JPH03230478A - Cooling method for phosphoric acid type fuel cell - Google Patents

Cooling method for phosphoric acid type fuel cell

Info

Publication number
JPH03230478A
JPH03230478A JP2022997A JP2299790A JPH03230478A JP H03230478 A JPH03230478 A JP H03230478A JP 2022997 A JP2022997 A JP 2022997A JP 2299790 A JP2299790 A JP 2299790A JP H03230478 A JPH03230478 A JP H03230478A
Authority
JP
Japan
Prior art keywords
air
cooling
temperature
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022997A
Other languages
Japanese (ja)
Other versions
JP2803288B2 (en
Inventor
Heishiro Goto
後藤 平四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2022997A priority Critical patent/JP2803288B2/en
Publication of JPH03230478A publication Critical patent/JPH03230478A/en
Application granted granted Critical
Publication of JP2803288B2 publication Critical patent/JP2803288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To effectively improve the temperature distribution in a cell, prevent the deterioration of electrodes, and improve power generation performance by properly specifying the flow direction of air and the flow direction of cooling water for pressure water cooling and two-phase water cooling. CONSTITUTION:Fuel gas is fed from this side of a hydrogen electrode 3 and flows in a passage 6 and is discharged from the opposite side. Air is fed from the left side of an air electrode 4 and flows in a passage 7 and is discharged from the right side. The cooling water pressurized to about 4atm is fed from a pipe 12 and flows in a water passage in the opposite direction to the air and collected by fine pipes 13b and a branch pipe 13a and discharged from a pipe 13. The pressure cooling water is fed to a cooling plate in the opposite direction to the air, the heating of the low-temperature inlet side air by the high-temperature outlet side cooling water and the cooling of the high- temperature outlet side air by the low-temperature inlet side air are effectively combined, and the temperature distribution in the face direction of the electrodes 3, 4 is kept near the middle temperature. The temperature distribution in the face direction of the electrodes 3, 4 is also kept at the middle temperature for two-phase water cooling.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、水冷式のリン酸型燃料電池において、電極
の面方向の温度分布を改善するための冷却方法に関する
The present invention relates to a cooling method for improving the temperature distribution in the surface direction of an electrode in a water-cooled phosphoric acid fuel cell.

【従来の技術】[Conventional technology]

大面積の単セルを多数積層したリン酸型燃料電池では数
セルごとに冷却板を挿入し、これに純水を通水してセル
内を反応に最適な温度に保つようにしている。第4図及
び第5図はこのような水冷式燃料電池のセルスタックの
概略構成を示すもので、第4図は平面図、第5図はその
V−■線に沿う断面図である。 図において、1はリン酸が含浸されたマトリクス2を挟
んで水素電極3及び空気電極4が配置された方形の単セ
ルで、図のセルスタックはこの単セル1が図示しないセ
パレータを介して多数積層され、また数セルごとに冷却
板5が挿入されて構成されている。 水素電極3には図の前後方向(紙面に垂直な方向)に角
溝状の燃料通路6が無数に形成され、また空気電極4に
はそれと直交する図の左右方向にやはり角溝状の空気通
路7が無数に形成されている。水素を主成分とする燃料
ガスは矢印で示すように燃料入口マニホルド8から水素
電極3に供給され、この燃料ガスは燃料通路6を通過し
た後、燃料出口マニホルド9で集められて排出される。 同様に、空気電極4には空気入口マニホルド1゜から矢
印で示すように空気が供給され、この空気は空気通路7
を通過した後、空気出口マニホルド11で集められて排
出される。 また、加圧水冷却(加圧した冷却水を供給して通水中の
沸騰を抑えるようにした冷却方式)の場合に、冷却水は
空気入口マニホルド10内の一側に垂直配管された冷却
水供給管12から供給され、冷却板5ごとにその前端面
に沿って配管された分岐管12aと、更にこれから直角
に導出された多数の細管12bとで各冷却板5に導入さ
れる。この冷却水は冷却板5内に空気の流れに沿って平
行に設けられた多数の図示しない通水路を図の左から右
に向かって流れ、空気出口マニホルド11内に同様に設
けられた細管13bを通って分岐管13aで集められ、
垂直な冷却水排出管13で排出される。 このような燃料電池におけるセルスタック出入口での冷
却水、燃料ガス及び空気の温度設定の一例を示すと次の
通りである。まず、約4気圧に加圧した冷却水を約16
7°Cで冷却水供給管12から供給し、約172°Cで
冷却水排出管13から排出させる。次に、燃料ガスは約
160°Cで入口マニホルド8に供給し、約175°C
にして出口マニホルド9から排出させる。また、空気は
約130°Cで入口マニホルド10に供給し、ここで冷
却水配管12.12a、12bに接触させて約150゛
Cまで昇温させた上でセルスタックに入れ、約170°
Cで出口マニホルド11から排出させる。この場合の単
セル1の表面での面方向の要求温度分布は185〜19
5°Cの範囲内である。
In phosphoric acid fuel cells, which have a large number of stacked large-area single cells, cooling plates are inserted every few cells, and pure water is passed through these to maintain the inside of the cells at the optimal temperature for reaction. FIGS. 4 and 5 schematically show the structure of a cell stack of such a water-cooled fuel cell, with FIG. 4 being a plan view and FIG. 5 being a sectional view taken along the line V-■. In the figure, 1 is a rectangular single cell in which a hydrogen electrode 3 and an air electrode 4 are arranged with a matrix 2 impregnated with phosphoric acid sandwiched between them. The cells are stacked and a cooling plate 5 is inserted every few cells. The hydrogen electrode 3 has countless square groove-shaped fuel passages 6 formed in the front-back direction of the figure (perpendicular to the plane of the drawing), and the air electrode 4 also has square groove-shaped air passages 6 formed in the left-right direction of the figure perpendicular to the fuel passages 6. A countless number of passages 7 are formed. Fuel gas containing hydrogen as a main component is supplied from a fuel inlet manifold 8 to the hydrogen electrode 3 as shown by the arrow, and after passing through a fuel passage 6, it is collected at a fuel outlet manifold 9 and discharged. Similarly, air is supplied to the air electrode 4 from the air inlet manifold 1° as shown by the arrow, and this air is supplied to the air passage 7.
After passing through the air outlet manifold 11, the air is collected and discharged. In addition, in the case of pressurized water cooling (a cooling method in which pressurized cooling water is supplied to suppress boiling during flowing water), the cooling water is supplied through a cooling water supply pipe vertically installed on one side of the air inlet manifold 10. 12, and is introduced into each cooling plate 5 through a branch pipe 12a that is piped along the front end surface of each cooling plate 5, and a large number of thin tubes 12b led out at right angles from the branch pipe 12a. This cooling water flows from left to right in the figure through a large number of passageways (not shown) provided in parallel with the flow of air in the cooling plate 5, and thin tubes 13b similarly provided in the air outlet manifold 11. is collected in a branch pipe 13a,
The cooling water is discharged through a vertical cooling water discharge pipe 13. An example of temperature settings for cooling water, fuel gas, and air at the cell stack inlet and outlet in such a fuel cell is as follows. First, coolant water pressurized to about 4 atmospheres is heated to about 16
The cooling water is supplied from the cooling water supply pipe 12 at 7°C, and is discharged from the cooling water discharge pipe 13 at about 172°C. The fuel gas is then supplied to the inlet manifold 8 at about 160°C and at about 175°C.
and discharge from the outlet manifold 9. In addition, air is supplied to the inlet manifold 10 at about 130°C, where it is brought into contact with the cooling water pipes 12.12a and 12b, heated to about 150°C, and then put into the cell stack and heated to about 170°C.
C to discharge from the outlet manifold 11. In this case, the required temperature distribution in the surface direction on the surface of the single cell 1 is 185 to 19
Within the range of 5°C.

【発明が解決しようとする課題】[Problem to be solved by the invention]

セルスタックには上述したように各方向から各種の温度
の燃料ガス、空気及び冷却水を供給し、発電に最適の温
度を維持しようとしているが、従来は単セル1内での空
気の流れ方向と冷却水の通水方向の組み合わせが適切で
なく、上記要求温度分布に対して実際には175〜20
5°Cの範囲の大きな温度分布が生じている。そのため
、発電性能が低下して部分的に電圧が低下し、また高温
域では電池寿命の低下をきたしている。 更に、従来は燃料ガスと空気とを互いに直交させて一方
向に通流させているが、そのためにセルスタック内に導
入されたばかりの低温の燃料ガスと空気とが相対する第
4図の入口部分Aと、反応により昇温した高温の燃料ガ
スと空気とが相対する出口部分Bとで電極に大きな温度
差が生している。 そこで、この発明は、空気の流れ方向と冷却水の通水方
向との組み合わせに工夫を講じて、電極の温度分布を改
善したリン酸型燃料電池の冷却方法を提供することを目
的とするものである。 また、この発明は、燃料ガスと空気の通流方向に工夫を
講じて、電極の温度分布を改善したリン酸型燃料電池の
冷却方法を提供することを目的とするものである。
As mentioned above, fuel gas, air, and cooling water at various temperatures are supplied from each direction to the cell stack in order to maintain the optimal temperature for power generation. The combination of water flow direction and cooling water flow direction is not appropriate, and the temperature distribution actually exceeds 175-20°C for the above required temperature distribution.
A large temperature distribution in the range of 5°C occurs. As a result, power generation performance deteriorates, voltage drops locally, and battery life decreases in high temperature ranges. Furthermore, conventionally, the fuel gas and air are made to flow in one direction orthogonally to each other, but for this reason, the inlet portion of FIG. 4 where the low-temperature fuel gas and air that have just been introduced into the cell stack are opposed to each other. There is a large temperature difference between the electrodes A and the outlet section B, where the high temperature fuel gas and air, which have been heated by the reaction, face each other. Therefore, an object of the present invention is to provide a cooling method for a phosphoric acid fuel cell in which the temperature distribution of the electrodes is improved by devising a combination of the air flow direction and the cooling water flow direction. It is. Another object of the present invention is to provide a method for cooling a phosphoric acid fuel cell in which the temperature distribution of the electrodes is improved by devising the direction of flow of fuel gas and air.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、この発明は、互いに直交す
る方向に燃料ガスと空気とが供給される単セルが多数積
層され、数セルごとに前記空気の流れに沿って冷却水が
通水される冷却板が挿入されたリン酸型燃料電池におい
て、加圧水冷却の場合の冷却水の通水方向を空気の流れ
方向と反対にするものである。 また、上記リン酸型燃料電池において、二相水冷却(配
管中で冷却水の一部を沸騰させ、蒸発熱によっても吸熱
するようにした冷却方式)の場合には、冷却水の通水方
向を空気の流れ方向と一致させるものとする。 更に、上記リン酸型燃料電池において、燃料ガス及び空
気の入口マニホルドに通路を左右に部分する仕切板を設
け、一方の通路から供給した燃料ガス及び空気を出口マ
ニホルド内で反転させて前記入口マニホルドの他方の通
路から排出させるようにする。
In order to achieve the above object, the present invention has a plurality of stacked single cells to which fuel gas and air are supplied in directions orthogonal to each other, and cooling water is passed through every few cells along the flow of the air. In a phosphoric acid fuel cell in which a cooling plate is inserted, the cooling water flow direction in the case of pressurized water cooling is made opposite to the air flow direction. In addition, in the above-mentioned phosphoric acid fuel cell, in the case of two-phase water cooling (a cooling method in which a part of the cooling water is boiled in the piping and the heat of evaporation is also absorbed), the direction in which the cooling water flows is shall match the direction of air flow. Furthermore, in the above-mentioned phosphoric acid fuel cell, the inlet manifold for fuel gas and air is provided with a partition plate that divides the passage into left and right parts, and the fuel gas and air supplied from one passage are reversed in the outlet manifold to separate the passages from the inlet manifold. so that it is discharged from the other passage.

【作 用】[For use]

入口マニホルドに供給された空気をそのまま導入したの
では空気電極の温度が低下してしまう。 そこで、空気入口マニホルド内の冷却水配管に接触させ
て空気温度を上昇させるのであるが、この昇温を確実に
行うために、加圧水冷却の場合には昇温した冷却水が通
る出口側の冷却水配管を空気入口マニホルド内に配置す
る。一方、反応により昇温した出口側の空気は、低温の
冷却水が通る入口側の冷却水配管と接触させる。すなわ
ら、加圧水冷却の場合の冷却水の通水方向を空気の流れ
方向と反対にする。 これに対して、二相水冷却の場合には蒸発熱による吸熱
により、セルスタックの入口と出口とで冷却水の温度に
それほどの差が生じないため、加圧水冷却の場合に比べ
て高温で供給できる。したがって、空気入口マニホルド
内に入口側の冷却水配管を配置しても供給された空気の
加熱に支障がない。その上、出口側の空気に入口側の冷
却水配管を急に接触させると、加圧水冷却に比べて流量
が1/2以下と少ないため沸騰が進行し過ぎて通水でき
なくなる事態も考えられる。そこで、二相水冷却の場合
には、冷却水の通水方向を空気の流れ方向と一致させる
。 次に、燃料ガス及び空気の入口マニホルドに通路を左右
に部分する仕切板を設け、一方の通路から供給した燃料
ガス及び空気を出口マニホルド内で反転させて前記入口
マニホルドの他方の通路から排出させるようにするこよ
により、燃料ガスと空気とは、入口側の低温のものと反
応が進んで昇温した出口側のものとが相対するような関
係となり、単セルの面方向における温度差の発生が綴和
される。燃料ガス中の水素及び空気中の酸素は反応によ
って消費されるため、燃料ガス及び空気の流量は下流は
ど小さくなる。したがって、入口マニホルドを仕切板で
部分する際には左右均等ではなく、入口側の通路幅が出
口側より大きくなるようにする。
If the air supplied to the inlet manifold were directly introduced, the temperature of the air electrode would drop. Therefore, the temperature of the air is raised by bringing it into contact with the cooling water piping inside the air inlet manifold, but in order to ensure this temperature rise, in the case of pressurized water cooling, the cooling water is cooled on the outlet side through which the heated cooling water passes. Place the water piping into the air inlet manifold. On the other hand, the air on the outlet side whose temperature has increased due to the reaction is brought into contact with the cooling water pipe on the inlet side through which low-temperature cooling water passes. That is, in the case of pressurized water cooling, the cooling water flow direction is opposite to the air flow direction. On the other hand, in the case of two-phase water cooling, there is not much difference in the temperature of the cooling water between the inlet and outlet of the cell stack due to heat absorption due to heat of evaporation, so the water is supplied at a higher temperature than in the case of pressurized water cooling. can. Therefore, even if the cooling water pipe on the inlet side is disposed within the air inlet manifold, there is no problem in heating the supplied air. Furthermore, if the cooling water piping on the inlet side is suddenly brought into contact with the air on the outlet side, the flow rate is less than 1/2 compared to pressurized water cooling, so there is a possibility that boiling will proceed too much and the water cannot flow. Therefore, in the case of two-phase water cooling, the flow direction of the cooling water is made to match the flow direction of the air. Next, a partition plate is provided in the fuel gas and air inlet manifold to divide the passage into left and right parts, and the fuel gas and air supplied from one passage are reversed within the outlet manifold and discharged from the other passage of the inlet manifold. By doing this, the fuel gas and air are in a relationship such that the low-temperature one on the inlet side is opposed to the one on the outlet side where the reaction has progressed and the temperature has risen, creating a temperature difference in the plane direction of the single cell. is spelled. Since hydrogen in the fuel gas and oxygen in the air are consumed by the reaction, the flow rates of the fuel gas and air decrease downstream. Therefore, when dividing the inlet manifold into sections using partition plates, the width of the passages on the inlet side is wider than on the outlet side, rather than equally on the left and right sides.

【実施例】【Example】

以下、図に基づいてこの発明の詳細な説明する。なお、
従来例と対応する部分には同一の符号を用いるものとす
る。 第1図は加圧水冷却における冷却方法を説明するための
セルスタックの分解斜視図で、簡単のために冷却板5.
5間の単セル1は一層だけを示しである。また、図の中
の高、中及び低の記号は、電極3,4及び冷却板5の面
方向の相対的な温度比較を示し、それぞれ高温、中温及
び低温を表すものとする。 図において、単セル1は電解液としてのリン酸が含浸さ
れたマトリクス2とその上下に配置された水素電極3及
び空気電極4とからなり、水素電極3には反マトリクス
側に、図の前後方向に無数の平行な燃料通路6が形成さ
れている。また同様に、空気電極4の反マトリクス側に
は、図の左右方向に無数の平行な空気通路7が形成され
ている。 この単セル1の数層ごとに冷却板5が挿入され、それに
は図示しないが空気電極4の通路7と平行な20〜30
本の通水路が図の左右方向に形成されている。12及び
13は図示しない空気の出口マニホルド及び入口マニホ
ルド内にそれぞれ垂直に配管された冷却水の供給管及び
排出管で、冷却板5の端面に沿って分岐管12a及び1
3aが配管され、更にこれから導出された細管12b及
び13bが各通水路の両端に接続されている。 燃料ガスは矢印で示すように水素電極3の手前側から供
給され、通路6を通流して反対側から排出される。これ
に対して、空気は矢印で示すように空気電極4の左側か
ら供給され、通路7を通流して右側から排出される。ま
た、4気圧程度に加圧された冷却水は冷却水供給管12
から供給され、矢印で示すように分岐管12a及び細管
12bを経て空気と反対方向に図の右から左に通水路を
流れ、細管13b及び分岐管13aで集められて冷却水
排出管13から排出される。 このようなセルスタックにおける各部の面方向の温度分
布は図示の通りとなる。まず、水素電極3に隣接する図
の上部の冷却板5は図の右側から例えば約167℃で冷
却水が供給されるが、この冷却水は左に向かって流れる
間に反応熱を吸収するため、その温度分布は右から左に
低温→中温→高温となる。水素電極3は手前側から例え
ば約160゛Cで供給され、左側からの低温の空気と右
側からの低温の冷却水とに挟まれて図示の通りほとんど
中温となり、燃料ガスの入口側中央部で一部低温、燃料
ガスの出口側中央部及び冷却水の出口側中央部で一部高
温となる。中央部で高温になるのは、周辺部に比べて熱
放散が小さいためである。 一方、空気電極4には図の左側から空気が供給されるが
、この空気は高温の出口側冷却水配管13.13a、1
3bで昇温されるため空気電極4は左から中温→中温(
中央部で一部高温)となり、更に出口側では高温となる
ところ、低温の入口側の冷却水で冷却されて中温となる
。また、空気電極4に隣接する下部の冷却板5は、右側
から供給される低温の冷却水により上部の冷却板5と同
様に入口側が低温となるところ、高温の出口側空気で加
熱されて中温となる。ちなみに、空気は反応に寄与する
酸素が約20%しかないため、水素が65〜80%含ま
れる燃料ガスに比べて必要流量が増え、その分熱容量も
大きい。 図示の冷却方法によれば、加圧冷却水は熱容量の大きい
空気の流れに沿って、通水方向が空気の流れ方向と反対
になるように冷却板5に通水されているため、低温の入
口側空気の高温の出口側冷却水による昇温と、高温の出
口側空気の低温の入口側冷却水による冷却とが効果的に
組み合わされ、水素電極3及び空気電極4の面方向の温
度分布はほとんど中温付近になる。 次に第2図は二相水冷却における冷却方法を示す第1図
と同様の斜視図である。この場合は人口側の冷却水配管
12.12a、12bが空気入口マニホルド内に配置さ
れ、出口側の冷却水配管13.13a、13bが空気出
口マニホルド内に配置されている点を除けば加圧水冷却
の場合と同じなので構成についての説明は省略する。二
相水冷却は冷却水の蒸発熱による吸熱を期待するもので
あり流量が少なくなっている。したがって、徐々に吸熱
させながら気泡を2〜3%含む気液混合の冷却水の流れ
にする必要があり、通水方向を空気の入口側から空気の
流れ方向と一致させて冷却板5に通水する。 この冷却水は吸収した熱が蒸発熱として消費されるため
、入口側と出口側とで温度はほとんど変わらず、したが
って上下の冷却板5の温度分布も図示の通り中温→中温
→中温で推移する。水素電極3では燃料ガスの入口側と
空気の入口側が相対する部分で一部低温になり、燃料の
出口側中央部で一部高温になるが、全体としての温度分
布は加圧水冷却の場合とほとんど変わらない。 二相水冷却の場合、冷却水の入口側温度は加圧水冷却の
場合より高くできるので、同じ側から供給された低温の
空気はこれにより昇温され、空気電極4の入口側中央部
は中温となる。ただ、その前後の周辺部は低温となる。 空気は空気電極4内を左から右に流れながら反応熱で加
熱されるが、この熱は気泡を少しずつ増加させながら同
方向に流れる冷却水で吸収されるため、空気電極4は中
間から右に向かって中温→中温となる。ただ、出口側中
央部では一部高温となる。 以上の通り、二相水冷却の場合も水素電極3及び空気電
極4の面方向の温度分布は中温主体に維持される。 最後に第3図は、燃料ガス及び空気の入口マニホルドに
通路を左右に部分する仕切板14及び15を設けた冷却
方法を示すものである。冷却水は加圧水及び二相水のい
ずれでもよいが、図は二相水冷却の場合を示している。 図において、燃料ガスは矢印で示すように、水素電極3
の手前の仕切板14の右側から供給され、水素電極3を
通過した後、図示しない出口マニホルド内で反転して再
び水素電極3に入り、仕切板14の左側から排出される
。すでに述べたように燃料ガス中には65〜80%の水
素が含まれているが、この水素は反応で消費されて出口
側で30〜45%となるため、出口側に近づくにつれて
燃料ガスの流量は減少する。そこで、仕切板14の左右
の通路幅の割合を入口側70%、出口側30%としであ
る。 一方、空気は矢印で示すように空気電極4の左の仕切板
15の奥側から供給され、右側の図示しない出口マニホ
ルド内で反転して再び空気電極4内に入り、仕切板15
の手前側から排出される。 空気中には酸素が約20%含まれているが、この酸素は
出口側で約10%となるため、仕切板15の左右の通路
幅の割合は入口側60%、出口側40%としである。 このように水素電極3及び空気電極4内で反応ガスがU
ターンする方式では、人口側から出口側に向かって次第
に昇温する燃料ガス及び空気がマトリクス2を挟んで温
度的に互いに補い合うように相対し、低温と低温あるい
は高温と高温とが重なることがない。したがって、電極
3.4内に掻端な高温や低温が発生せず、温度分布は図
示のとおり全体として緩やかなものになる。なお、中高
の記号は中温よりもやや高い温度を示す。また、この方
式では燃料ガス及び空気が出口マニホルドで反転する際
に反応が半分完了したガスの撹拌が行われるため、後半
の反応を行うガスが均質となって発電性能が向上すると
いう効果もある。
Hereinafter, the present invention will be explained in detail based on the drawings. In addition,
The same reference numerals are used for parts corresponding to those in the conventional example. FIG. 1 is an exploded perspective view of a cell stack for explaining the cooling method in pressurized water cooling, and for simplicity, the cooling plate 5.
Single cell 1 between 5 shows only one layer. Furthermore, the symbols high, medium, and low in the figure indicate relative temperature comparisons in the plane directions of the electrodes 3 and 4 and the cooling plate 5, and represent high temperature, medium temperature, and low temperature, respectively. In the figure, a single cell 1 consists of a matrix 2 impregnated with phosphoric acid as an electrolyte, and a hydrogen electrode 3 and an air electrode 4 placed above and below the matrix. A countless number of parallel fuel passages 6 are formed in the direction. Similarly, on the anti-matrix side of the air electrode 4, countless parallel air passages 7 are formed in the left-right direction in the figure. A cooling plate 5 is inserted every several layers of this single cell 1, and there are 20 to 30 cooling plates parallel to the passage 7 of the air electrode 4 (not shown).
Book passageways are formed in the left and right directions of the figure. Reference numerals 12 and 13 denote a cooling water supply pipe and a discharge pipe, which are vertically installed in an air outlet manifold and an air inlet manifold (not shown), respectively, and branch pipes 12a and 1
3a is piped, and thin tubes 12b and 13b led out from the pipe are connected to both ends of each water passage. Fuel gas is supplied from the front side of the hydrogen electrode 3 as shown by the arrow, flows through the passage 6, and is discharged from the opposite side. On the other hand, air is supplied from the left side of the air electrode 4 as shown by the arrow, flows through the passage 7, and is discharged from the right side. In addition, the cooling water pressurized to about 4 atmospheres is supplied to the cooling water supply pipe 12.
The cooling water is supplied from the cooling water, flows through the water passage from right to left in the figure in the opposite direction to the air through the branch pipe 12a and the thin tube 12b as shown by the arrow, is collected by the thin tube 13b and the branch pipe 13a, and is discharged from the cooling water discharge pipe 13. be done. The temperature distribution in the plane direction of each part in such a cell stack is as shown in the figure. First, the cooling plate 5 at the top of the figure adjacent to the hydrogen electrode 3 is supplied with cooling water from the right side of the figure at, for example, about 167°C, but this cooling water absorbs reaction heat while flowing toward the left. , the temperature distribution goes from right to left: low temperature → medium temperature → high temperature. The hydrogen electrode 3 is supplied from the front side at about 160°C, for example, and is sandwiched between low-temperature air from the left side and low-temperature cooling water from the right side, and becomes almost medium temperature as shown in the figure, and at the central part on the fuel gas inlet side. Some parts are low in temperature, and some parts are high in the central part on the fuel gas outlet side and the central part on the cooling water outlet side. The reason why the temperature is high in the center is that heat dissipation is lower than that in the periphery. On the other hand, air is supplied to the air electrode 4 from the left side of the figure, and this air is supplied to the high temperature outlet side cooling water pipes 13.13a and 1.
3b, the air electrode 4 changes from medium temperature to medium temperature (from the left).
The central part becomes partially high temperature), and the outlet side becomes even hotter, but it is cooled by the cooling water on the low temperature inlet side and becomes medium temperature. In addition, the lower cooling plate 5 adjacent to the air electrode 4 has a low temperature at the inlet side due to the low temperature cooling water supplied from the right side, similar to the upper cooling plate 5, but is heated by the high temperature outlet side air to a medium temperature. becomes. By the way, since air has only about 20% oxygen that contributes to the reaction, the required flow rate is increased compared to fuel gas that contains 65-80% hydrogen, and the heat capacity is correspondingly large. According to the illustrated cooling method, the pressurized cooling water is passed through the cooling plate 5 along the flow of air with a large heat capacity so that the water flow direction is opposite to the air flow direction, so that the low temperature The temperature increase of the inlet side air by the high temperature outlet side cooling water and the cooling of the high temperature outlet side air by the low temperature inlet side cooling water are effectively combined, and the temperature distribution in the surface direction of the hydrogen electrode 3 and the air electrode 4 is improved. The temperature is mostly around medium temperature. Next, FIG. 2 is a perspective view similar to FIG. 1 showing a cooling method in two-phase water cooling. In this case, the cooling water pipes 12.12a, 12b on the population side are arranged in the air inlet manifold, and the cooling water pipes 13.13a, 13b on the outlet side are arranged in the air outlet manifold. Since this is the same as in the case of , the explanation of the configuration will be omitted. Two-phase water cooling is expected to absorb heat due to the heat of evaporation of the cooling water, so the flow rate is small. Therefore, it is necessary to make the cooling water flow as a gas-liquid mixture containing 2 to 3% air bubbles while gradually absorbing heat. Water. Since the heat absorbed by this cooling water is consumed as heat of evaporation, the temperature is almost the same between the inlet side and the outlet side, and therefore the temperature distribution of the upper and lower cooling plates 5 also changes from medium temperature to medium temperature to medium temperature as shown in the figure. . In the hydrogen electrode 3, a part of the part where the fuel gas inlet side and the air inlet side face each other becomes low temperature, and a part of the center part on the fuel outlet side becomes high temperature, but the overall temperature distribution is almost the same as in the case of pressurized water cooling. does not change. In the case of two-phase water cooling, the temperature on the inlet side of the cooling water can be higher than in the case of pressurized water cooling, so the temperature of the low temperature air supplied from the same side is raised, and the central part of the inlet side of the air electrode 4 becomes medium temperature. Become. However, the surrounding area before and after it will be cold. Air flows inside the air electrode 4 from left to right and is heated by the reaction heat, but this heat is absorbed by the cooling water flowing in the same direction while gradually increasing bubbles, so the air electrode 4 moves from the middle to the right. It becomes medium temperature → medium temperature. However, some parts of the central part on the exit side become hot. As mentioned above, even in the case of two-phase water cooling, the temperature distribution in the surface direction of the hydrogen electrode 3 and the air electrode 4 is maintained mainly at medium temperature. Finally, FIG. 3 shows a cooling method in which the fuel gas and air inlet manifolds are provided with partition plates 14 and 15 that divide the passage into left and right sections. The cooling water may be either pressurized water or two-phase water, but the figure shows the case of two-phase water cooling. In the figure, the fuel gas is transferred to the hydrogen electrode 3 as shown by the arrow.
The hydrogen is supplied from the right side of the partition plate 14 in front of the partition plate 14, and after passing through the hydrogen electrode 3, it is reversed in an outlet manifold (not shown), enters the hydrogen electrode 3 again, and is discharged from the left side of the partition plate 14. As mentioned above, fuel gas contains 65 to 80% hydrogen, but this hydrogen is consumed in the reaction and becomes 30 to 45% on the exit side, so the fuel gas decreases as it approaches the exit side. Flow rate decreases. Therefore, the ratio of the width of the left and right passages of the partition plate 14 is set to 70% on the inlet side and 30% on the outlet side. On the other hand, air is supplied from the back side of the left partition plate 15 of the air electrode 4 as shown by the arrow, is reversed in the outlet manifold (not shown) on the right side, enters the air electrode 4 again, and then enters the air electrode 4 through the partition plate 15.
is discharged from the front side. Air contains about 20% oxygen, but this oxygen is about 10% on the outlet side, so the ratio of the width of the left and right passages of the partition plate 15 is 60% on the inlet side and 40% on the outlet side. be. In this way, the reactant gas in the hydrogen electrode 3 and the air electrode 4 is
In the turn system, the fuel gas and air, whose temperature gradually rises from the population side to the exit side, face each other across the matrix 2 so as to compensate for each other in terms of temperature, so that low temperatures do not overlap or high temperatures do not overlap. . Therefore, extremely high or low temperatures do not occur within the electrodes 3.4, and the temperature distribution is generally gentle as shown in the figure. Note that the symbol ``medium high'' indicates a temperature slightly higher than medium temperature. In addition, in this method, when the fuel gas and air are reversed at the outlet manifold, the gas that has undergone half the reaction is stirred, so the gas that undergoes the second half of the reaction becomes homogeneous, improving power generation performance. .

【発明の効果】【Effect of the invention】

セル内の温度分布に偏りがあると、同−電極内で電気化
学反応が異なったレヘルで進行し、高温部分が初期に中
心的に発電してリン酸を飛散させ、急速に電極を劣化さ
せて発電有効面積を低下させることになる。 この発明によれば、加圧水冷却と二相水冷却とで空気の
流れ方向と冷却水の通水方向を適正に規定することによ
り、また電極内で反応ガスをUタンさせることによりセ
ル内の温度分布を有効に改善し、発電性能の向上を図る
とともに電極の劣化を防止することができる。
If there is an imbalance in the temperature distribution within the cell, electrochemical reactions will proceed at different levels within the same electrode, and the high-temperature portion will initially generate electricity centrally, scattering phosphoric acid, and rapidly deteriorating the electrode. This will reduce the effective area for power generation. According to this invention, by appropriately regulating the air flow direction and the cooling water flow direction using pressurized water cooling and two-phase water cooling, and by stirring the reaction gas within the electrode, the temperature inside the cell can be increased. It is possible to effectively improve the distribution, improve power generation performance, and prevent electrode deterioration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を説明するためのセル
スタックの分解斜視図、第2図はこの発明の第2の実施
例を説明するためのセルスタックの分解斜視図、第3図
はこの発明の第3の実施例を説明するためのセルスタッ
クの分解斜視図、第4図は従来例を説明するためのセル
スタックの平面図、第5図は第4図のV−V線に相断面
図である。 1・・・単セル、2・・・マトリクス、3・・・水素電
極、4・・・空気電極、5・・・冷却板、8・・・燃料
入口マニホルド、9・・・燃料出口マニホルド、10・
・・空気入口マニホルド、11・・・空気出口マニホル
ド、12・・・冷却水供給管、13・・・冷却水排出管
。 箪 図
FIG. 1 is an exploded perspective view of a cell stack for explaining a first embodiment of the invention, FIG. 2 is an exploded perspective view of a cell stack for explaining a second embodiment of the invention, and FIG. The figure is an exploded perspective view of a cell stack for explaining a third embodiment of the present invention, FIG. 4 is a plan view of a cell stack for explaining a conventional example, and FIG. 5 is a V-V in FIG. It is a phase cross-sectional diagram along the line. DESCRIPTION OF SYMBOLS 1... Single cell, 2... Matrix, 3... Hydrogen electrode, 4... Air electrode, 5... Cooling plate, 8... Fuel inlet manifold, 9... Fuel outlet manifold, 10・
... Air inlet manifold, 11... Air outlet manifold, 12... Cooling water supply pipe, 13... Cooling water discharge pipe. commode

Claims (1)

【特許請求の範囲】 1)互いに直交する方向に燃料ガスと空気とが供給され
る単セルが多数積層され、数セルごとに前記空気の流れ
に沿って冷却水が通水される冷却板が挿入されたリン酸
型燃料電池において、加圧水冷却の場合の冷却水の通水
方向を空気の流れ方向と反対にしたことを特徴とするリ
ン酸型燃料電池の冷却方法。 2)互いに直交する方向に燃料ガスと空気とが供給され
る単セルが多数積層され、数セルごとに前記空気の流れ
に沿って冷却水が通水される冷却板が挿入されたリン酸
型燃料電池において、二相水冷却の場合の冷却水の通水
方向を空気の流れ方向と一致させたことを特徴とするリ
ン酸型燃料電池の冷却方法。 3)互いに直交する方向に燃料ガスと空気とが供給され
る単セルが多数積層され、数セルごとに前記空気の流れ
に沿って冷却水が通水される冷却板が挿入されたリン酸
型燃料電池において、燃料ガス及び空気の入口マニホル
ドに通路を左右に二分する仕切板を設け、一方の通路か
ら供給した燃料ガス及び空気を出口マニホルド内で反転
させて前記入口マニホルドの他方の通路から排出させる
ようにしたことを特徴とするリン酸型燃料電池の冷却方
法。
[Claims] 1) A cooling plate in which a large number of unit cells to which fuel gas and air are supplied in directions orthogonal to each other are stacked, and cooling water is passed through every few cells along the flow of the air. 1. A method for cooling a phosphoric acid fuel cell, characterized in that in the inserted phosphoric acid fuel cell, the flow direction of cooling water in the case of pressurized water cooling is opposite to the flow direction of air. 2) A phosphoric acid type in which a large number of single cells are stacked to which fuel gas and air are supplied perpendicularly to each other, and a cooling plate is inserted every few cells to allow cooling water to flow along the flow of the air. A method for cooling a phosphoric acid fuel cell, characterized in that in the case of two-phase water cooling, the direction of water flow of cooling water in the fuel cell is made to match the direction of flow of air. 3) A phosphoric acid type in which a large number of single cells are stacked to which fuel gas and air are supplied perpendicularly to each other, and a cooling plate is inserted every few cells to allow cooling water to flow along the flow of the air. In a fuel cell, an inlet manifold for fuel gas and air is provided with a partition plate that divides the passage into left and right halves, and the fuel gas and air supplied from one passage are reversed within the outlet manifold and discharged from the other passage of the inlet manifold. A method for cooling a phosphoric acid fuel cell, characterized in that:
JP2022997A 1990-02-01 1990-02-01 Cooling method of phosphoric acid type fuel cell Expired - Lifetime JP2803288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022997A JP2803288B2 (en) 1990-02-01 1990-02-01 Cooling method of phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022997A JP2803288B2 (en) 1990-02-01 1990-02-01 Cooling method of phosphoric acid type fuel cell

Publications (2)

Publication Number Publication Date
JPH03230478A true JPH03230478A (en) 1991-10-14
JP2803288B2 JP2803288B2 (en) 1998-09-24

Family

ID=12098165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022997A Expired - Lifetime JP2803288B2 (en) 1990-02-01 1990-02-01 Cooling method of phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JP2803288B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053138B2 (en) * 2005-12-29 2011-11-08 Utc Power Corporation Stabilized fuel cell flow field
JP2016157597A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method
JP2016157598A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973856A (en) * 1982-10-20 1984-04-26 Toshiba Corp Control method of fuel cell
JPS6266574A (en) * 1985-09-19 1987-03-26 Fuji Electric Co Ltd Air cooling type fuel cell
JPS6316576A (en) * 1986-07-07 1988-01-23 Fuji Electric Co Ltd Air cooling type fuel cell
JPS6452387A (en) * 1987-08-22 1989-02-28 Fuji Electric Co Ltd Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973856A (en) * 1982-10-20 1984-04-26 Toshiba Corp Control method of fuel cell
JPS6266574A (en) * 1985-09-19 1987-03-26 Fuji Electric Co Ltd Air cooling type fuel cell
JPS6316576A (en) * 1986-07-07 1988-01-23 Fuji Electric Co Ltd Air cooling type fuel cell
JPS6452387A (en) * 1987-08-22 1989-02-28 Fuji Electric Co Ltd Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053138B2 (en) * 2005-12-29 2011-11-08 Utc Power Corporation Stabilized fuel cell flow field
JP2016157597A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method
JP2016157598A (en) * 2015-02-25 2016-09-01 株式会社Ihi Fuel cell power generation device and method

Also Published As

Publication number Publication date
JP2803288B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
US6106964A (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JPS5924504B2 (en) Fuel cell operation method and fuel cell device
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JPS6016705B2 (en) Fuel cell device and its operation method
JP3823181B2 (en) Fuel cell power generation system and waste heat recirculation cooling system for power generation system
JPS61173470A (en) Positively cooling type cooler for electrochemical battery
JP2007504635A (en) Fast start fuel reforming system and technology
JPH06310158A (en) Internally reformed fuel cell device and fuel cell power generating system
TWI474548B (en) Polar plate and polar plate unit using the same
US20040001984A1 (en) Fuel cell cooling system for low coolant flow rate
JP4186329B2 (en) Fuel reformer
JP2003533002A (en) Low temperature starting method of fuel cell and fuel cell equipment
JP3609742B2 (en) Polymer electrolyte fuel cell
JPH03230478A (en) Cooling method for phosphoric acid type fuel cell
JPH05325996A (en) Fuel cell of internally reform type fused carbonate
JPH06338334A (en) Cooling plate and cooling system for fuel cell
JPH1167258A (en) Fuel cell
JPH0280301A (en) Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell
JPS6039773A (en) Layer-built fuel cell
JP2002110205A (en) Cooling device for fuel cell
JPH05105404A (en) Plate type reformer
JP2001263968A (en) Plate fin type heat exchanger
JPS5975573A (en) Fuel cell
JPH0750614B2 (en) Fuel cell
JP2000294262A (en) Fuel cell power generating device