.51
:マニホールドの小室を仕切る仕切壁、42.52:マ
ニホールドの排気口。 第1図 第2図
FIG. 1 is an exploded perspective view showing the arrangement of a cell stack of an air-cooled fuel cell according to an embodiment of the present invention and a corresponding manifold for supplying reaction gas and cooling air;
The figure is a cooling air supply system diagram in Figure 1, and Figure 3 is a partial cross-sectional view of the cell stack in Figure 1. In Figure 0, 1: cell stack, 2: manifold for fuel gas supply, 3: Manifold for supplying oxidant gas, 4
.. 5: Manifold for cooling air supply, 11: Cell battery,
15.16: Gas separation plate, 17: Fuel gas flow path, 18:
M other agent gas flow path, 19: cooling air flow path, 2o: cooling air supply proa, 21: cooling air introduction pipe, 41.51
: Partition wall that separates the small chamber of the manifold, 42.52: Manifold exhaust port. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)単電池の積層体としてなるセルスタックの層内に燃
料および酸化剤の反応ガス流路と分離して冷却空気流路
を形成し、該冷却空気流路へ外部より冷却空気を供給し
て電池の生成熱を除熱するようにした空冷式燃料電池に
おいて、前記冷却空気流路を各層毎に左右に並ぶ複数条
の並列流路となし、かつこの並列流路を複数区分に区分
けした上で各区分の流路入口、出口を隣接区分の間で互
い違いに開口するように定め、各流路区分の間で冷却空
気を交互に逆方向より通流するように構成したことを特
徴とする空冷式燃料電池。 2)特許請求の範囲第1項記載の空冷式燃料電池におい
て、冷却空気流路が単電池のガス分離板に並列して形成
されており、かつ該冷却空気流路の各区分毎にその流路
入口へセルスタックの側面に配備した冷却空気供給用の
マニホールドを通じて外部より冷却空気を導入し、反対
側の流路出口から排出するようにしたことを特徴とする
空冷式燃料電池。 3)特許請求の範囲第2項記載の空冷式燃料電池におい
て、冷却空気供給用のマニホールドがセルスタック側の
冷却空気流路の各区分に対応した小室に分割して仕切ら
れており、かつ冷却空気流路の入口に通じる小室には空
気ブロアを通じて冷却空気導入配管が接続され、冷却空
気流路の出口に通じる小室が排気口を経て大気中に開放
されていることを特徴とする空冷式燃料電池。
[Claims] 1) A cooling air flow path is formed in the layer of the cell stack, which is a stack of unit cells, separate from the reaction gas flow path for fuel and oxidizer, and the cooling air flow path is connected to the cooling air flow path from the outside. In an air-cooled fuel cell in which cooling air is supplied to remove heat produced by the cell, the cooling air flow path is formed into a plurality of parallel flow paths arranged left and right in each layer, and the parallel flow paths are After dividing into multiple sections, the flow path inlet and outlet of each section are set to open alternately between adjacent sections, and the cooling air is configured to flow between each flow path section alternately from opposite directions. This air-cooled fuel cell is characterized by: 2) In the air-cooled fuel cell according to claim 1, the cooling air flow path is formed in parallel with the gas separation plate of the unit cell, and the cooling air flow path is formed in parallel with the gas separation plate of the unit cell, and the flow is controlled in each section of the cooling air flow path. An air-cooled fuel cell characterized in that cooling air is introduced from the outside through a manifold for supplying cooling air arranged on the side of the cell stack to the channel entrance, and is discharged from the channel outlet on the opposite side. 3) In the air-cooled fuel cell according to claim 2, the manifold for supplying cooling air is partitioned into small chambers corresponding to each section of the cooling air flow path on the cell stack side, and The air-cooled fuel is characterized in that the small chamber leading to the entrance of the air flow path is connected to a cooling air introduction pipe through an air blower, and the small chamber leading to the outlet of the cooling air flow path is open to the atmosphere through an exhaust port. battery.
JP60207592A 1985-09-19 1985-09-19 Air cooling type fuel cell Pending JPS6266574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60207592A JPS6266574A (en) 1985-09-19 1985-09-19 Air cooling type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60207592A JPS6266574A (en) 1985-09-19 1985-09-19 Air cooling type fuel cell

Publications (1)

Publication Number Publication Date
JPS6266574A true JPS6266574A (en) 1987-03-26

Family

ID=16542320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60207592A Pending JPS6266574A (en) 1985-09-19 1985-09-19 Air cooling type fuel cell

Country Status (1)

Country Link
JP (1) JPS6266574A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230478A (en) * 1990-02-01 1991-10-14 Fuji Electric Co Ltd Cooling method for phosphoric acid type fuel cell
JP2005038826A (en) * 2003-07-14 2005-02-10 Asia Pacific Fuel Cell Technology Ltd Flowing field structure of fuel cell electrode
JP2006506778A (en) * 2002-11-14 2006-02-23 スリーエム イノベイティブ プロパティズ カンパニー Liquid-cooled fuel cell stack
KR100982071B1 (en) * 2007-01-22 2010-09-13 현대중공업 주식회사 Colling system for refractory cast

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230478A (en) * 1990-02-01 1991-10-14 Fuji Electric Co Ltd Cooling method for phosphoric acid type fuel cell
JP2006506778A (en) * 2002-11-14 2006-02-23 スリーエム イノベイティブ プロパティズ カンパニー Liquid-cooled fuel cell stack
JP2005038826A (en) * 2003-07-14 2005-02-10 Asia Pacific Fuel Cell Technology Ltd Flowing field structure of fuel cell electrode
KR100982071B1 (en) * 2007-01-22 2010-09-13 현대중공업 주식회사 Colling system for refractory cast

Similar Documents

Publication Publication Date Title
US4508793A (en) Air-cooled fuel cell system
RU2269842C2 (en) Fuel-cell module using solid polymeric electrolyte, fuel cell pile, and method for feeding chemically active gas to fuel cell
JP3098813B2 (en) Method of dissipating heat from fuel cell and temperature balancing member
JP3548433B2 (en) Fuel cell stack
JPH0131270B2 (en)
US6756144B2 (en) Integrated recuperation loop in fuel cell stack
JPH0541220A (en) Solid electrolyte type fuel cell
JPS6240832B2 (en)
JPS6266574A (en) Air cooling type fuel cell
JPS6316576A (en) Air cooling type fuel cell
JPH07109772B2 (en) Internal manifold fuel cell power generator
JPS6223434B2 (en)
JPS61185871A (en) Air-cooled type fuel cell
JPH09120833A (en) Solid high polymer electrolyte fuel cell
JPH0660901A (en) Gas feeding structure for fuel cell
JPS5975573A (en) Fuel cell
JPS58163181A (en) Layer-built fuel cell
JP2865025B2 (en) Molten carbonate fuel cell
JPH07118330B2 (en) Gas header for fuel cell and fuel cell using the same
JPH0782874B2 (en) Fuel cell
JPH0750614B2 (en) Fuel cell
JPS624834B2 (en)
JP2551713B2 (en) Fuel cell
JPS6012673A (en) Air cooling type fuel cell
JPH0398269A (en) Fuel cell