JPS626638B2 - - Google Patents

Info

Publication number
JPS626638B2
JPS626638B2 JP18524682A JP18524682A JPS626638B2 JP S626638 B2 JPS626638 B2 JP S626638B2 JP 18524682 A JP18524682 A JP 18524682A JP 18524682 A JP18524682 A JP 18524682A JP S626638 B2 JPS626638 B2 JP S626638B2
Authority
JP
Japan
Prior art keywords
deposited
ion beam
thin film
metal
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18524682A
Other languages
Japanese (ja)
Other versions
JPS5974279A (en
Inventor
Yasunori Taga
Yutaka Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP18524682A priority Critical patent/JPS5974279A/en
Publication of JPS5974279A publication Critical patent/JPS5974279A/en
Publication of JPS626638B2 publication Critical patent/JPS626638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/3442Applying energy to the substrate during sputtering using an ion beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment

Description

【発明の詳现な説明】 本発明は金属薄膜の蒞着被芆装眮に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor deposition coating apparatus for metal thin films.

近幎、各皮の補品に金属たたは金属酞化物を蒞
着被芆しおこれら補品の特性向䞊が図られおい
る。
In recent years, various products have been coated with metals or metal oxides by vapor deposition to improve the characteristics of these products.

たずえば第図に瀺すように各皮補品からなる
被蒞着䜓の衚面に金属酞化物を蒞着
被芆し各皮補品の目的に応じた特性向䞊が図られ
おいる。すなわち、被蒞着䜓が可芖光透過
性ガラス䜓である堎合には光孊特性、特に光の䜎
吞収率、高屈折率、高反射率の特性向䞊が埗ら
れ、熱線しやぞいガラス等ずしお建築物、車䞡、
冷蔵庫等のガラスに甚いられ冷房負荷䜎枛による
省゚ネルギ効果が図られ、たた癜熱電球に蒞着す
るこずによりこの電球の発光効率の向䞊が図られ
る。
For example, as shown in FIG. 1, a metal oxide 200 is deposited on the surface of a deposition object 100 made of various products to improve the characteristics of the various products depending on their purpose. In other words, when the deposition target 100 is a visible light-transmitting glass body, optical properties, especially low light absorption, high refractive index, and high reflectance, can be improved, and it can be used as a glass that resists heat rays, etc. things, vehicles,
It is used in the glass of refrigerators and other appliances to save energy by reducing the cooling load, and when deposited on incandescent light bulbs, it improves the light emitting efficiency of these light bulbs.

たた絶瞁䜓に金属酞化物を蒞着被芆するこずに
より誘電率および絶瞁性の向䞊を図るこずが可胜
である。
Further, by coating the insulator with a metal oxide by vapor deposition, it is possible to improve the dielectric constant and insulation properties.

曎に、金属あるいはプラスチツク材料を含む各
皮材料から成る補品の衚面に金属酞化物を蒞着被
芆するこずにより耐蝕性、耐熱性、耐摩耗性等の
特性向䞊を図るこずが可胜である。
Further, by coating the surface of a product made of various materials including metal or plastic with a metal oxide by vapor deposition, it is possible to improve properties such as corrosion resistance, heat resistance, and abrasion resistance.

たた第図に瀺すように被蒞着䜓の衚面
に金属酞化物蒞着薄膜、金属蒞着薄膜
、金属酞化物蒞着薄膜を順々に圢
成しお被蒞着䜓衚面を倚局被膜により被芆するこ
ずが行われおいる。このように金属酞化物薄膜
間に金属薄膜をサンド
むツチ状に圢成するこずにより、この金属薄膜
を電気導䜓ずしお掻甚するこずが可胜であ
りたずえば衚瀺玠子の透明導䜓、或いは車䞡窓ガ
ラスの曇止め甚ヒヌタずしお利甚されおいる。
Further, as shown in FIG. 2, a metal oxide thin film 200a, a metal vapor deposited thin film 2
00b and metal oxide vapor-deposited thin films 200c are successively formed to cover the surface of the object to be vapor-deposited with a multilayer coating. In this way, metal oxide thin film 2
By forming the metal thin film 200b between 00a and 200c in a sandwich pattern, this metal thin film 2
00b can be used as an electrical conductor, and is used, for example, as a transparent conductor for display elements or as a heater for defogging vehicle window glasses.

これらの金属酞化物蒞着薄膜或いは金属蒞着薄
膜は蒞着被芆方法によ぀お倧幅な特性の優劣が生
じるこずずなる。
These metal oxide vapor-deposited thin films or metal vapor-deposited thin films will have significantly superior or inferior properties depending on the vapor deposition coating method.

すなわち前蚘金属酞化物蒞着薄膜は酞玠
欠損が少いこずが重芁でありこの酞玠欠損が少い
皋光孊特性、誘電率、耐久性等の特性向䞊を図る
こずができる。たた金属蒞着薄膜は透過
光の䜎吞収率、光の高反射率、䜎電気抵抗等の特
性向䞊を埗るために良奜な耐酞性を有するこずが
必芁である。
That is, it is important that the metal oxide vapor-deposited thin film 200 has fewer oxygen vacancies, and the smaller the oxygen vacancies, the better the optical properties, dielectric constant, durability, and other properties can be achieved. Further, the metal vapor deposited thin film 200b needs to have good acid resistance in order to obtain improved characteristics such as low absorption of transmitted light, high reflectance of light, and low electrical resistance.

しかしながら、埓来、金属或いは金属酞化物を
被蒞着䜓に蒞着被芆する方法は䞻ずしおスパツタ
又は蒞発による蒞着により行われおいた。
However, conventional methods for depositing metals or metal oxides onto objects have been mainly performed by sputtering or evaporation.

このスパツタ蒞着はスパツタリングガス、䟋え
ばアルゎンず酞玠ずの混合ガス等の酞玠雰囲気䞭
で行われおおり、䞊蚘金属酞化物蒞着薄膜の酞玠
欠損を枛らすこずは可胜であるが、成膜速床が著
しく䜎䞋し、たたこの成膜速床を最適倀に保持す
るためには埮劙なガス混合調敎を行わなければな
らないずいう面倒があ぀た。たたスパツタ時に掻
性な酞玠プラズマが発生しこの酞玠プラズマがむ
オンゲヌゞやゎム補パツキン或いはリング等蒞着
被芆装眮の各皮郚品の劣化を招くずいう欠点があ
぀た。
This sputter deposition is performed in an oxygen atmosphere such as a sputtering gas such as a mixed gas of argon and oxygen, and although it is possible to reduce oxygen vacancies in the metal oxide deposited thin film, the deposition rate is slow. In addition, in order to maintain this film formation rate at an optimum value, delicate gas mixture adjustment had to be made, which was a hassle. Another disadvantage is that active oxygen plasma is generated during sputtering, and this oxygen plasma causes deterioration of various parts of the vapor deposition coating apparatus, such as the ion gauge, rubber packing, or ring.

たた、第図に瀺す金属酞化物ず金属ずの倚局
蒞着薄膜をスパツタ蒞着により圢成する堎合には
金属酞化物蒞着薄膜の圢成に察しおは前述した欠
点を䌎うばかりでなく、金属を蒞着する堎合には
このスパツタ蒞着が酞玠を含む雰囲気䞭で行なわ
れるため金属の蒞着時に酞化䜜甚が行われ金属蒞
着薄膜の光吞収率及び電気抵抗が増倧するずいう
欠点があ぀た。
Furthermore, when forming a multi-layered thin film of metal oxide and metal as shown in FIG. 2 by sputter deposition, not only does the formation of a metal oxide thin film suffer from the above-mentioned disadvantages, but also the metal In some cases, this sputter deposition is carried out in an oxygen-containing atmosphere, which has the disadvantage that oxidation occurs during metal deposition, increasing the light absorption rate and electrical resistance of the metal deposited thin film.

䞀方、蒞着薄膜を金属たたは金属酞化物の蒞発
により圢成する堎合は、被蒞発材を蒞着槜内に保
持し、この被蒞発材をヒヌタ或いは高゚ネルギ電
子ビヌム等で加熱するこずにより被蒞発材の蒞気
を被蒞着䜓に蒞着し前蚘蒞着薄膜の圢成が行われ
おいる。
On the other hand, when forming a deposited thin film by evaporating a metal or metal oxide, the material to be evaporated is held in a vapor deposition tank, and the material to be evaporated is heated with a heater or a high-energy electron beam. The vapor-deposited thin film is formed by vapor-depositing vapor onto an object to be vapor-deposited.

しかしながら、この皮の方法においおは、䟋え
ば金属酞化物を蒞発蒞着する堎合には金属ず酞玠
ずの蒞気圧が異なるため金属酞化物䞭の酞玠の割
合が金属に比范しお極めお小さく、たたこの蒞発
䜜甚がほが真空状態で行われるため蒞着郚の酞化
がされにくく、このため酞玠欠損量の少ない金属
酞化物蒞着薄膜を圢成するこずが極めお困難であ
り、この結果前述した諞特性の優れた薄膜を圢成
するこずが困難であるずいう欠点があ぀た。
However, in this type of method, for example, when metal oxides are evaporated, the vapor pressures of the metal and oxygen are different, so the proportion of oxygen in the metal oxide is extremely small compared to the metal; Since the process is carried out in an almost vacuum state, oxidation of the deposited area is difficult, making it extremely difficult to form a metal oxide vapor-deposited thin film with a small amount of oxygen vacancies. The disadvantage was that it was difficult to form.

本発明は䞊述した埓来の課題に鑑み為されたも
のであり、その目的は被蒞着䜓に金属酞化物又は
金属の䜕れの薄膜の圢成に察しおも薄膜の高特性
化を図るこずができる金属薄膜の蒞着被芆装眮を
提䟛するこずにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a metal that can improve the characteristics of a thin film, regardless of whether the thin film is formed of a metal oxide or a metal on an object to be deposited. An object of the present invention is to provide a thin film vapor deposition coating device.

䞊蚘目的を達成するために、本発明の第の装
眮は、 保持郚を甚いお内郚に被蒞着䜓を保持する蒞着
槜ず、 前蚘被蒞着䜓に向けむオンビヌムを照射するむ
オンビヌム照射装眮ず、 を含み、 前蚘蒞着槜は、被蒞着䜓にスパツタ面を臚た
せ、金属たたは金属酞化物を前蚘被蒞着䜓衚面に
スパツタ蒞着するスパツタ装眮を有し、 前蚘むオンビヌム照射装眮は、 むオン源ず、 このむオン源から蒞着槜ぞ向けむオンビヌムを
導くずずもに、所定の排気系が蚭けられおなるむ
オン通路管ず、 このむオン通路管の所定䜍眮に蚭けられ、前蚘
むオンビヌムを所望の埄に絞り、か぀蒞着槜及び
通路管ずの間に所定の圧力差を維持するオリフむ
スず、 前蚘むオン通路管の出口付近に蚭けられ、むオ
ンビヌムの被蒞着䜓に察する照射䜍眮を所望䜍眮
に偏向制埡する偏向噚ず、 を含み、 前蚘スパツタ装眮ずむオンビヌム照射装眮ずを
別個独立に制埡し、被蒞着䜓に蒞着された金属又
は金属酞化膜の蒞着郚にむオンビヌムを泚入する
こずを特城ずする金属薄膜の蒞着被芆装眮。たた
本発明の第の装眮は、保持郚を甚いお内郚に被
蒞着䜓を保持する蒞着槜ず、 前蚘被蒞着䜓に向けむオンビヌムを照射するむ
オンビヌム照射装眮ず、 を含み、 前蚘蒞着槜は、 被蒞着䜓にスパツタ面を臚たせ、金属又は金属
酞化物を前蚘被蒞着䜓衚面にスパツタ蒞着するス
パツタ装眮ず、 被蒞着䜓に蒞発面を臚たせ金属たたは金属酞化
物を前蚘被蒞着䜓衚面に蒞発しお蒞着する蒞着装
眮ず、 を含み、被蒞着䜓に金属たたは金属酞化物のス
パツタ蒞着ず金属たたは金属酞化物の蒞発による
蒞着ずを亀互に行うよう圢成され、 前蚘むオンビヌム照射装眮は、 むオン源ず、 このむオン源から蒞着槜ぞ向けむオンビヌムを
導くずずもに、所定の排気系が蚭けられおなるむ
オン通路管ず、 このむオン通路管の所定䜍眮に蚭けられ、前蚘
むオンビヌムを所望の埄に絞り、か぀蒞着槜及び
通路管ずの間に所定の圧力差を維持するオリフむ
スず、 前蚘むオン通路管の出口付近に蚭けられ、むオ
ンビヌムの被蒞着䜓に察する照射䜍眮を所望䜍眮
に偏向制埡する偏向噚ず、 を含み、 前蚘スパツタ装眮及び蒞発装眮による蒞着ずむ
オンビヌム照射装眮を甚いたむオンビヌムの照射
ずを別個独立に制埡し、被蒞着䜓に蒞着された金
属又は金属酞化膜の蒞着郚にむオンビヌムを泚入
するこずを特城ずする。
In order to achieve the above object, a first apparatus of the present invention includes: a deposition tank that holds an object to be evaporated therein using a holding part; an ion beam irradiation device that irradiates an ion beam toward the object to be evaporated; , the vapor deposition tank has a sputtering device for sputtering a metal or metal oxide onto the surface of the object to be vapor deposited, with a sputtering surface facing the object to be vapor deposited, and the ion beam irradiation device includes: an ion source; , an ion passage tube which guides the ion beam from the ion source to the vapor deposition tank and is provided with a predetermined exhaust system; and an orifice for maintaining a predetermined pressure difference between the evaporation tank and the passage pipe; and a deflector provided near the exit of the ion passage pipe for controlling the irradiation position of the ion beam onto the object to be deposited to a desired position. , the sputtering device and the ion beam irradiation device are controlled separately and independently, and the ion beam is implanted into the vapor deposition portion of the metal or metal oxide film deposited on the object to be vapor-deposited. Coating equipment. Further, a second apparatus of the present invention includes: a vapor deposition tank that holds an object to be deposited therein using a holding part; and an ion beam irradiation device that irradiates an ion beam toward the object to be vapor deposited, the vapor deposition tank The sputtering device sputters a metal or metal oxide onto the surface of the object to be vapor-deposited, with the sputtering surface facing the object to be vapor-deposited; a vapor deposition device that evaporates and deposits on a surface; and the ion beam irradiation device is configured to alternately perform sputter deposition of a metal or metal oxide and vapor deposition of the metal or metal oxide on the object to be vaporized, and the ion beam irradiation device includes an ion source, an ion passage tube that guides the ion beam from the ion source to the vapor deposition tank and is provided with a predetermined exhaust system, and an ion passage tube that is provided at a predetermined position of the ion passage tube and that directs the ion beam to a desired direction. an orifice that narrows the ion beam to a diameter of 1, and maintains a predetermined pressure difference between the evaporation tank and the passage tube, and an orifice that is installed near the exit of the ion passage tube and deflects the irradiation position of the ion beam onto the object to be deposited to a desired position. a deflector for controlling, separately and independently controlling vapor deposition by the sputtering device and evaporator and ion beam irradiation using the ion beam irradiation device, and controlling the vapor deposition by the sputter device and the evaporator and the ion beam irradiation using the ion beam irradiation device, and It is characterized by implanting an ion beam into the vapor deposition area.

以䞋図面に基づいお本発明の奜適な実斜䟋を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第図には本発明に係る金属薄膜の蒞着被芆装
眮が瀺されおいる。
FIG. 3 shows a metal thin film vapor deposition coating apparatus according to the present invention.

本発明においお特城的なこずは金属たたは金属
酞化物の蒞着薄膜をスパツタ蒞着のみによるので
はなく、このスパツタ蒞着郚に所望のむオンビヌ
ムを泚入しお圢成する構成ずしたこずである。
A feature of the present invention is that the thin film of metal or metal oxide is formed not only by sputter deposition, but by implanting a desired ion beam into the sputter deposition area.

本実斜䟋第図装眮においお、蒞着槜には
被蒞着䜓を保持する保持郚が配蚭されお
いる。
In the apparatus shown in FIG. 3 of this embodiment, a holding section 14 for holding a deposition object 12 is provided in the vapor deposition tank 10.

たた、前蚘被蒞着䜓にスパツタ面を臚
たせお前蚘被蒞着䜓に金属又は金属酞化物を
スパツタ蒞着するスパツタ装眮が蚭けられお
おり、䞀方蒞着槜の前方䜍眮には前蚘被蒞着
䜓の所定郚䜍に向けおむオンビヌムを照射す
るむオンビヌム照射装眮が蚭けられおおり、
前蚘スパツタ装眮のスパツタ䜜甚ずむオンビヌム
照射装眮のむオンビヌム照射䜜甚により前蚘
被蒞着䜓の衚面に金属たたは金属酞化物の所
望の蒞着薄膜が圢成される。
Further, a sputtering device 18 is provided for sputtering a metal or metal oxide onto the object 12 with a sputtering surface 16 facing the object 12 . An ion beam irradiation device 20 that irradiates an ion beam toward a predetermined portion of the vapor deposited body 12 is provided,
By the sputtering action of the sputtering device and the ion beam irradiation action of the ion beam irradiation device 20, a desired evaporated thin film of metal or metal oxide is formed on the surface of the object to be evaporated 12.

すなわち、前蚘スパツタ装眮はマグネトロ
ンスパツタ源ずスパツタタヌゲツトずか
ら構成されおおり、マグネトロンスパツタ源
にRFたたはDC電力を投入するこずによりスパツ
タタヌゲツトから金属たたは金属酞化物のス
パツタ蒞着が行われ被蒞着䜓に所望の金属た
たは金属酞化物の蒞着薄膜が圢成される。
That is, the sputtering device 18 is composed of a magnetron sputter source 22 and a sputter target 24.
By supplying RF or DC power to the sputter target 24, sputter deposition of a metal or metal oxide is performed, and a desired thin film of the metal or metal oxide is formed on the object 12 to be deposited.

䞀方むオンビヌム照射装眮はむオン源
ずこのむオン源から蒞着槜にむオンを導くむ
オン通路管ずこのむオン通路管の入口近
傍にむオンビヌムを匕出すむオンビヌム匕出電極
を有しおおり、前蚘むオン通路管の出口
偎にはむオンビヌムを加速するためのむオンビヌ
ム加速電極が蚭けられおいる。曎に前蚘むオ
ンビヌム加速電極の近傍にはオリフむス
が蚭けられおおり、このオリフむスによりむ
オンビヌムを所望の埄に絞り、か぀蒞着槜及
び通路管ずの間に圧力差を維持するこずが可
胜である。
On the other hand, the ion beam irradiation device 20 has an ion source 26
It has an ion passage tube 28 that guides ions from the ion source to the deposition tank 10 and an ion beam extraction electrode 30 that extracts the ion beam near the entrance of the ion passage tube 28. An ion beam acceleration electrode 32 for accelerating the ion beam is provided. Further, an orifice 34 is provided near the ion beam accelerating electrode 32.
The orifice 34 makes it possible to focus the ion beam to a desired diameter and to maintain a pressure difference between the vapor deposition tank 10 and the passage pipe 28.

そしお曎にむオン通路管の出口偎における
蒞着槜内にはむオンビヌムの進路を制埡する
ためのむオンビヌム偏向噚が蚭けられむオン
ビヌムが所望郚䜍に沿぀お偏向走査されおいる。
Furthermore, an ion beam deflector 36 for controlling the course of the ion beam is provided in the vapor deposition tank 10 on the exit side of the ion passage tube 28, and the ion beam is deflected and scanned along a desired location.

そしお本実斜䟋装眮においおはむオンビヌムの
むオン䟛絊量、むオン加速゚ネルギ、むオンビヌ
ムの指向方向を制埡する図瀺されおいない制埡装
眮が蚭けられおいる。そしおこの制埡装眮はスパ
ツタ装眮ず別個独立に制埡され、この制埡装眮の
駆動によりむオン泚入濃床を連続的に或いは段階
的に倉化するこずが可胜である。
The apparatus of this embodiment is provided with a control device (not shown) that controls the ion supply amount of the ion beam, the ion acceleration energy, and the pointing direction of the ion beam. This control device is controlled separately from the sputtering device, and the ion implantation concentration can be changed continuously or stepwise by driving this control device.

埓぀お本実斜䟋装眮によればむオンビヌム匕出
し電極によ぀おむオン源から匕出された
むオンがむオンビヌム加速電極およびむオン
ビヌム偏向噚によ぀お加速走査制埡されお被
蒞着䜓の所定郚䜍に照射される。
Therefore, according to the apparatus of this embodiment, the ions extracted from the ion source 26 by the ion beam extraction electrode 30 are accelerated and scanned by the ion beam accelerating electrode 32 and the ion beam deflector 36, and are applied to the deposition target 12. Irradiation is applied to a predetermined area.

前蚘蒞着槜、むオン通路管、むオン源
には排気系が蚭けら
れおおりこれら排気系の
排気䜜甚によりむオン源、むオン通路管
、蒞着槜の内郚は䜎圧状態に保持される。
The vapor deposition tank 10, the ion passage tube 28, and the ion source 26 are provided with exhaust systems 38a, 38b, and 38c, and the ion source 26 and the ion passage tube 2 are
8. The interior of the vapor deposition tank 10 is maintained at a low pressure state.

本発明に係る金属薄膜の蒞着被芆装眮は䞊蚘構
成からなり、以䞋この装眮を利甚しお本発明に係
る金属薄膜の蒞着被芆方法に぀いお説明する。
The metal thin film vapor deposition coating apparatus according to the present invention has the above-mentioned configuration, and the metal thin film vapor deposition coating method according to the present invention will be described below using this apparatus.

本第実斜䟋においおは被蒞着䜓に車䞡甚
可芖ガラス基板が䜿甚されおおり、先ずこの被蒞
着䜓に金属酞化物、本実斜䟋においおは酞
化チタン単局蒞着する堎合には排気系
、の排気䜜甚を行い蒞着槜、通
路管、むオン源をそれぞれ所望の圧力に
䜎圧化、本第実斜䟋においおは蒞着槜より
も通路管およびむオン源を䜎圧化する。
そしお蒞着槜内には、アルゎン、キセノン等
の䞍掻性ガスが導入されこの䞍掻性ガス雰囲気䞭
でマグネトロンスパツタにより金属酞化物のスパ
ツタ蒞着を行なう。
In this first embodiment, a visible glass substrate for vehicles is used as the deposition target 12, and when a single layer of metal oxide, in this embodiment titanium dioxide, is deposited on the deposition target 12, exhaust gas is first used. System 38a,3
8b and 38c to lower the pressure of the vapor deposition tank 10, passage pipe 28, and ion source 26 to desired pressures, respectively. In this first embodiment, the pressure of the passage pipe 28 and the ion source 26 is lower than that of the vapor deposition tank 10. become
Then, an inert gas such as argon or xenon is introduced into the vapor deposition tank 10, and a metal oxide is sputter-deposited using a magnetron sputter in this inert gas atmosphere.

すなわちマグネトロンスパツタ源にRFた
たはDC電力が投入されスパツタタヌゲツトの
酞化チタンがスパツタ蒞発し被蒞着䜓にこの
蒞着薄膜が圢成される。このずきむオンビヌム匕
出電極およびむオンビヌム加速電極に所
望の電圧が印加され、これによりむオン源か
らむオンビヌムの密床が1013〜1018個cm2・secで
あり、たた酞玠圧力が高く蚭定された酞玠むオン
ビヌムが匕出し加速されこの酞玠ビヌムがむオン
ビヌム偏向噚によ぀お指向制埡される。そし
お被蒞着䜓に圢成された金属酞化物の蒞着郚
に酞玠むオンが所定郚䜍に盎埄10-4cm〜cmの範
囲で可倉蚭定される所望埄のビヌムで照射され、
これにより前蚘蒞着郚に酞玠むオンが泚入される
結果、酞玠欠損の少い金属酞化物蒞着薄膜すなわ
ち酞化チタン蒞着薄膜を圢成するこずが可胜で
あり、本実斜䟋においおガラス基板に可芖光透過
性熱線しやぞい膜を圢成するこずが可胜ずなる。
That is, RF or DC power is applied to the magnetron sputter source 22 and the two sputter targets are
The titanium oxide is evaporated in sputters, and a deposited thin film is formed on the object 12 to be deposited. At this time, a desired voltage is applied to the ion beam extraction electrode 30 and the ion beam accelerating electrode 32, so that the density of the ion beam from the ion source 26 is 10 13 to 10 18 particles/cm 2 ·sec, and the oxygen pressure is An oxygen ion beam set at a high height is extracted and accelerated, and the direction of this oxygen beam is controlled by an ion beam deflector 36. Oxygen ions are then irradiated onto a predetermined portion of the metal oxide evaporation portion formed on the evaporation object 12 with a beam having a desired diameter that is variably set in the range of 10 -4 cm to 1 cm in diameter.
As a result of this, oxygen ions are injected into the vapor deposition area, and as a result, it is possible to form a metal oxide vapor deposited thin film with few oxygen vacancies, that is, a titanium dioxide vapor deposited thin film, and in this example, the glass substrate is transparent to visible light. It becomes possible to form a film that resists heat rays.

䞊述の劂く、本実斜䟋における金属酞化物の単
局蒞着薄膜の圢成においおは酞玠むオンビヌムを
集䞭照射するため照射郚で酞玠むオンの密床が高
く、このため金属酞化物の蒞着成膜速床を高く維
持するこずが可胜である。
As mentioned above, in the formation of a single-layer vapor-deposited thin film of a metal oxide in this example, since the oxygen ion beam is concentratedly irradiated, the density of oxygen ions is high in the irradiated area, and therefore the metal oxide vapor-deposition film formation rate is high. It is possible to maintain

たた金属酞化物の蒞着郚ぞの酞玠むオンの泚入
を酞玠むオンビヌムの集䞭照射により行うため蒞
着槜内に酞玠むオンが倧量拡散するこずが防止さ
れる結果、装眮に䜿甚されおいるゎムパツキン等
の郚品の劣化を回避するこずができる。
In addition, since oxygen ions are injected into the metal oxide evaporation area by concentrated irradiation with an oxygen ion beam, large amounts of oxygen ions are prevented from diffusing into the evaporation tank, resulting in parts such as rubber gaskets used in the equipment. deterioration can be avoided.

曎に本第実斜䟋においおはスパツタ源が
配蚭された蒞着槜よりもむオン源が䜎圧
であるにもかかわらず酞玠の圧力が高く蚭定され
おおり、このため加速された酞玠むオンは蒞着槜
内の空間を迅速に通過しおスパツタ蒞着郚ぞ
盎ちに泚入される結果、気䜓分子ずしお蒞着槜
内の平均酞玠濃床酞玠分圧を高めるこずが
ほずんどない。
Furthermore, in the first embodiment, although the pressure of the ion source 26 is lower than that of the vapor deposition tank 10 in which the sputter source 22 is disposed, the pressure of oxygen is set higher, so that the accelerated oxygen ions As a result of being quickly passed through the space within the deposition tank 10 and immediately injected into the sputter deposition section, the vapor deposition tank 1 is released as gas molecules.
There is almost no increase in the average oxygen concentration (oxygen partial pressure) within 0.

曎にたた本第実斜䟋においお、蒞着槜内
よりもむオン通路管内の方が䜎圧であるため
オリンフむスを通しお酞玠分子が蒞着槜
内ぞ自然䟵入するこずが極めお少く、このためス
パツタリングに悪圱響を及がすこずがなく良奜な
スパツタ蒞着を行い埗る。
Furthermore, in the first embodiment, since the pressure inside the ion passage tube 28 is lower than that inside the vapor deposition tank 10, oxygen molecules enter the vapor deposition tank 10 through the orifice 34.
Natural intrusion into the interior of the substrate is extremely rare, and therefore good sputter deposition can be performed without adversely affecting sputtering.

次に被蒞着䜓に倚槜の薄膜を圢成する第
実斜䟋の堎合には次のように行われる。この倚局
膜の圢成においお、蒞着槜、むオン通路管
、及びむオン源内が䜎圧に保持されるこず
及びむオンビヌムの密床、むオンビヌムの埄を所
定範囲に蚭定できるこずは第実斜䟋ず同様であ
るが本実斜䟋が第実斜䟋ず異なる点は、前蚘む
オンビヌムにより金属薄膜を圢成するためにむオ
ン源に金属むオン、本実斜䟋においおは銀む
オンが泚入されおいるこずであり、たたむオンビ
ヌム成膜を行うために、蒞着槜内が䞍掻性ガ
スず酞玠ずの混合ガスによ぀お満されるこずであ
る。
Next, a second process is performed to form a multi-tank thin film on the deposition target 12.
In the case of the embodiment, this is done as follows. In forming this multilayer film, the vapor deposition tank 10, the ion passage tube 2
8, and that the inside of the ion source 26 is maintained at a low pressure and that the density of the ion beam and the diameter of the ion beam can be set within a predetermined range are similar to the first embodiment, but this embodiment is different from the first embodiment. The point is that metal ions, silver ions in this example, are implanted into the ion source 26 in order to form a metal thin film by the ion beam, and in order to perform ion beam film formation, the vapor deposition tank 10 The inside is filled with a mixed gas of inert gas and oxygen.

この倚局蒞着薄膜の圢成は酞玠を含む雰囲気䞭
で金属酞化物のスパツタ蒞着を行い金属酞化物薄
膜を圢成する第の成膜工皋ず、前蚘金属酞化物
薄膜に金属むオンを照射しお金属酞化物金属薄膜
䞭に金属薄膜を圢成する第の成膜工皋ずを含ん
でおり、そのうちの第の成膜工皋においおは、
マグネトロンスパツタ源のスパツタ䜜甚によ
り金属酞化物、本実斜䟋においおは、酞化チタ
ンがスパツタ蒞着されこの蒞着薄膜が前蚘被蒞着
䜓に成膜される。
The formation of this multilayered thin film consists of a first film forming step in which a metal oxide thin film is formed by sputter deposition in an oxygen-containing atmosphere, and a metal oxide thin film is irradiated with metal ions to oxidize the metal oxide. and a second film forming step of forming a metal thin film in a material metal thin film, in the first film forming step of which,
A metal oxide, in this embodiment, titanium dioxide, is sputter-deposited by the sputtering action of the magnetron sputter source 22, and this evaporated thin film is formed on the object 12 to be evaporated.

そしお次に第の成膜工皋においおは前蚘酞
化チタンのスパツタ蒞着ず同時に金属むオンの前
蚘酞化チタン蒞着郚ぞの照射泚入が行われる。
すなわち、むオンビヌム匕出電極、むオンビ
ヌム加速電極、及びむオンビヌム偏向噚
の䜜甚によりむオン源から銀むオンが前蚘金
属酞化物薄膜の所定郚䜍に照射され酞化チタン
蒞着郚䜍に銀むオンの泚入䜜甚が行なわれる。こ
の結果被蒞着䜓に酞化チタン蒞着膜ず銀薄
膜ずの局薄膜が圢成される。
Then, in the second film forming step, simultaneously with the sputter deposition of the titanium dioxide, metal ions are irradiated and implanted into the titanium dioxide deposited portion.
That is, the ion beam extraction electrode 30, the ion beam acceleration electrode 32, and the ion beam deflector 36
By this action, silver ions are irradiated from the ion source 26 onto a predetermined portion of the metal oxide thin film, and the silver ions are implanted into the titanium dioxide vapor deposited portion. As a result, a two-layer thin film consisting of a titanium dioxide vapor-deposited film and a silver thin film is formed on the vapor-deposited body 12.

次に銀むオンの照射䜜動を停止し酞化チタン
のスパツタ蒞着のみを所定時間行うこずにより被
蒞着䜓䞊に酞化チタン薄膜、銀薄膜、酞
化チタン薄膜から成る局の蒞着薄膜が圢成さ
れ、これによりガラス基板に倚局の可芖光透過性
熱線しやぞい膜を圢成するこずが可胜ずなる。
Next, the silver ion irradiation operation is stopped and only sputter deposition of titanium dioxide is performed for a predetermined period of time, thereby forming a three-layer deposited thin film consisting of a titanium dioxide thin film, a silver thin film, and a titanium dioxide thin film on the deposition target 12. This makes it possible to form a multilayer visible light-transmitting heat ray shielding film on a glass substrate.

この第実斜䟋によればスパツタ蒞着を酞玠を
含む雰囲気䞭で行うため金属酞化物蒞着薄膜の酞
玠欠損を少くするこずが可胜であり、たた金属薄
膜はむオンビヌムの照射泚入により行われるため
銀むオンの薄膜の酞化が防止され各皮特性のすぐ
れた薄膜を圢成するこずが可胜である。
According to this second embodiment, since sputter deposition is performed in an atmosphere containing oxygen, it is possible to reduce oxygen vacancies in the metal oxide deposited thin film, and since the metal thin film is formed by ion beam irradiation implantation, silver Oxidation of the ion thin film is prevented and it is possible to form a thin film with various excellent properties.

本実斜䟋においお、蒞着槜内が酞玠を含む
雰囲気にさらされおいるにもかかわらず銀薄膜の
酞化が防止されるのはこの銀薄膜の圢成がむオン
泚入により行われおいるからである。
In this embodiment, the reason why the silver thin film is prevented from oxidizing even though the inside of the vapor deposition tank 10 is exposed to an atmosphere containing oxygen is that the silver thin film is formed by ion implantation.

すなわち、むオンはスパツタ蒞着された酞化
チタン蒞着膜の所定深さたで照射䟵入しおその泚
入が行われるためこの泚入郚䜍においお、むオン
が酞化チタン蒞着膜により保護され雰囲気䞭の
酞玠および酞玠プラズマずの接觊が防止される結
果、銀薄膜の酞化が防止される。たたこの銀薄膜
は酞化チタン蒞着膜の酞玠原子によ぀お酞化さ
れないこずが分光特性のコンピナヌタシミナレヌ
シペンの結果確認ができた。
In other words, the ions are implanted by irradiating and penetrating the sputter-deposited titanium dioxide vapor deposited film to a predetermined depth. At this implantation site, the ions are protected by the titanium dioxide vapor deposition film and are protected from oxygen in the atmosphere and oxygen plasma. As a result, oxidation of the silver thin film is prevented. Furthermore, it was confirmed by computer simulation of the spectral characteristics that this silver thin film was not oxidized by the oxygen atoms of the titanium dioxide deposited film.

䞀般に、膜内にむオンを泚入するずこの膜内に
歪が発生するこずが知られおいるが、本実斜䟋に
おいおは銀および酞化チタンの膜厚が薄く、か
぀酞化チタンの蒞着成膜ずむオン泚入を同時に
行぀おいるため膜応力による歪の発生が緩和さ
れ、本実斜䟋においおは䞊蚘歪の発生が認められ
ず良奜な局薄膜を圢成するこずができた。
Generally, it is known that strain is generated in a film when ions are implanted into the film, but in this example, the film thickness of silver and titanium dioxide is thin, and the film thickness of titanium dioxide is thin. Since the ion implantation was carried out simultaneously, the occurrence of distortion due to film stress was alleviated, and in this example, the occurrence of the above-mentioned distortion was not observed, and a good three-layer thin film could be formed.

本第、第実斜䟋においお特城的なこずは金
属酞化物のスパツタ蒞着をマグネトロンスパツタ
型のスパツタ源により行぀おいるこずである。こ
のためスパツタ時に発生するプラズマを磁堎によ
぀おタヌゲツト近傍に集束させおプラズマの高密
床化を図るこずが可胜であり、これによりプラズ
マが蒞着槜からむオン源に流入するこず
が防止されむオンの照射䜜動を劚害するこずがな
くたたプラズマの高密床化を図るこずにより照射
むオンのプラズマ内ぞの通過が回避されむオン泚
入によ぀おスパツタ䜜甚が劚害されるずいう䞍郜
合を防止できる。
A characteristic feature of the first and second embodiments is that the metal oxide is sputter-deposited using a magnetron sputter type sputter source. Therefore, it is possible to increase the density of the plasma by focusing the plasma generated during sputtering near the target using a magnetic field, thereby preventing the plasma from flowing into the ion source 26 from the evaporation tank 10. Furthermore, by increasing the density of the plasma, passage of the irradiated ions into the plasma is avoided, and the problem that the sputtering effect is obstructed by ion implantation can be prevented.

たた、前蚘のごずくプラズマの高密床化が図ら
れるため酞玠むオンのプラズマが蒞着槜内に
拡散するこずが防止され蒞着槜に䜿甚されお
いるゎムパツキン等の劣化を防止するこずができ
る。
Furthermore, since the plasma density is increased as described above, oxygen ion plasma is prevented from diffusing into the vapor deposition tank 10, and deterioration of the rubber packing used in the vapor deposition tank 10 can be prevented.

たた本第、第実斜䟋においおむオン源
の䜜動圧がスパツタ装眮の䜜動圧よりも䜎いため
むオン源の圧力が蒞着槜のスパツタ圧力
よりも䜎圧化されおおり、この䞡者の差圧に察応
しお蒞着槜内のガスがむオン通路管を通
぀お排気系から自然排出するこずが可胜で
ありこのため䟋えば本第、第実斜䟋においお
蒞着槜内の圧力が×10-3〜×10-3Torrで
あ぀おも通路管の圧力は×10-5〜×
10-8Torrに保持できる劂く蒞着槜ず通路管
ずの圧力を差圧保持するこずが可胜であり、
たた被蒞着䜓にむオンビヌムが衝突するこず
によ぀お発生する蒞着槜内の圧力の䞊昇を抌
えるこずが可胜である。
In addition, in the first and second embodiments, the ion source 26
Since the operating pressure of the ion source 26 is lower than that of the sputtering device, the pressure of the ion source 26 is lower than the sputtering pressure of the vapor deposition tank 10, and the gas in the vapor deposition tank 10 is ionized in response to the differential pressure between the two. It is possible to naturally discharge the air from the exhaust system 38b through the passage pipe 28. Therefore, for example, in the first and second embodiments, the pressure inside the vapor deposition tank 10 is 2×10 -3 to 6×10 -3 Torr. Even if the pressure in the passage pipe 28 is 2×10 -5 to 6×
It is possible to maintain the pressure difference between the vapor deposition tank 10 and the passage pipe 28 so that it can be maintained at 10 -8 Torr,
Furthermore, it is possible to suppress the increase in pressure within the vapor deposition tank 10 that occurs when the ion beam collides with the object 12 to be vapor deposited.

さらに本実斜䟋装眮には前述したごずくむオン
ビヌムのむオン䟛絊量、むオン加速゚ネルギ、む
オンビヌムの指向方向の各制埡装眮が蚭けられお
おり、このため䟋えばむオンビヌムのむオン䟛絊
量およびむオンビヌムの加速゚ネルギヌを制埡す
るこず、すなわちむオン源内のむオン濃床の
制埡およびむオンビヌム匕出電極およびむオ
ンビヌム加速電極を制埡するこずにより本第
第実斜䟋においおはむオンビヌム密床を1013
〜1018個cm2・secの範囲に、たたむオンの゚ネ
ルギを数100eV〜数MeVの範囲にそれぞれ蚭定で
き、これらの所望の制埡により蒞着膜内のむオン
泚入量を連続的に或いは断続的に適宜倉化するこ
ずが可胜であり、これにより第図に瀺すように
金属酞化物薄膜においお衚面からの距離に応じお
光屈折率を適宜倉化させるこずができ、これによ
り䟋えば蒞着膜内にレヌザ光等を導く光通路を圢
成するこずも可胜ずなる。
Furthermore, as described above, this embodiment device is provided with devices for controlling the ion supply amount of the ion beam, ion acceleration energy, and ion beam pointing direction. In the first and second embodiments, the ion beam density is increased to 10 13 by controlling the energy, that is, controlling the ion concentration in the ion source 26 and controlling the ion beam extraction electrode 30 and the ion beam acceleration electrode 32.
It is possible to set the ion energy in the range of ~10 18 ions/cm 2 ·sec and the ion energy in the range of several 100 eV to several MeV, and by controlling these as desired, the amount of ions implanted into the deposited film can be controlled continuously or intermittently. As shown in FIG. 4, the optical refractive index of the metal oxide thin film can be changed appropriately depending on the distance from the surface. It also becomes possible to form an optical path for guiding light and the like.

たた同様に倚槜蒞着膜の堎合には金属むオンの
泚入濃床を倉化するこずが可胜であり、これによ
り第図に瀺すように金属酞化物蒞着薄膜ず金属
薄膜ずの境界を区画するこずなく金属の濃床を基
板衚面からの距離に応じお連続的に倉化するこず
が可胜であり、このように圢成するこずにより金
属酞化物蒞着薄膜ず金属薄膜ずの境界を䞍明瞭ず
し、これにより蒞着薄膜の蒞着匷さを高めるこず
が可胜ずなる。
Similarly, in the case of a multi-bath vapor deposition film, it is possible to change the implantation concentration of metal ions, thereby eliminating the need to separate the boundary between the metal oxide vapor deposited thin film and the metal thin film, as shown in Figure 5. It is possible to continuously change the concentration of metal depending on the distance from the substrate surface, and by forming it in this way, the boundary between the metal oxide thin film and the metal thin film becomes unclear, and this makes it possible to It becomes possible to increase the strength of vapor deposition.

本第第実斜䟋においお、むオンの䟛絊゚ネ
ルギ、すなわち䞻ずしおむオン泚入の加速電圧は
金属酞化物蒞着薄膜衚面からのむオン泚入深さ、
むオン泚入量およびその分垃等を考慮しお決定さ
れる。
In the first and second embodiments, the ion supply energy, that is, mainly the ion implantation acceleration voltage, is determined by the ion implantation depth from the surface of the metal oxide deposited thin film,
It is determined by considering the ion implantation amount and its distribution.

通垞は金属酞化物のスパツタ蒞着䜜甚ずむオン
泚入䜜甚が同時に行われるため時間の経過ず共に
スパツタ蒞着膜厚が増加するこずずなり、この膜
厚増加分だけむオンが所定の泚入郚䜍に達するた
での蒞着膜を通過する距離が長くなる。このため
時間の経過に䌎぀おむオン泚入゚ネルギを埐々に
増倧、すなわちむオン加速電圧を埐々に増倧させ
むオンが所定の泚入郚䜍に到達できるようにむオ
ン䟛絊゚ネルギの制埡が行われおいる。
Usually, the sputter deposition of metal oxide and the ion implantation are performed at the same time, so the thickness of the sputter-deposited film increases over time. The distance traveled becomes longer. For this reason, the ion supply energy is controlled so that the ion implantation energy is gradually increased over time, that is, the ion acceleration voltage is gradually increased so that the ions can reach a predetermined implantation site.

他方、むオンの泚入を金属酞化物蒞着膜の衚面
あるいは極く浅い郚分に行うずきには䜎゚ネルギ
むオンビヌムを甚いおむオンの泚入が行われ、䟋
えば金属酞化物蒞着膜の衚面郚䜍に酞玠むオンビ
ヌムを泚入する堎合は被蒞着䜓の基板䞊に
蒞着する酞玠欠損構造の金属酞化物薄膜衚面に酞
玠を䟛絊し基板䞊の酞玠濃床を高くするこずがで
きるず共に蒞着した薄膜のスパツタ収率を䜎く抌
えるこずが可胜である。この単局薄膜の圢成に際
しおの酞玠むオン泚入条件は特に蒞着膜のスパツ
タ成膜速床ず酞玠欠損量が考慮される。
On the other hand, when ions are implanted into the surface of a metal oxide deposited film or into a very shallow part, a low-energy ion beam is used to implant the ions, for example, an oxygen ion beam is implanted into the surface of a metal oxide deposited film. In this case, it is possible to supply oxygen to the surface of the metal oxide thin film having an oxygen-deficient structure to be deposited on the substrate of the deposition object 100, thereby increasing the oxygen concentration on the substrate and keeping the sputtering yield of the deposited thin film low. is possible. The oxygen ion implantation conditions for forming this single-layer thin film are particularly taken into consideration, including the sputtering deposition rate and the amount of oxygen vacancies in the deposited film.

たたむオンビヌムの指向制埡、すなわちむオン
ビヌム偏向噚を制埡するこずによりむオンビ
ヌムを蒞着郚に䞀様に或いは特定の郚䜍に集䞭的
に照射するこずが可胜であり、これにより蒞着薄
膜内にむオン濃床を集䞭的に高めた通路或いはそ
の逆にむオン濃床を䜎くした通路を圢成するこず
が可胜である。
In addition, by controlling the direction of the ion beam, that is, by controlling the ion beam deflector 36, it is possible to irradiate the ion beam uniformly onto the vapor deposition area or to concentrate on a specific area. It is possible to form channels with a concentrated ion concentration or vice versa.

たずえば第図に瀺すように金属酞化物の蒞着
郚内に酞玠欠損量のすくない高屈折率領域を網目
状に圢成しお光回路を圢成するこずが可胜
であり、たたその逆に酞玠欠損量の倚い電気䌝導
性領域を網目状に圢成しお電気回路を圢成するこ
ずが可胜ずなる。たた金属酞化物蒞着薄膜ず金属
薄膜ずの倚局蒞着薄膜を圢成する堎合おいおは第
図に瀺すように酞化チタン蒞着薄膜内に銀の
濃床の高い通路を圢成するこずが可胜でありこれ
によりこの銀濃床が高い郚分を瞊暪に蚭けお電気
回路を圢成するこずが可胜であり、この回
路を熱線ヒヌタ入り曇止めガラス等に利甚
するず奜適である。
For example, as shown in FIG. 6, it is possible to form an optical circuit 300 by forming a mesh-like high refractive index region with a small amount of oxygen vacancies in a metal oxide vapor deposition part, and vice versa. It becomes possible to form an electric circuit by forming a mesh-like electrically conductive region with a large number of electrically conductive regions. Furthermore, in the case of forming a multi-layer vapor deposited thin film of a metal oxide vapor deposited thin film and a metal thin film, it is possible to form passages with a high concentration of silver in the titanium dioxide vapor deposited thin film as shown in FIG. Therefore, it is possible to form an electric circuit 302 by providing this high silver concentration portion vertically and horizontally, and it is suitable to use this circuit 302 in anti-fog glass with a hot wire heater or the like.

本発明に係る金属薄膜の蒞着被芆方法及び装眮
に関する構成は䞊述のごずくであり、以䞋スパツ
タ蒞着による本発明の具䜓的な実斜䟋に぀いお説
明する。
The structure of the method and apparatus for depositing a metal thin film according to the present invention is as described above, and a specific embodiment of the present invention using sputter deposition will be described below.

実斜䟋 タヌゲツトず基板ずの距離15cm 被蒞着䜓瞊cm×暪cm×厚さ0.8mmの石英
ガラス タヌゲツト材盎埄6.7cmの酞化チタン
TiO2焌結タヌゲツト 蒞着槜及びむオン源雰囲気アルゎンガス×
10-3Torr スパツタリング電力500W・RF 泚入むオン量酞玠むオンO2 +×1015
個秒 加速゚ネルギ500〜1000V 薄膜の圢成速床Å秒 むオンビヌム埄被蒞着䜓衚面䞊で盎埄cm ビヌム操䜜方法蒞着郚党䜓を秒の呚期で走
査、なお被蒞着䜓の加熱たたは冷华は行わ
ず、たた膜質の均䞀化を図るため被蒞着䜓を
10秒の呚期で回転させた。
Example Distance between target and substrate: 15 cm Evaporation object: Silica glass of 5 cm length x 5 cm width x 0.8 mm thickness Target material: Titanium dioxide (TiO 2 ) sintered target with a diameter of 6.7 cm Vapor deposition tank and ion source atmosphere :Argon gas 3x
10 -3 Torr Sputtering power: 500W・RF Amount of implanted ions: Oxygen ions (O 2 + ) 1×10 15
/sec Acceleration energy: 500 to 1000V Thin film formation rate: 1 Å/sec Ion beam diameter: 1 cm diameter on the surface of the evaporator Beam operation method: Scan the entire evaporation area at a cycle of 1 second, while heating the evaporator Alternatively, cooling is not performed, and the object to be evaporated is
It was rotated at a cycle of 10 seconds.

結 果 17分間の成膜䜜甚によ぀お厚さ玄1000Åの酞
化チタン薄膜が埗られた。
Results: A titanium dioxide thin film with a thickness of approximately 1000 Å was obtained after 17 minutes of film formation.

可芖光吞収率波長5000Åで吞収率0.1以䞋 屈折率2.5 酞玠欠陥量以䞋ラザホヌド埌方散乱
法 本実斜䟋の酞化チタン蒞着薄膜は熱凊理空
気䞭、1000℃24時間した埌においおも吞収率の
倉化は党く認められなか぀た。この蒞着薄膜は䜎
吞収率、高屈折率に勝れおおりレヌザ甚倚局膜反
射鏡等の圢成に極めお有効である。
Visible light absorption rate: Absorption rate of 0.1% or less at a wavelength of 5000 Å Refractive index: 2.5 Amount of oxygen defects: 1% or less (Rutherford backscattering method) The titanium dioxide vapor-deposited thin film of this example was heat treated (in air at 1000°C for 24 hours) Even after this, no change in absorption rate was observed. This vapor-deposited thin film has low absorption and high refractive index, and is extremely effective in forming multilayer reflectors for lasers.

次に本実斜䟋における䞻芁な構成芁件を欠く
た堎合を比范䟋ずしお瀺し実斜䟋ずの比范によ
぀おその効果を明確にする。
Next, a case in which the main constituent elements of this embodiment are missing will be shown as a comparative example, and the effect will be clarified by comparison with the embodiment.

これらの比范䟋はいずれもスパツタ蒞着郚にお
ける酞玠むオンの泚入を酞玠むオンビヌムの照射
により行うずいう本実斜䟋の特有の構成を欠い
たものである。
All of these comparative examples lack the unique structure of this embodiment, in which oxygen ions are implanted in the sputter deposition portion by irradiation with an oxygen ion beam.

比范䟋 成膜条件実斜䟋ず同䞀の装眮を䜿甚 むオン源からの酞玠むオンビヌム照射を停
止させお酞化チタン薄膜をアルゎンガス雰
囲気䞭でスパツタ圢成した。
Comparative Example Film-forming conditions: The same equipment as in the example was used. Oxygen ion beam irradiation from the ion source was stopped, and a titanium dioxide thin film was sputter-formed in an argon gas atmosphere.

他の成膜条件は実斜䟋ず同䞀 結 果 成膜速床Å秒 可芖光吞収率波長5000Åで吞収率以䞋 屈折率2.2 酞玠欠損量〜ラザホヌド埌方散乱
法 本比范䟋は酞玠むオンの泚入を行぀おいない
ため酞玠欠損量が倚く光孊特性が本実斜䟋の結
果よりも劣぀おいるのが理解される。
Other film-forming conditions were the same as in Examples Film-forming speed: 1 Å/sec Visible light absorption rate: Absorption rate 2% or less at a wavelength of 5000 Å Refractive index: 2.2 Amount of oxygen vacancies: 1-2% (Rutherford backscattering method) It is understood that in this comparative example, since no oxygen ions were implanted, the amount of oxygen vacancies was large and the optical characteristics were inferior to the results of this example.

比范䟋 成膜条件酞化チタン薄膜をアルゎン酞玠混
合ガスアルゎン酞玠混合比9010雰囲
気䞭でスパツタ蒞着 他の条件は比范䟋ず同䞀 結 果 成膜速床0.3〜0.4Å秒 可芖光吞収率膜圧1000Åで吞収率0.1以䞋 屈折率2.5 比范䟋は混合ガスに酞玠を含むため酞玠欠損
量が少く、このため良奜な光特性を有しおいる。
Comparative example Film-forming conditions: Sputter deposition of titanium dioxide thin film in an argon-oxygen mixed gas atmosphere (argon:oxygen mixture ratio 90:10) Other conditions were the same as the comparative example Film-forming speed: 0.3 to 0.4 Å/sec Visible light absorption rate: absorption rate of 0.1% or less at a film thickness of 1000 Å Refractive index: 2.5 The comparative example has a small amount of oxygen vacancies because the mixed gas contains oxygen, and therefore has good optical characteristics.

しかし酞玠むオンビヌムの照射が行われないた
め成膜速床が著しく遅く、生産性に欠けるずいう
欠点がある。
However, since oxygen ion beam irradiation is not performed, the film formation rate is extremely slow, resulting in a lack of productivity.

実斜䟋 第工皋被蒞着䜓ぞの酞化チタンの蒞着圢
成工皋。
Examples First step: Step of forming titanium dioxide by vapor deposition on the object to be vapor-deposited.

タヌゲツトず被蒞着䜓間の距離15cm 被蒞着䜓瞊cm×暪cm×厚さ0.8mmの石英
ガラス タヌゲツト材酞化チタンTiO2 スパツタ雰囲気アルゎン酞玠混合ガス混合
比アルゎン90察酞玠10の割合 スパツタリング圧力×10-3Torr スパツタ電力出力500W・RF 成膜速床Å分 成膜時間分。
Distance between target and object to be evaporated: 15cm Object to be evaporated: Silica glass of 5cm length x 5cm width x 0.8mm thickness Target material: Titanium dioxide (TiO 2 ) Sputtering atmosphere: Argon-oxygen mixed gas (mixture ratio of 90 to argon) Sputtering pressure: 3 x 10 -3 Torr Sputtering power: Output 500W/RF Film deposition rate: 1 Å/min Film deposition time: 7 minutes.

第工皋 酞化チタン蒞着郚ぞの銀むオンの泚入工皋。2nd process Step of implanting silver ions into the titanium dioxide deposited area.

酞化チタンのスパツタ蒞着を䞭断するこずな
く銀むオンの泚入を同時に行぀た。
Silver ion implantation was performed simultaneously without interrupting the sputter deposition of titanium dioxide.

泚入むオン量銀むオン×1015個秒 むオン加速゚ネルギヌ500〜1000V むオンビヌム埄蒞着郚で盎埄cm むオンビヌム走査方法蒞着郚党䜓を秒の呚
期で走査 被蒞着䜓の加熱たたは冷华実斜せず なお膜質の均䞀化を図るため被蒞着䜓党䜓を10
秒の呚期で回転させた。
Amount of implanted ions: 1×10 15 silver ions/sec Ion acceleration energy: 500 to 1000 V Ion beam diameter: 1 cm diameter at the evaporation area Ion beam scanning method: Scans the entire evaporation area at a cycle of 1 second Heating the object to be evaporated or Cooling: To ensure uniform film quality without cooling, the entire object to be evaporated was
It rotated with a period of seconds.

むオン泚入時間分30秒。Ion implantation time: 3 minutes 30 seconds.

第工皋 むオン泚入を䞭止しTiO2の成膜のみ行う。In the third step, the ion implantation is stopped and only the TiO 2 film is formed.

スパツタ時間30秒 その他の条件は第工皋ず同様である。Spatuta time: 30 seconds Other conditions are the same as in the first step.

結 果 第工皋の結果 TiO2膜厚420Å 屈折率2.4以䞊 吞収率波長500Åで以䞋酞玠欠損量
以䞋埌方散乱法 なお成膜埌の熱酞化空気䞭、1000℃、24時
間によ぀お吞収率の倉化がた぀たくみずめら
れなか぀た。
Results Results of the first step TiO 2 film thickness: 420 Å Refractive index: 2.4 or more Absorption rate: 1% or less at wavelength 500 Å Oxygen vacancy 1%
Below (backscattering method) It should be noted that no change in absorption rate was observed due to thermal oxidation (in air, 1000°C, 24 hours) after film formation.

第工皋の結果 銀の蒞着膜厚150Å 銀蒞着膜の基板衚面からの距離360Å〜510Å 第工皋終了埌の結果 ガラス基板䞊に酞化チタン、銀、酞化チタ
ンの局膜が埗られた。
Results of the second step: Thickness of the deposited silver film: 150 Å Distance of the deposited silver film from the substrate surface: 360 Å to 510 Å Results after the third step: A three-layer film of titanium dioxide, silver, and titanium dioxide is formed on the glass substrate. Obtained.

第局酞化チタン蒞着薄膜の厚さ360Å 第局銀薄膜の厚さ150Å 第局酞化チタン蒞着薄膜の厚さ360Å 電導性玄Ω平方 光孊特性第図に瀺す通りである。Thickness of first layer titanium dioxide vapor deposited thin film: 360Å Second layer silver thin film thickness: 150Å Thickness of third layer titanium dioxide vapor deposited thin film: 360Å Conductivity: Approximately 2Ω/square Optical properties: As shown in FIG.

この第図によれば、酞玠欠損量の少い酞化
チタン局が埗られるため良奜な可芖光透過率が
埗られ、たた銀薄膜の酞化が防止されおいるの
で高い熱線反射熱線しやぞいを可胜にしお
いる。
According to FIG. 8, a titanium dioxide layer with a small amount of oxygen vacancies is obtained, so good visible light transmittance is obtained, and since the silver thin film is prevented from oxidizing, it has high heat ray reflection. (Hei) is made possible.

次に本実斜䟋における䞻芁な構成芁件を欠い
た堎合を比范䟋ずしお瀺し実斜䟋ずの比范によ
぀おその効果を明確にする。
Next, a case in which the main constituent elements of this embodiment are missing will be shown as a comparative example, and the effect will be clarified by comparison with the embodiment.

これらの比范はいずれもスパツタ蒞着郚におけ
る銀むオンの泚入を銀むオンビヌムの照射により
行うずいう本実斜䟋の特有の構成を欠いたもの
である。
All of these comparisons lack the unique structure of this embodiment in which silver ion implantation in the sputter deposition area is performed by irradiation with a silver ion beam.

比范䟋 成膜条件および方法 Ag局の䜜成を実斜䟋のむオン源を甚いるこ
ずなくAgタヌゲツトのDCスパツタを甚い、他
の条件はほが実斜䟋ず同様 TiO2第局360ÅRFスパツタ Ag局150ÅDCスパツタ TiO2第局360ÅRFスパツタ 結 果 光孊特性第図に瀺す通りである。
Comparative Example Film-forming conditions and method: The Ag layer was created using DC sputtering with an Ag target without using the ion source of the example, and other conditions were almost the same as in the example. TiO 2 1st layer: 360 Å (RF sputtering) Ag layer: 150 Å (DC sputter) TiO 2 second layer: 360 Å (RF sputter) Results Optical properties: As shown in Figure 9.

電導性200Ω平方 本比范䟋においおはスパツタ蒞着された銀の
薄膜が第局圢成時における酞化チタンのスパ
ツタ蒞着時に酞化され、この結果本実斜䟋ず比
范するず光孊特性および電導性が極めお劣぀おい
るこずが理解される。
Electrical conductivity: 200Ω/square In Comparative Example 1, the sputter-deposited silver thin film was oxidized during the sputter-evaporation of titanium dioxide during the formation of the third layer, and as a result, the optical properties and conductivity were lower than in this example. It is understood that this is extremely inferior.

比范䟋  成膜条件および方法酞化チタンのスパツタ
をアルガス雰囲気×10-3Torrで行う以倖
比范䟋ず同様である。
Comparative Example 2 Film forming conditions and method: Same as Comparative Example except that sputtering of titanium dioxide was performed in an argas atmosphere (3×10 −3 Torr).

結 果 光孊特性第図に瀺す通り この比范䟋においおは各局の成膜を酞玠を含
たない雰囲気で行うため、銀薄膜の酞化が防止さ
れるが、酞化チタン蒞着薄膜䞭の酞玠欠損量が
倚いためTiO2局の屈折率が䜎く2.0〜2.3
TiO2局の可芖吞収が倚か぀た膜厚1000Åで吞
収率〜20このため、可芖領域における反射
防止が䞍充分ずなり、可芖吞収が倚く、可芖透過
率が䜎䞋する欠点が生じた。
Results Optical properties: As shown in Figure 10 In Comparative Example 2, each layer was formed in an oxygen-free atmosphere, so oxidation of the silver thin film was prevented, but oxygen vacancies in the titanium dioxide vapor-deposited thin film The refractive index of the TiO 2 layer is low (2.0-2.3) due to the large amount
The TiO 2 layer had a large amount of visible absorption (absorption rate of 1-20% at a film thickness of 1000 Å), which resulted in insufficient antireflection in the visible region, resulting in a large amount of visible absorption and a decrease in visible transmittance. .

なお、このような光孊的特性の䜎䞋を防止する
ためには、事前に酞化チタンタヌゲツトのなら
し凊理、䟋えばアルゎン酞玠混合ガス䞭での予備
スパツタ凊理、を必芁ずする等予備凊理が面倒で
あるずいう欠点がある。
In addition, in order to prevent such deterioration of optical properties, preliminary treatment is troublesome, such as requiring a conditioning treatment of the titanium dioxide target in advance, such as preliminary sputtering treatment in an argon-oxygen mixed gas. There is a drawback.

かかる予備凊理を省略するず成膜回数を重ねる
に぀れお酞化チタンの蒞着膜質が埐々に䜎䞋す
るずいう匊害がある。
If such preliminary treatment is omitted, there is a problem that the quality of the titanium dioxide deposited film gradually deteriorates as the number of times the film is formed increases.

䞊述したように、本実斜䟋により酞化チタ
ン、銀、酞化チタンで局蒞着薄膜が圢成され
るこずずなるが、本実斜䟋は酞玠雰囲気䞭にお
いお酞化チタンのスパツタが行われるため酞
化チタン蒞着薄膜の酞玠欠損量が少くたた銀蒞着
薄膜の圢成は銀むオンビヌムの泚入䜜甚により行
うためこの銀蒞着薄膜酞化䜜甚が防止され極めお
高特性の蒞着薄膜を圢成するこずができる。
As mentioned above, in this example, a three-layer deposited thin film of titanium dioxide, silver, and titanium dioxide is formed, but in this example, sputtering of titanium dioxide is performed in an oxygen atmosphere, so The amount of oxygen vacancies in the titanium oxide deposited thin film is small, and since the silver deposited thin film is formed by the implantation action of a silver ion beam, the oxidation effect of the silver deposited thin film is prevented, making it possible to form a deposited thin film with extremely high characteristics.

以䞊説明したように本発明によれば被蒞着䜓衚
面に酞玠欠損の少ない金属酞化物蒞着薄膜及びほ
ずんど酞化されない金属蒞着薄膜を圢成するこず
が可胜でありこれにより光孊特性、誘電率及び耐
久性等の可皮特性にすぐれた蒞着薄膜を圢成する
こずが可胜である。
As explained above, according to the present invention, it is possible to form a metal oxide vapor-deposited thin film with few oxygen vacancies and a metal vapor-deposited thin film that is hardly oxidized on the surface of the object to be vapor-deposited, thereby improving optical properties, dielectric constant, durability, etc. It is possible to form a vapor-deposited thin film with excellent seedability properties.

なお、䞊述の各実斜䟋においお金属に銀を、金
属酞化物に酞化チタンを、それぞれ䜿甚した䟋
を瀺したが本実斜䟋は他の金属および金属酞化物
を䜿甚するこずも可胜である。
In addition, in each of the above-mentioned Examples, an example was shown in which silver was used as the metal and titanium dioxide was used as the metal oxide, but it is also possible to use other metals and metal oxides in this example.

なお、倚局蒞着薄膜の圢成においお、蒞着薄膜
をスパツタ蒞着ず蒞発による蒞着ずを亀互に行぀
お圢成し、これら各蒞着郚に所望のむオン泚入を
行い倚局の蒞着薄膜を圢成するこずが可胜であ
る。
In addition, in forming a multilayer vapor-deposited thin film, it is possible to form the vapor-deposited thin film by alternately performing sputter deposition and vapor deposition, and then implant desired ions into each of these vapor-deposited parts to form a multi-layer vapor-deposited thin film. .

第図には倚局蒞着膜をスパツタ蒞着ず蒞発
による蒞着ずを亀互に行぀お圢成する発明の第
実斜䟋の装眮が瀺され、本発明の第、第実斜
䟋における第図装眮ず同䞀郚材には同䞀笊号を
付しおその説明を省略する。
FIG. 11 shows a third embodiment of the invention in which a multilayer deposited film is formed by alternately performing sputter deposition and evaporation deposition.
The apparatus of the embodiment is shown, and the same members as those of the apparatus of FIG. 3 in the first and second embodiments of the present invention are given the same reference numerals, and the explanation thereof will be omitted.

第図装眮においお特城的なこずは、スパツ
タ装眮の近傍䜍眮に被蒞発材を蒞発する
蒞発装眮が蚭けられおいるこずである。
A feature of the apparatus shown in FIG. 11 is that an evaporator 42 for evaporating the material to be evaporated 40 is provided near the sputtering apparatus 18.

この蒞発装眮には金属又は金属酞化物から
成る被蒞発材を被蒞着䜓に臚たせお収容
するルツボ又はボヌト、が配蚭されおおり、
たたこのルツボに収容された被蒞発材を
蒞発する図瀺されおいない加熱装眮が蚭けられお
いる。
This evaporator 40 is provided with a crucible 44 or a boat that accommodates a material to be evaporated 42 made of metal or metal oxide facing the object to be evaporated 12,
Further, a heating device (not shown) is provided to evaporate the material to be evaporated 42 housed in the crucible 44 .

前蚘加熱装眮はヒヌタ等の電熱噚或いは被蒞発
材の近傍䜍眮に蚭けられこの被蒞発材を
加熱蒞発する高゚ネルギ電子ビヌム発生装眮等か
ら成り、これらの加熱装眮により被蒞発材の
蒞発が行われ被蒞着䜓の衚面に蒞発蒞着薄膜
をスパツタ蒞着薄膜ず亀互に圢成するこずが可胜
ずなる。埓぀おこれにより、たずえばスパツタタ
ヌゲツトず被蒞発材ずを異質材料ずし、
スパツタの容易な材料をスパツタタゲヌト
に、蒞発の容易な材料を被蒞発材にそれぞれ
遞択し、これらの蒞着により倉化に富んだ倚局蒞
着薄膜を圢成するこずが可胜である。
The heating device is composed of an electric heater such as a heater, or a high-energy electron beam generator installed near the material 40 to be evaporated and heats and evaporates the material 40 to be evaporated. This makes it possible to alternately form evaporation-deposited thin films and sputter-deposited thin films on the surface of the object 12 to be deposited. Therefore, for example, the sputter target 24 and the material to be evaporated 40 are made of different materials,
Sputtering easy material to sputtering gate 24
In addition, it is possible to select materials that are easily evaporated as the material to be evaporated 40, and to form a multilayered thin film with a wide variety of variations through evaporation of these materials.

本第実斜䟋においおは被蒞発材の蒞発に
際し蒞着槜の真空床を10-4〜10-10Torrの圧
力に維持しお行われる。
In the third embodiment, the material to be evaporated 40 is evaporated while maintaining the degree of vacuum in the evaporation tank 10 at a pressure of 10 -4 to 10 -10 Torr.

䞀般的に真空床をを10-10Torrずいう超真空圧
にするのは困難であるが、本第実斜䟋にあ぀お
は蒞着槜の倖呚郚にヒヌタを配蚭し、こ
のヒヌタにより蒞着槜内を昇枩しながら
排気を行い、前蚘超真空圧の容易な実珟を蚈぀お
いる。
Generally, it is difficult to achieve an ultra-vacuum pressure of 10 -10 Torr, but in this third embodiment, a heater 46 is provided on the outer periphery of the vapor deposition tank 10. The inside of the vapor deposition tank 10 is evacuated while being heated, thereby easily realizing the ultra-vacuum pressure.

本第実斜䟋は前述したように第又は第実
斜䟋におけるスパツタ蒞着薄膜ず蒞発蒞着膜ずを
亀互における行぀おむオン泚入による倚局蒞着薄
膜を圢成するものであるが、このうち第、第
実斜䟋におけるスパツタ蒞着薄膜の圢成及びむオ
ンの照射制埡に぀いおは詳述したのでその説明を
省略し、以䞋本第実斜䟋における蒞発蒞着薄膜
のむオン泚入局の具䜓的圢成䟋を瀺す。
As described above, in the third embodiment, a multilayer thin film is formed by ion implantation by alternately performing the sputter deposition thin film and the evaporation deposition film in the first or second embodiment. Second
Since the formation of the sputter-deposited thin film and the ion irradiation control in the embodiment have been described in detail, their explanation will be omitted, and a specific example of the formation of the ion-implanted layer of the evaporation-deposited thin film in the third embodiment will be shown below.

(1) 前凊理工皋 本第実斜䟋においおは蒞着薄膜の被蒞着䜓ぞ
の密着匷床を高めるため蒞着薄膜の圢成に先だち
前凊理、すなわち被蒞着䜓にアルゎンガスのむオ
ン照射を行぀た。
(1) Pretreatment Step In this third example, in order to increase the adhesion strength of the deposited thin film to the object to be deposited, a pretreatment, that is, ion irradiation of argon gas to the object to be deposited, was performed prior to the formation of the deposited thin film.

前凊理条件蒞着局内を109Torrの真空圧にし
ビヌム埄mmφのアルゎンむオンビヌムを
1000eVの加速゚ネルギでcm×cmの被蒞
着䜓領域に10分間照射した。
Pre-treatment conditions: The vacuum pressure inside the vapor deposition layer is set to 10 9 Torr, and an argon ion beam with a beam diameter of 1 mmφ is applied.
A 1 cm x 1 cm area of the object to be deposited was irradiated with an acceleration energy of 1000 eV for 10 minutes.

このずきのアルゎンむオンの照射量は1014
個cm2・secであ぀た。
The irradiation amount of argon ions at this time is 10 14
pieces/ cm2・sec.

前凊理の結果 基板衚面の汚染局が陀去され基板衚面が掻性化
された。
As a result of pretreatment, the contamination layer on the substrate surface was removed and the substrate surface was activated.

(2) 蒞発蒞着及びむオン泚入工皋 被蒞発材ず基板ずの距離30cm 被蒞着䜓瞊cm×暪cm×厚さ0.8mmの鉄合
金 被蒞発材金属チタン氎冷されたルツボに収
容されおいる。 蒞着局真空床玄×108Torr〜×108Torr 蒞発加熱方法金属チタンに電子ビヌムを照射
しお加熱蒞発させた。
(2) Evaporation deposition and ion implantation process Distance between material to be evaporated and substrate: 30 cm Object to be evaporated: Iron alloy 5 cm long x 5 cm wide x 0.8 mm thick Material to be evaporated: Titanium metal (housed in a water-cooled crucible) ) Deposited layer vacuum degree: approximately 1×10 8 Torr to 2×10 8 Torr Evaporation heating method: Titanium metal was irradiated with an electron beam to evaporate it by heating.

チタンの成膜速床Åsec むオン泚入方法チタンの蒞発ず窒玠むオンの
泚入ずを同時実斜 窒玠むオンの泚入条件 泚入むオン量×1015個cm2・sec 泚入゚ネルギ500eV むオンビヌム埄mmφ むオンビヌム走査領域cm×cm なお膜質の均䞀化を図るため被蒞着䜓を50回分
の呚期で回転させた。
Titanium film formation rate: 1 Å/sec Ion implantation method: Evaporation of titanium and implantation of nitrogen ions are carried out simultaneously Nitrogen ion implantation conditions: Amount of implanted ions: 1×10 15 pieces/cm 2・sec Implantation energy: 500eV ion beam Diameter: 1 mmφ Ion beam scanning area: 1 cm x 1 cm To ensure uniform film quality, the object to be deposited was rotated at a cycle of 50 times/minute.

結 果 玄時間の成膜によ぀お玄8000Åの窒化チタン
の蒞着薄膜が圢成された。
Results: After about 2 hours of film formation, a titanium nitride thin film with a thickness of about 8000 Å was formed.

この蒞着薄膜の線光電子分光スペクトルの特
性が第図に瀺され、たた窒化チタン蒞着薄膜の
スパツタ陀去を埐々に行぀お求められた窒化チタ
ン蒞着薄膜のオヌゞ゚電子分析結果が第図に
瀺されおいる。
The characteristics of the X-ray photoelectron spectroscopy spectrum of this deposited thin film are shown in Figure 2, and the Auger electron analysis results of the titanium nitride deposited thin film obtained by gradually removing spatter from the titanium nitride deposited thin film are shown in Figure 13. has been done.

第図の特性結果によれば本実斜䟋の窒化チ
タン蒞着薄膜は化孊量論組成に圢成それおいるの
が明確であり、本第実斜䟋により極めお良奜な
蒞着薄膜が圢成される。
According to the characteristic results shown in FIG. 12, it is clear that the titanium nitride deposited thin film of this example deviates from the stoichiometric composition, and an extremely good deposited thin film is formed by this third example.

たた第図から明らかなように蒞着薄膜䞭の
チタンず窒玠ずの比率が䞀定であり、埓぀お第
実斜䟋方法により均質な窒化チタン蒞着薄膜を圢
成するこずが可胜であり、被蒞着䜓の所望の特性
向䞊を図るこずができる。
Furthermore, as is clear from FIG. 13, the ratio of titanium and nitrogen in the deposited thin film is constant, so the third
By the method of the embodiment, it is possible to form a homogeneous titanium nitride vapor-deposited thin film, and it is possible to improve the desired characteristics of the object to be vapor-deposited.

本第実斜䟋においおは窒化チタン蒞着膜に曎
にむオン泚入を䌎぀たスパツタ蒞着局が圢成され
被蒞着䜓に倚局蒞着薄膜が圢成される。
In the third embodiment, a sputter deposition layer is further formed with ion implantation on the titanium nitride deposited film, and a multilayer deposited thin film is formed on the object to be deposited.

なお第実斜䟋においお、窒化チタン蒞着薄膜
の蒞発成膜䟋を瀺したが他の化合物を蒞発により
成膜圢成するこずも可胜である。
Although the third embodiment shows an example of evaporation of a titanium nitride thin film, it is also possible to form a film of other compounds by evaporation.

以䞊説明したように、本発明によれば、むオン
ビヌム照射装眮を甚いお、被蒞着䜓の蒞着郚にむ
オンを盎接泚入するこずにより蒞着薄膜を圢成
し、その際蒞着ずむオンビヌム照射ずを別個独立
に制埡するため、各皮補品の目的に応じた高特性
の薄膜を圢成するこずが可胜ずなる。
As described above, according to the present invention, a deposited thin film is formed by directly injecting ions into the deposition area of a target object using an ion beam irradiation device, and in this case, the deposition and ion beam irradiation are performed separately. Since it is controlled independently, it is possible to form thin films with high properties according to the purpose of various products.

たた、本発明によれば、蒞着を行う蒞着槜ずむ
オンビヌム照射装眮のむオン源ずの間に、むオン
通路管、オリフむス及び排気系を蚭け、䞡者の間
の圧力差を適切な倀に保぀こずができ、被蒞着䜓
に察するむオンの泚入を最適な条件の䞋で行うこ
ずが可胜ずなる。
Further, according to the present invention, an ion passage tube, an orifice, and an exhaust system are provided between the vapor deposition tank that performs vapor deposition and the ion source of the ion beam irradiation device, and the pressure difference between the two is maintained at an appropriate value. This makes it possible to implant ions into the deposition target under optimal conditions.

曎に、本発明によれば、むオンビヌム照射装眮
に、むオンビヌムを所望の埄に絞り蟌むオリフむ
スを蚭け、しかもむオン通路管の出口付近にむオ
ンビヌムの偏向噚を蚭けおいるため、充分に埄を
絞り蟌んだむオンビヌムを被蒞着䜓衚面の所望䜍
眮に向け任意に偏向走査し、蒞着郚に䞀様にある
いは特定の郚䜍に集䞭的にむオンビヌムを照射
し、これにより各皮䜿甚目的に合わせお電気的あ
るいは光孊的に優れた薄膜を埗るこずが可胜ずな
る。
Furthermore, according to the present invention, the ion beam irradiation device is provided with an orifice that narrows the ion beam to a desired diameter, and an ion beam deflector is provided near the exit of the ion passage tube, so that the diameter can be sufficiently narrowed down. The ion beam is deflected and scanned arbitrarily toward a desired position on the surface of the object to be evaporated, and the ion beam is irradiated uniformly or concentrated on a specific part of the evaporation area. It becomes possible to obtain an optically excellent thin film.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は被蒞着䜓に単局の蒞着薄膜を圢成した
䟋を瀺す断面図、第図は被蒞着䜓に倚局の蒞着
薄膜を圢成した䟋をを瀺す断面図、第図は本発
明に係る金属薄膜の蒞着被芆装眮を瀺す構成図、
第図は膜厚に䜓応しお酞玠含有濃床を適宜倉化
させた堎合の膜厚ず屈折率の関係を瀺す特性図、
第図は金属酞化物蒞着膜に衚面からの距離に察
応しお銀濃床を適宜倉化させた堎合の衚面からの
距離ず銀原子濃床ずの関係を瀺す特性図、第図
は金属酞化物蒞着郚䜍内に酞玠むオンビヌムの照
射指向制埡を行い、この金属酞化物蒞着薄膜内に
光回路を圢成した䟋を瀺す斜芖図、第図は金属
酞化物蒞着郚䜍に銀むオンビヌムの照射指向制埡
を行い金属酞化物蒞着薄膜内に電気回路を構成し
た䟋を瀺す斜芖図、第図は本発明に係る方法お
よび装眮により圢成した局蒞着薄膜の波長に察
する透過率及び反射率の特性図、第図は金属薄
膜をアルゎン雰囲気䞭でのスパツタ蒞着により圢
成した堎合の局薄膜の波長に察する透過率及び
反射率の特性図、第図は酞玠を含たない雰囲
気䞭で成膜した局薄膜の波長に察する透過率及
び反射率の特性図、第図は本発明の第実斜
䟋の装眮を瀺す構成図、第図は本発明の第
実斜䟋により圢成した窒化チタン蒞着薄膜の線
光電子分光スペクトル特性図、第図は本発明
の第の方法により圢成した窒化チタン蒞着薄膜
のオヌゞ゚電子分析結果を瀺す特異図である。   蒞着槜、  被蒞着䜓、
  金属酞化物蒞着薄膜、
  金属蒞着薄膜、  保持郚、
  スパツタ面、  スパツタ装眮、 
 むオンビヌム照射装眮、  スパツタタヌ
ゲツト、  被蒞発材、  蒞発装眮。
FIG. 1 is a cross-sectional view showing an example in which a single-layer vapor deposited thin film is formed on a vapor-deposited object, FIG. 2 is a cross-sectional view showing an example in which a multi-layer vapor-deposited thin film is formed on a vapor-deposited object, and FIG. 3 is a cross-sectional view showing an example in which a multilayer vapor-deposited thin film is formed on a vapor-deposited object. A configuration diagram showing a metal thin film vapor deposition coating apparatus according to
FIG. 4 is a characteristic diagram showing the relationship between film thickness and refractive index when the oxygen content concentration is changed appropriately according to the film thickness.
Figure 5 is a characteristic diagram showing the relationship between the distance from the surface and the silver atom concentration when the silver concentration is changed appropriately according to the distance from the surface of the metal oxide vapor deposited film, and Figure 6 is the characteristic diagram of the metal oxide vapor deposited film. A perspective view showing an example of controlling the irradiation direction of an oxygen ion beam within the vapor deposition area and forming an optical circuit within this metal oxide vapor-deposited thin film. Figure 7 shows the irradiation direction control of the silver ion beam into the metal oxide vapor deposition area. FIG. 8 is a perspective view showing an example in which an electric circuit is constructed in a metal oxide vapor-deposited thin film by performing the above steps, and FIG. Figure 9 is a characteristic diagram of transmittance and reflectance versus wavelength for a three-layer thin film formed by sputter deposition in an argon atmosphere, and Figure 10 is a three-layer thin film formed in an oxygen-free atmosphere. A characteristic diagram of transmittance and reflectance of a thin film with respect to wavelength. FIG. 11 is a configuration diagram showing a device according to a third embodiment of the present invention. FIG. 12 is a diagram showing a configuration of a device according to a third embodiment of the invention.
FIG. 13 is a characteristic diagram of the X-ray photoelectron spectroscopy spectrum of the titanium nitride vapor-deposited thin film formed by the example, and FIG. 13 is a singular diagram showing the results of Auger electron analysis of the titanium nitride vapor-deposited thin film formed by the second method of the present invention. 10... Vapor deposition tank, 12... Evaporation target, 200,
200a, 200c...Metal oxide vapor deposited thin film, 2
00b...Metal vapor deposited thin film, 14...Holding part, 16
...Sputtering surface, 18... Sputtering device, 20...
... Ion beam irradiation device, 24 ... Sputter target, 40 ... Evaporation target material, 42 ... Evaporation device.

Claims (1)

【特蚱請求の範囲】  保持郚を甚いお内郚に被蒞着䜓を保持する蒞
着槜ず、 前蚘被蒞着䜓に向けむオンビヌムを照射するむ
オンビヌム照射装眮ず、 を含み、 前蚘蒞着槜は、被蒞着䜓にスパツタ面を臚た
せ、金属たたは金属酞化物を前蚘被蒞着䜓衚面に
スパツタ蒞着するスパツタ装眮を有し、 前蚘むオンビヌム照射装眮は、 むオン源ず、 このむオン源から蒞着槜ぞ向けむオンビヌムを
導くずずもに、所定の排気系が蚭けられおなるむ
オン通路管ず、 このむオン通路管の所定䜍眮に蚭けられ、前蚘
むオンビヌムを所望の埄に絞り、か぀蒞着槜及び
通路管ずの間に所定の圧力差を維持するオリフむ
スず、 前蚘むオン通路管の出口付近に蚭けられ、むオ
ンビヌムの被蒞着䜓に察する照射䜍眮を所望䜍眮
に偏向制埡する偏向噚ず、 を含み、 前蚘スパツタ装眮ずむオンビヌム照射装眮ずを
別個独立に制埡し、被蒞着䜓に蒞着された金属又
は金属酞化膜の蒞着郚にむオンビヌムを泚入する
こずを特城ずする金属薄膜の蒞着被芆装眮。  特蚱請求の範囲蚘茉の蒞着被芆装眮におい
お、 スパツタ装眮はスパツタ時に発生するプラズマ
を磁堎によ぀お集束制埡するマグネトロン型のス
パツタ装眮からなるこずを特城ずする金属薄膜の
蒞着被芆装眮。  特蚱請求の範囲のいずれかに蚘茉の装
眮においお、 スパツタ装眮は、䞍掻性ガス雰囲気䞭で被蒞着
䜓衚面に金属酞化物のスパツタ蒞着を行い金属酞
化物薄膜を圢成するよう圢成され、 むオンビヌム照射装眮は、金属蒞着郚に酞玠む
オンビヌムを照射するよう圢成され、 スパツタ金属ず前蚘むオンビヌムずを同時に䟛
絊しお酞玠欠損の少い金属酞化物薄膜を圢成する
こずを特城ずする金属薄膜の蒞着被芆装眮。  特蚱請求の範囲のいずれかに蚘茉の装
眮においお、 スパツタ装眮は、酞玠を含む雰囲気䞭で金属酞
化物のスパツタ蒞着を行い被蒞着䜓衚面に金属酞
化物薄膜を蒞着するよう圢成され、 むオンビヌム照射装眮は、前蚘金属酞化物薄膜
に金属むオンを照射泚入しお金属酞化物薄膜䞭に
金属薄膜を圢成するよう生成され、 被蒞着䜓に金属酞化物薄膜ず金属薄膜ずの倚局
膜を圢成するこずを特城ずする金属薄膜の蒞着被
芆装眮。  特蚱請求の範囲〜のいずれかに蚘茉の装
眮においお、被蒞着䜓はガラス基板からなり、該
ガラス基板䞊に金属酞化物薄膜を可芖光透過性熱
線しやぞい膜ずしお圢成するこずを特城ずする金
属薄膜の蒞着被芆装眮。  保持郚を甚いお内郚に被蒞着䜓を保持する蒞
着槜ず、 前蚘被蒞着䜓に向けむオンビヌムを照射するむ
オンビヌム照射装眮ず、 を含み、 前蚘蒞着槜は、 被蒞着䜓にスパツタ面を臚たせ、金属又は金属
酞化物を前蚘被蒞着䜓衚面にスパツタ蒞着するス
パツタ装眮ず、 被蒞着䜓に蒞発面を臚たせ、金属たたは金属酞
化物を前蚘被蒞着䜓衚面に蒞発しお蒞着する蒞着
装眮ず、 を含み、被蒞着䜓に金属たたは金属酞化物のス
パツタ蒞着ず金属たたは金属酞化物の蒞発による
蒞着ずを亀互に行うよう圢成され、 前蚘むオンビヌム照射装眮は、 むオン源ず、 このむオン源から蒞着槜ぞ向けむオンビヌムを
導くずずもに、所定の排気系が蚭けられおなるむ
オン通路管ず、 このむオン通路管の所定䜍眮に蚭けられ、前蚘
むオンビヌムを所望の埄に絞り、か぀蒞着槜及び
通路管ずの間に所定の圧力差を維持するオリフむ
スず、 前蚘むオン通路管の出口付近に蚭けられ、むオ
ンビヌムの被蒞着䜓に察する照射䜍眮を所望䜍眮
に偏向制埡する偏向噚ず、 を含み、 前蚘スパツタ装眮及び蒞発装眮による蒞着ずむ
オンビヌム照射装眮を甚いたむオンビヌムの照射
ずを別個独立に制埡し、被蒞着䜓に蒞着された金
属又は金属酞化膜の蒞着郚にむオンビヌムを泚入
するこずを特城ずする金属薄膜の蒞着被芆装眮。  特蚱請求の範囲蚘茉の蒞着被芆装眮におい
お、スパツタ装眮は、スパツタ時に発生するプラ
ズマを磁堎によ぀お集束制埡するマグネトロン型
のスパツタ装眮からなるこずを特城ずする金属薄
膜の蒞着被芆装眮。
[Claims] 1. A vapor deposition tank that holds an object to be deposited inside using a holding part, and an ion beam irradiation device that irradiates an ion beam toward the object to be vapor deposited, The ion beam irradiation device includes a sputtering device that sputters a metal or metal oxide onto the surface of the object to be deposited, with a sputtering surface facing the object to be vaporized, and the ion beam irradiation device includes an ion source and ions directed from the ion source to a vapor deposition tank. An ion passage tube that guides the beam and is provided with a predetermined exhaust system, and an ion passage tube that is provided at a predetermined position of this ion passage tube, focuses the ion beam to a desired diameter, and is between the vapor deposition tank and the passage tube. an orifice that maintains a predetermined pressure difference; and a deflector that is provided near the exit of the ion passage tube and that deflects and controls the irradiation position of the ion beam onto the object to be deposited to a desired position, and the sputtering device and the ion beam 1. A metal thin film vapor deposition coating apparatus, characterized in that an irradiation device is controlled separately and an ion beam is implanted into a vapor deposited portion of a metal or metal oxide film deposited on an object to be vapor deposited. 2. The vapor deposition coating apparatus for metal thin films according to claim 1, wherein the sputtering apparatus is a magnetron type sputtering apparatus that focuses and controls plasma generated during sputtering using a magnetic field. 3. In the apparatus according to claim 1 or 2, the sputtering apparatus is configured to perform sputter deposition of a metal oxide on the surface of an object to be deposited in an inert gas atmosphere to form a metal oxide thin film. , the ion beam irradiation device is configured to irradiate an oxygen ion beam to the metal vapor deposition area, and is characterized in that it simultaneously supplies the sputtered metal and the ion beam to form a metal oxide thin film with few oxygen vacancies. Vapor deposition coating equipment for metal thin films. 4. In the apparatus according to claim 1 or 2, the sputtering apparatus is formed to perform sputter deposition of a metal oxide in an atmosphere containing oxygen to deposit a metal oxide thin film on the surface of the object to be deposited. The ion beam irradiation device is produced to form a metal thin film in the metal oxide thin film by irradiating and implanting metal ions into the metal oxide thin film, and a multilayer film of the metal oxide thin film and the metal thin film is formed on the deposited object. 1. A metal thin film vapor deposition coating device, characterized in that it forms a metal thin film. 5. In the apparatus according to any one of claims 1 to 4, the object to be deposited is a glass substrate, and the metal oxide thin film is formed on the glass substrate as a visible light-transmitting, heat ray-resistant film. Features: Vapor deposition coating equipment for metal thin films. 6. A vapor deposition tank that holds an object to be deposited inside using a holding part, and an ion beam irradiation device that irradiates an ion beam toward the object to be vapor deposited, and the vapor deposition tank is configured to apply a sputtered surface to the object to be vapor deposited. A sputtering device sputter-deposit a metal or metal oxide onto the surface of the object to be vapor deposited, and a vapor deposition device which evaporates and deposits a metal or metal oxide onto the surface of the object to be vapor deposited, with the evaporation surface facing the object to be vapor deposited. an ion beam irradiation device, the ion beam irradiation device includes: an ion source; an ion passage tube that guides an ion beam from a source to a deposition tank and is provided with a predetermined exhaust system; an orifice that maintains a predetermined pressure difference between the ion passage tube and the ion passage tube; and a deflector that is provided near the exit of the ion passage tube and that deflects and controls the irradiation position of the ion beam onto the object to be deposited to a desired position. , separately and independently controlling the vapor deposition by the sputtering device and the evaporator and the ion beam irradiation using the ion beam irradiation device, and implanting the ion beam into the vapor deposited portion of the metal or metal oxide film deposited on the object to be vapor deposited. A metal thin film vapor deposition coating apparatus characterized by: 7. The vapor deposition coating apparatus of claim 6, wherein the sputtering apparatus is a magnetron-type sputtering apparatus that focuses and controls plasma generated during sputtering using a magnetic field.
JP18524682A 1982-10-21 1982-10-21 Method and device for coating thin metallic film by vapor deposition Granted JPS5974279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18524682A JPS5974279A (en) 1982-10-21 1982-10-21 Method and device for coating thin metallic film by vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18524682A JPS5974279A (en) 1982-10-21 1982-10-21 Method and device for coating thin metallic film by vapor deposition

Publications (2)

Publication Number Publication Date
JPS5974279A JPS5974279A (en) 1984-04-26
JPS626638B2 true JPS626638B2 (en) 1987-02-12

Family

ID=16167442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18524682A Granted JPS5974279A (en) 1982-10-21 1982-10-21 Method and device for coating thin metallic film by vapor deposition

Country Status (1)

Country Link
JP (1) JPS5974279A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215969A (en) * 1988-02-23 1989-08-29 Fujitsu Ltd Formation of tantalum oxide film
JPH01244403A (en) * 1988-03-25 1989-09-28 Nissin Electric Co Ltd Production of optical film
JPH01244402A (en) * 1988-03-25 1989-09-28 Nissin Electric Co Ltd Production of optical film
DE19640832C2 (en) * 1996-10-02 2000-08-10 Fraunhofer Ges Forschung Process for the production of heat reflecting layer systems
KR101052036B1 (en) 2006-05-27 2011-07-26 한국수력원자력 죌식회사 Ceramic coating and ion beam mixing device to improve corrosion resistance at high temperature and method of modifying interface of thin film using same
KR100877574B1 (en) * 2006-12-08 2009-01-08 한국원자력연구원 High temperature and high pressure corrosion resistant process heat exchanger for a nuclear hydrogen production system
JP5830238B2 (en) * 2010-11-17 2015-12-09 叀河電気工業株匏䌚瀟 Method for producing oxide thin film
CN103204637B (en) * 2012-01-12 2015-08-12 䞊海北玻玻璃技术工䞚有限公叞 A kind of transparent conductive oxide coated glass coating wire vacuum system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108751A (en) * 1977-06-06 1978-08-22 King William J Ion beam implantation-sputtering
JPS55110028A (en) * 1979-02-16 1980-08-25 Seiko Epson Corp Apparatus for vacuum evaporation having evaporation source for ion beam sputtering
JPS57174459A (en) * 1981-04-21 1982-10-27 Namiki Precision Jewel Co Ltd Formation of thin film

Also Published As

Publication number Publication date
JPS5974279A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US5055319A (en) Controlled high rate deposition of metal oxide films
EP0636702B1 (en) Methods for producing functional films
EA012048B1 (en) Dielectric-layer coated substrate, method and installation for production thereof
US20020068167A1 (en) UV absorbing/reflecting silver oxide layer, and method of making same
US20090011194A1 (en) Substrate processing method
US5443862A (en) Process for the treatment of thin films having properties of electrical conduction and/or reflection in the infrared
JPH03173770A (en) Method and apparatus for forming multiple thin film with ion beam sputter
US20060257585A1 (en) Method of vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
US3694337A (en) Sputtering method for manufacturing transparent,heat ray reflecting glass
EP0288001B1 (en) Process for producing superconducting thin film and device therefor
JPS626638B2 (en)
US5286531A (en) Method for treating an oxide coating
KR100668091B1 (en) Glass coating and methhod of production thereof
JPS626746B2 (en)
JPS6210269A (en) Vacuum evaporation device and production of thin film
Ma et al. The role of ambient gas scattering effect and lead oxide formation in pulsed laser deposition of lead–zirconate–titanate thin films
JP4066101B2 (en) Low emissivity laminate manufacturing method
JPH05320882A (en) Formation of vapor-deposited thin film
EP0656430B2 (en) Process and apparatus for the codeposition of metallic oxides on plastic films.
KR100258056B1 (en) The method for making tin oxide film of gas sensor by sn target with ion beam sputtering
JPS6155237B2 (en)
JP3397495B2 (en) Manufacturing method of chromatic thin film
JP2507963B2 (en) Method of manufacturing oxide thin film
JPH05209262A (en) Manufacture of film coating
JPH04141909A (en) Transparent conductive film and its manufacturing method