JPS6265999A - Production of prussian blue forsterite single crystal - Google Patents

Production of prussian blue forsterite single crystal

Info

Publication number
JPS6265999A
JPS6265999A JP20232885A JP20232885A JPS6265999A JP S6265999 A JPS6265999 A JP S6265999A JP 20232885 A JP20232885 A JP 20232885A JP 20232885 A JP20232885 A JP 20232885A JP S6265999 A JPS6265999 A JP S6265999A
Authority
JP
Japan
Prior art keywords
solid
raw material
single crystal
solid phase
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20232885A
Other languages
Japanese (ja)
Inventor
Hironao Kojima
児島 弘直
Masatoshi Niihama
新浜 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitetsu Kagaku Co Ltd filed Critical Seitetsu Kagaku Co Ltd
Priority to JP20232885A priority Critical patent/JPS6265999A/en
Publication of JPS6265999A publication Critical patent/JPS6265999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily and inexpensively produce a Prussian blue forsterite single crystal by forming a melt zone to one end of a bar-shaped raw material which consists of MgO, SiO2 and Cr2O3 and is sintered and depositing a solid phase at the solid-liquid boundary of the melt zone, thereby executing crystallization. CONSTITUTION:The melt zone 8 is formed by using a halogen lamp 2, etc. to one end of the sintered bar-shaped raw material 3 consisting of the three components; 40-80mol% MgO, 20-50% SiO2 and 0.01-10% Cr2O3 within a mirror body 1 of ellipsoidal surface of revolution. While the melt zone 8 is moved, the melting of the raw material is executed at one of the solid-liquid boundaries thereof and the solid phase is deposited at the other solid-liquid boundaries. The solid phase is crystallized on a seed crystal 5 fixed to the top end of a lower revolving shaft 6. A radiation preventive tube or/and after heater 9 are preferably provided to enclose the lower part of the zone 8 and near the same to horizontally maintain the solid-liquid boundary for making the deposition and crystallization of the above-mentioned solid phase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 フォルステライトはカンラン石の一種でありMg28i
04なる化学式で知られている。カンラン石は通常、黄
色・緑黄色・濃オリーブ色等を有しており特に黄緑色石
はオリヴイン、aオリーブ緑色石はべりドツトと呼ばれ
古くから宝石等の装飾用として珍重されている。
[Detailed description of the invention] [Industrial application field] Forsterite is a type of olivine, and Mg28i
It is known by its chemical formula 04. Olivine usually has yellow, greenish-yellow, dark olive colors, etc. In particular, yellow-green stone is called olivine, and olive-green stone is called beridot, and has been prized as a decoration for jewelry and the like since ancient times.

またその物理特性から電子材料・光学材料としての利用
も期待される。
Also, due to its physical properties, it is expected to be used as electronic and optical materials.

本発明は、クロムイオンを含有する紺青色フォルステラ
イト単結晶の製造法に関する。
The present invention relates to a method for producing a dark blue forsterite single crystal containing chromium ions.

〔従来の技術〕[Conventional technology]

従来、フォルステライト単結晶の育成についてはフラッ
クス法、ブリッジマン法および引き上げ法等による試み
が報告されている。遷移金属イオンをドープさせたフォ
ルステライト固溶体にっぃては、 FinohらがMn
”、Or” オヨ0’ Fe” ’k l’−ブさせた
結晶を育成したという報告があるがこれは引き上げ法に
よっている。
Conventionally, attempts to grow forsterite single crystals using the flux method, Bridgman method, pulling method, etc. have been reported. Forsterite solid solution doped with transition metal ions, Finoh et al.
There is a report that a crystal with ``,Or''Oyo0'Fe'''kl'-bubbled crystal was grown, but this was done by a pulling method.

引き上げ法は結晶育成が単純固化法に従うために得られ
た結晶の長さ方向においてa度が均一にならず、また高
価なルツボを使用するためコストが高くなり、不純物混
入の恐れがあった。
In the pulling method, since crystal growth follows the simple solidification method, the degree of a of the crystal obtained is not uniform in the length direction, and an expensive crucible is used, resulting in high cost and the risk of contamination with impurities.

また児島らによる赤外線集中加熱単結晶製造装置を用い
た着色の成分として金属原子を含んだフォルステライト
の製造に関する報告があるが、これらは着色の原因とし
てコバルト原子やニッケル原子等の2価の金属イオンを
含有するものであり。
In addition, there is a report by Kojima et al. on the production of forsterite containing metal atoms as a coloring component using an infrared concentrated heating single crystal production device, but these have been reported that divalent metals such as cobalt atoms and nickel atoms are the cause of the coloration. It contains ions.

8価の金属を含有するものではない。It does not contain octavalent metals.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、酸化マグネシウム、酸化ケイ融帯の一方
の固液界面で固相を析出させ°(結晶化を行なうことに
よって紺青色フォルステライト単結晶を製造することに
成功した。即ち9本発明によって色むら9色の濃淡、気
泡、含有物等がない紺青色フォルステライト単結晶が容
易にしかも安価にPs造されるようになった。
The present inventors succeeded in producing a dark blue forsterite single crystal by precipitating a solid phase at one solid-liquid interface of magnesium oxide and siliceous oxide (crystallization). With the invention, it has become possible to easily and inexpensively produce Ps for a dark blue forsterite single crystal with nine different shades of color, no bubbles, no inclusions, etc.

本発明において溶融帯の形成させる方法とし°Cは高温
発熱体を用いる方法、高周波誘導加熱方式による方法、
レーザーやカーボンアークにより加熱する方法等がある
が、なかでもハロゲンランプやキャノンランプ1こよる
赤外線集中加熱方式は線源の出力が安定しており、加熱
効率も高いことから好結果が得られる。
In the present invention, the method for forming a molten zone is a method using a high-temperature heating element at °C, a method using a high-frequency induction heating method,
There are heating methods such as lasers and carbon arcs, but among them, infrared concentrated heating methods using a halogen lamp or a single Canon lamp produce good results because the output of the radiation source is stable and the heating efficiency is high.

本発明の実施態様の一例を第1図および第2図に示す。An example of an embodiment of the invention is shown in FIGS. 1 and 2.

回転楕円鏡体1は単惰円型では2つの焦点、双惰円型で
ぶよ8つの焦点を持っており、第1図に単惰円型、第2
図に双楕円型を示す。単惰円型では一方の焦点、双惰円
型では両端の焦点にハロゲンランプまたはキセノンラン
プ2を配置し、残りの焦点に棒状原料8を配置する。棒
状原料8は上部回転軸4により保持されている。また種
結晶5は下部回転軸6にセットされている。棒状原料3
゜種結晶5.土下回転軸4.6は透明石英管T内に封入
されCおり、#囲気を自由にコントロールでき、大気圧
は勿論のこと真空あるいは加圧することも可能である。
The spheroidal elliptical body 1 has two foci in the single-coast type, and eight foci in the double-coat type.
The figure shows a bielliptic shape. A halogen lamp or a xenon lamp 2 is placed at one focal point in the single circular type, and at both ends of the focal point in the double circular type, and a rod-shaped raw material 8 is placed at the remaining focal points. The rod-shaped raw material 8 is held by the upper rotating shaft 4. Further, the seed crystal 5 is set on the lower rotating shaft 6. Rod-shaped raw material 3
゜Seed crystal 5. The underground rotating shaft 4.6 is enclosed in a transparent quartz tube T, and the surrounding atmosphere can be freely controlled, and it is possible to use not only atmospheric pressure but also vacuum or pressurization.

棒状原料8の温度が上がり溶融i8が形成されるのは、
焦点に完全に一致した部分である。溶融帯8は回転軸4
.6を上方あるいせC溶融44f8を形成し、しかる後
に種結晶5を上方に移動して溶融?4f8と接触させる
。平衡状態になったのを確認した後9回転軸4.6を移
動する融し、18融44f8と種結晶5の界面では結晶
化が起る。
The reason why the temperature of the rod-shaped raw material 8 rises and the molten i8 is formed is as follows.
This is the part that is completely in focus. The molten zone 8 is the rotating shaft 4
.. 6 is placed upward to form Ise C melt 44f8, and then the seed crystal 5 is moved upward and melted? Make contact with 4f8. After confirming that an equilibrium state has been reached, the melt moves about the rotation axis 4.6, and crystallization occurs at the interface between the 18 melt 44f8 and the seed crystal 5.

また本発明は第2図に示した様に、溶融帯8のド部附近
を囲むように放熱防止管または/およびアフター・ヒー
ター9を設置することによってより効果的に実施できる
。即ち、これによって溶融帯から固相を析出、結晶化さ
せる時に固液界面を水平(こ味つこと等ができ、より良
質の単結晶を得ることができる。ここで放熱防止管とは
例えば高純度アルミナ管のように溶融帯形成時に溶融せ
ずしかも不純物の混入の恐れの少ない管のことをさし、
またアフター・ヒーターとはそれ自身が発熱体であり、
単独で用いることもあれば放熱防止管と組み合わせて用
いることもできる。
Further, the present invention can be carried out more effectively by installing a heat radiation prevention tube and/or an after-heater 9 so as to surround the vicinity of the corner of the melting zone 8, as shown in FIG. In other words, this allows the solid-liquid interface to be leveled when the solid phase is precipitated and crystallized from the molten zone, and a better quality single crystal can be obtained. Refers to tubes such as pure alumina tubes that do not melt during the formation of a molten zone and are less likely to be contaminated with impurities.
Also, the after-heater is itself a heating element,
It can be used alone or in combination with a heat radiation prevention tube.

本発明の方法は次の様な数々の特徴およびメリットを持
っている。
The method of the present invention has a number of features and advantages, including:

1)高温が容易に得られるために操作上の安全性が非常
に高い。例えばベルヌーイ法の場合には酸素ガスと水素
ガスを用いるために高度のチクニックが必要であり、爆
発の危険に常にさらされているが1本法では操作は容易
で特別な経験あるいはテクニックを必要とせず、また危
険性は全くない。
1) Operational safety is very high because high temperatures can be easily obtained. For example, in the case of the Bernoulli method, a high degree of chicness is required because oxygen gas and hydrogen gas are used, and there is always a danger of explosion, whereas with the Bernoulli method, it is easy to operate and does not require special experience or technique. Also, there is no danger at all.

2)引き上げ法等のようにルツボを用いないために不純
物の混入が非常に少ない。
2) Unlike the pulling method, which does not use a crucible, there is very little contamination of impurities.

8)更に、ハロゲンランプ、キセノンランプを用いた赤
外線集中加熱方式による方法では、ランブの出力が安定
しており、また温度のコントロールも容易である。その
ため1こ溶融帯が非常に安定しCおり、必ずしも種結晶
を用いなくても結晶化ができる。
8) Furthermore, in the case of a concentrated infrared heating method using a halogen lamp or a xenon lamp, the output of the lamp is stable and the temperature can be easily controlled. Therefore, the molten zone is very stable, and crystallization can occur without necessarily using a seed crystal.

4)溶融状態や結晶成長の様子を容易に観察することが
できる。
4) The melting state and crystal growth can be easily observed.

5)その結果、高純度の高品質の結晶が容易に且つ安全
に製造できる。
5) As a result, high-purity, high-quality crystals can be easily and safely produced.

本発明に用いる酸化マグネシウム、酸化ケイ素および二
三酸化クロムよりなる高密度に焼結した棒状原料とは、
これらの混合物を例えばラバープレスで棒状に成型した
後、800″C〜1800°Cで焼結して得られる。更
に上記棒状原料の出発原料は酸化マグネシウム、酸化ケ
イ素および二三酸化クロムそのものでもよいが、焼結後
酸化マグネシウム、酸化ケイ素および二三酸化クロムと
なる炭酸塩、水酸化物等のマグネシウム化合物、ケイ酸
化合物およびクロム化合物であってもよい。
The highly densely sintered rod-shaped raw materials made of magnesium oxide, silicon oxide, and trichromium oxide used in the present invention are:
It is obtained by molding these mixtures into rod shapes using a rubber press, for example, and sintering them at 800"C to 1800°C.Furthermore, the starting materials for the rod-shaped raw materials may be magnesium oxide, silicon oxide, or chromium ditrioxide itself. However, magnesium compounds, silicic acid compounds, and chromium compounds such as carbonates and hydroxides, which become magnesium oxide, silicon oxide, and chromium ditrioxide after sintering, may also be used.

本発明に於゛Cは酸化マグネシウムが40ないし80モ
ルパーセント、酸化ケイ素が20ないしる。酸化マグネ
シウムおよび酸化ケイ素が、それぞれ40モルパーセン
トおよび20モルパーセントに遅しない場合、あるいは
それぞれ80モルパーセントおよび50モルパーセント
を越える場合は結晶生成が不安定となり良質な結晶が得
られなくなる。また二三酸化クロムが0.01モルパー
セントに達しない場合は紺青色の着色がほとんど見られ
ず、また赤外線の吸収能が悪くなるために結晶化が妨げ
られる。逆に100モルパーセントラえると結晶中に偏
析を起こして混在物とし“C結晶性を劣化させてしまう
ことがある。
In the present invention, C contains 40 to 80 mole percent of magnesium oxide and 20 to 20 mole percent of silicon oxide. If magnesium oxide and silicon oxide do not reach 40 mol percent and 20 mol percent, respectively, or exceed 80 mol percent and 50 mol percent, respectively, crystal formation becomes unstable and good quality crystals cannot be obtained. If the amount of chromium ditrioxide does not reach 0.01 mol percent, almost no dark blue coloration is observed, and crystallization is hindered due to poor infrared absorption ability. On the other hand, if there is a 100 mole percent difference, segregation may occur in the crystal, forming inclusions and deteriorating the crystallinity of C.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ Mg (COs)・Mg (OH)2・51111gO
特級試薬と8 i02特級試薬およびCrg’s特級試
薬を出発原料とし。
Example 1゜Mg (COs)・Mg (OH)2・51111gO
Special grade reagent, 8 i02 special grade reagent and Crg's special grade reagent are used as starting materials.

各原料をモル比にしテMgO: 8i02: 0r20
8  =66.4 : 38.2 : 0.4となるよ
うに秤量し、乳鉢中でエタノールを用いて均一に混合し
た。これを空気中で乾燥し、1100’cで8時間l気
中で焼成反応させた。その後乳鉢でよく粉砕、混合し。
The molar ratio of each raw material is MgO: 8i02: 0r20
8 = 66.4: 38.2: 0.4, and uniformly mixed using ethanol in a mortar. This was dried in the air and fired at 1100'C for 8 hours in the air. Then grind and mix well in a mortar.

801ffX8fl径の大きさ+c ttろようIc 
700 kq/cdの静水圧でラバープレス法で成型し
た後1600°Cで5時間焼結し、棒状原料を得た。
801ffX8fl diameter size + c tt filter Ic
After molding using a rubber press method under a hydrostatic pressure of 700 kq/cd, the material was sintered at 1600°C for 5 hours to obtain a rod-shaped raw material.

装置には双惰円型赤外線集中加熱単結晶製造装!Itに
チア2機械製)にハロゲンランプ(1゜5 Kml)2
個を用いた。
The equipment is a twin-inert circular type infrared concentrated heating single crystal production system! It is made by Chia 2 Machinery) and halogen lamp (1゜5 Kml) 2
We used

種結晶は多結晶体から単結晶化させたものより背面ラウ
流法により適当な方位に切り出したものを用いた。
The seed crystal used was a single crystal formed from a polycrystalline body, which was then cut out in an appropriate orientation by the back Lau flow method.

雰囲気は空気を601/h「流した。The atmosphere was air flowing at a rate of 601/h.

回転軸の回転速度は原料棒と種結晶を反対方向にそtl
ぞれ毎分30回転の速度で回転させ、W成速度I Ji
g/hrで製造した。得られた結晶は紺青色の透明な単
結晶であった。双晶、気泡、包含物は認められなかった
。X線回析の結果からもフォルステライト単結晶である
ことが確認された。格子定数はクロムイオンを含まない
ものとほとんど変わらなかった。硬度はルチルより硬く
、水晶より少し軟らかい6.5〜7であった。
The rotation speed of the rotating shaft is such that the raw material rod and seed crystal are moved in opposite directions.
Rotate each at a speed of 30 revolutions per minute, W growth rate I Ji
g/hr. The obtained crystal was a dark blue transparent single crystal. No twins, bubbles, or inclusions were observed. The results of X-ray diffraction also confirmed that it was a forsterite single crystal. The lattice constant was almost the same as that without chromium ions. The hardness was 6.5 to 7, which was harder than rutile and slightly softer than quartz.

実施例2゜ Mg (COa) + Mg (QH)2 ・5 [2
0特級試薬ト5in2特級試薬およびOr20g特級試
薬を出発原料とし。
Example 2゜Mg (COa) + Mg (QH)2 ・5 [2
Using 0 special grade reagent, 5 in 2 special grade reagent and Or20g special grade reagent as starting materials.

各原料をモル比にしてMgO: 8i02: 0r20
s  =66.2 : 88.1 : 0.7となるよ
うに秤量し、実施例1.と同様に混合、焼結し棒状原料
を得た。装置には双惰円型赤外線集中加熱単結晶製造装
置a1にチア2機械製)を用い、集光部附近単結晶側に
放熱防止管として20鰭径の高純度アルミナ管を設置し
、ハロゲンランプ(1,5にW)2個を用いた。
The molar ratio of each raw material is MgO: 8i02: 0r20
Weighed so that s = 66.2: 88.1: 0.7, and prepared as Example 1. A rod-shaped raw material was obtained by mixing and sintering in the same manner as above. The device uses a twin circular infrared concentrated heating single crystal production device A1 (manufactured by Chia 2 Kikai), a high purity alumina tube with a diameter of 20 fins is installed as a heat radiation prevention tube on the single crystal side near the condensing part, and a halogen lamp is installed. (W for 1 and 5) 2 pieces were used.

種結晶は実施例1で成長させたものを背面ラウ1法によ
り適当な方位に切り出したものを用いた。
The seed crystal used was one grown in Example 1 and cut out in an appropriate orientation by the back-face Rau 1 method.

雰囲気は空気を1801.’br流した。回転軸の回転
速度は原料棒と種結晶を反対方向にそれぞれ毎分25回
転の速度で回転させ、育成速度1 tz/hrで製造し
た。得られた結晶は実施例1.で得た単結晶よりも紺青
色の濃い単結晶であった。双晶、気泡。
The atmosphere is 1801. 'br was washed away. The rotation speed of the rotating shaft was such that the raw material rod and the seed crystal were rotated in opposite directions at a speed of 25 revolutions per minute, and the growth rate was 1 tz/hr. The obtained crystals are as shown in Example 1. The single crystal had a deeper dark blue color than the single crystal obtained in . Twins, bubbles.

包含物は認められなかった。X線回析の結果からもフォ
ルステライト単結晶であることが確認された。格子定数
はクロムイオンを含まないものとほとんど変わらTかっ
た。硬度はルチルより硬く。
No inclusions were observed. The results of X-ray diffraction also confirmed that it was a forsterite single crystal. The lattice constant was T, which was almost different from that without chromium ions. Hardness is harder than rutile.

水晶より少し軟らかい6.5〜7であった。It was 6.5 to 7, which is a little softer than crystal.

〔本発明の効果〕[Effects of the present invention]

本発明により紺青色のフォルステライト単結晶を容易に
しかも安価に製造することができる。
According to the present invention, a dark blue forsterite single crystal can be produced easily and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明方法の原理を説明する図で
ある。 1・・・回転楕円鏡体 2・・・ハロゲンランプまたは
キセノンランプ 8・・・棒状原料 4・・・上部回転
軸 5・・・種結晶 6・・・下部回転軸 7.・・・
石英管8・・・溶融帯 9・・・アフター・ヒーターま
たは/および放熱防止管 出願人  製鉄化学工業株式会社 代表者  増 1)裕 浩 聾−ノ と)−
FIGS. 1 and 2 are diagrams explaining the principle of the method of the present invention. 1... Spheroidal mirror body 2... Halogen lamp or xenon lamp 8... Rod-shaped raw material 4... Upper rotating shaft 5... Seed crystal 6... Lower rotating shaft 7. ...
Quartz tube 8: Melting zone 9: After-heater or/and heat radiation prevention tube Applicant: Representative of Tetsu Seikagaku Kogyo Co., Ltd. 1) Hiroshi Yutaka

Claims (4)

【特許請求の範囲】[Claims] (1)酸化マグネシウム(MgO)、酸化ケイ素(Si
O_2)および二三酸化クロム(Cr_2O_8)の3
成分よりなる焼結した棒状原料の一端に溶融体を形成さ
せ、溶融帯を移動させ溶融帯の一方の固液界面で原料の
溶解を行ない他の固液界面で固相を析出させて結晶化を
行なうことを特徴とする紺青色フォルステライト単結晶
の製造法。
(1) Magnesium oxide (MgO), silicon oxide (Si)
O_2) and 3 of chromium ditrioxide (Cr_2O_8)
A molten body is formed at one end of the sintered rod-shaped raw material made of the ingredients, the molten zone is moved, the raw material is melted at one solid-liquid interface of the molten zone, and the solid phase is precipitated at the other solid-liquid interface and crystallized. A method for producing a dark blue forsterite single crystal, characterized by carrying out the following steps.
(2)棒状原料の組成が酸化マグネシウム40ないし8
0モルパーセント、酸化ケイ素20ないし50モルパー
セント、二三酸化クロム0.01ないし10モルパーセ
ントである特許請求の範囲(1)の製造法。
(2) The composition of the rod-shaped raw material is magnesium oxide 40 to 8
0 mole percent, silicon oxide 20 to 50 mole percent, trichromium oxide 0.01 to 10 mole percent.
(3)溶融帯を形成させるのに赤外線を集中させて行な
う装置を用いる特許請求の範囲(1)の製造法。
(3) The manufacturing method according to claim (1), which uses a device that concentrates infrared rays to form a molten zone.
(4)溶融帯から固相を析出、結晶化させる時に固液界
面を水平に保つように、放熱防止管または/およびアフ
ター・ヒーターを、溶融帯下部附近を囲むように装置内
に設置する特許請求の範囲(3)の製造法。
(4) A patent for installing a heat radiation prevention tube and/or an after-heater in the device so as to surround the lower part of the melting zone so as to keep the solid-liquid interface horizontal when the solid phase is precipitated and crystallized from the melting zone. Manufacturing method according to claim (3).
JP20232885A 1985-09-11 1985-09-11 Production of prussian blue forsterite single crystal Pending JPS6265999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20232885A JPS6265999A (en) 1985-09-11 1985-09-11 Production of prussian blue forsterite single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20232885A JPS6265999A (en) 1985-09-11 1985-09-11 Production of prussian blue forsterite single crystal

Publications (1)

Publication Number Publication Date
JPS6265999A true JPS6265999A (en) 1987-03-25

Family

ID=16455730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20232885A Pending JPS6265999A (en) 1985-09-11 1985-09-11 Production of prussian blue forsterite single crystal

Country Status (1)

Country Link
JP (1) JPS6265999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302267A (en) * 2006-05-09 2007-11-22 Risa Nishihara Fluid filling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302267A (en) * 2006-05-09 2007-11-22 Risa Nishihara Fluid filling apparatus

Similar Documents

Publication Publication Date Title
JP4307076B2 (en) Manufacturing method of quartz glass crucible
JPH029783A (en) Quartz crucible
US20070098618A1 (en) Artificial corundum crystal
JP3533648B2 (en) Reactive oxygen species inclusion calcia-alumina oxide single crystal and method for producing the same
JPS6265999A (en) Production of prussian blue forsterite single crystal
JP3940581B2 (en) Star blue sapphire manufacturing method
JPS6128638B2 (en)
JP2976967B1 (en) Langasite single crystal growth method
JP4044315B2 (en) Single crystal manufacturing method
JPH0478593B2 (en)
US4537653A (en) Synthesis of beryl crystals
Garton et al. Single crystal growth of Rb2CrCl4 and K2CrCl4 by the bridgman-stockbarger method
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JP3548910B2 (en) Method for producing ZnO single crystal
JP2622165B2 (en) Method for producing bismuth germanate single crystal
JP2508546B2 (en) Quartz crucible for pulling silicon single crystal
JPH02271989A (en) Production of single crystal of bismuth germanate
JPH0250080B2 (en)
JP3724509B2 (en) LiTaO3 single crystal for light and manufacturing method thereof
WO2011125897A1 (en) Manufacturing method of metal compound crystal, ornament manufacturing method, and metal compound crystal
JPH0471877B2 (en)
JPS6210960B2 (en)
JPS58120597A (en) Chrysoberyl single crystal showing luster effect and its production
JPH0361635B2 (en)
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors