JPS6265901A - Thermochemical production of hydrogen from water - Google Patents

Thermochemical production of hydrogen from water

Info

Publication number
JPS6265901A
JPS6265901A JP60201317A JP20131785A JPS6265901A JP S6265901 A JPS6265901 A JP S6265901A JP 60201317 A JP60201317 A JP 60201317A JP 20131785 A JP20131785 A JP 20131785A JP S6265901 A JPS6265901 A JP S6265901A
Authority
JP
Japan
Prior art keywords
hydrogen
magnesium
water
iodide
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60201317A
Other languages
Japanese (ja)
Other versions
JPH0437001B2 (en
Inventor
Susumu Mizuta
水田 進
Toshiya Kumagai
俊弥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60201317A priority Critical patent/JPS6265901A/en
Publication of JPS6265901A publication Critical patent/JPS6265901A/en
Publication of JPH0437001B2 publication Critical patent/JPH0437001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce hydrogen at an excellent reaction rate, with high heat efficiency and in high yield by improving the process when gaseous hydrogen is thermochemically produced from water by an Mg-S-I cycle method. CONSTITUTION:A gaseous mixture of SO2 and O2 is blown into an aq. slurry at 0-120 deg.C wherein MgO and I2 are suspended in water to form a slurry consisting of an aq. soln. of MgSO4 and MgI2. The slurry is separated by filtration, centrifugation, etc., into an MgSO4 crystal and a concd. soln, of MgI2. The concd. soln. of MgI2 is heated, concentrated and evaporated to dryness. The residue is further heated at 400 deg.C to generate HI and the residue of MgO is returned to the first stage. The MgSO4 obtained by the preceding stage is brought into contact with an aq. soln. and the soln. is heated at 900-1,200 deg.C to generate SO2 and O2 and the residue of MgO is returned to the first stage. Then the HI is brought into contact with an aq. soln. and the soln. is thermochemically decomposed by electrical energy into a gaseous mixture of H2 and I2. The I2 is condensed with use of a separation membrane or by cooling and high-purity gaseous H2 is separated from the I2 and recovered in high yield.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は水を原料とした熱化学的水素製造法の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an improvement in a thermochemical hydrogen production method using water as a raw material.

〔従来技術〕[Prior art]

従来、水を原料とした熱化学的水素製造法に関しては、
種々の方法が提案されているが、その中でも、Mg−5
−Iサイクルによる方法〔特公昭56一7961号公報
、S、 Mizuja and T、 Kumagai
、 Bull。
Conventionally, regarding thermochemical hydrogen production methods using water as raw material,
Various methods have been proposed, among which Mg-5
- Method using I cycle [Special Publication No. 56-7961, S., Mizuja and T., Kumagai
, Bull.

Chem、 Soc、 Jpn、 55.1939(1
982))は、実用性の高い方法であり、その方法は次
のような反応工程から構成されている。
Chem, Soc, Jpn, 55.1939 (1
982)) is a highly practical method, which consists of the following reaction steps.

(1) 2Mg0(c)+5Oz(aq)+I 2(C
)−+Mg5O4(aq)+Mgl z(aq)(2)
 Mg I z (aq) →Mg○(c)+ 2 HI (g)+nH20(g)
(3) MgS O4(c) −+ MgO(c)+ SO2(g)+ (1/2)0
2 (g)(4) 2 HI (g) →Hz (g)+ I z (g) この従来法の改良に関しては、固体反応物質を移動させ
ずに、3つの反応器を3つの反応段階で使いわける操作
法が提案されている(特開昭59−152203号公報
、S、 Mizut、a and T、 Kumaga
i“Hydrogen EnergyProgress
  V″ ProceedingS of  t、he
  5th  World)1ydrogen  En
ergy  Conference、  Toront
、o、  Canada。
(1) 2Mg0(c)+5Oz(aq)+I2(C
)−+Mg5O4(aq)+Mgl z(aq)(2)
Mg I z (aq) → Mg○ (c) + 2 HI (g) + nH20 (g)
(3) MgSO4(c) −+ MgO(c)+ SO2(g)+ (1/2)0
2 (g) (4) 2 HI (g) → Hz (g) + I z (g) For the improvement of this conventional method, three reactors are combined in three reaction stages without transferring solid reactants. An operation method that can be used selectively has been proposed (Japanese Patent Application Laid-Open No. 152203/1983, S. Mizut, a and T. Kumaga
i“Hydrogen Energy Progress
V″ProceedingS of t,he
5th World) 1ydrogen En
energy conference, toronto
, o, Canada.

15−20 July、 1984.ρ421)。15-20 July, 1984. ρ421).

しかしながら、この方法の場合、使用する溶液濃度が低
い上、MgI2とMg5O4とを分離せず、H2と02
とを異なる温度範囲で発生させるため、反応器温度の昇
降を必要とするという難点があり、工業的実施の観点か
らは、サイクルの熱効率や装置の大型化等の問題が未だ
解決されていなかった。
However, in this method, the concentration of the solution used is low, MgI2 and Mg5O4 are not separated, and H2 and O2
The problem is that the reactor temperature needs to be raised and lowered in order to generate the two in different temperature ranges, and from an industrial implementation point of view, problems such as the thermal efficiency of the cycle and the increase in the size of the equipment have not yet been resolved. .

〔目  的〕〔the purpose〕

本発明の目的は、前記従来法に見られる問題を解決する
ことにある。
An object of the present invention is to solve the problems seen in the conventional methods.

〔構  成〕〔composition〕

本発明によれば、水を熱化学的に分解するにあたり。 According to the invention, in thermochemically decomposing water.

(イ)酸化マグネシウムとヨウ素とを含む水性スラリー
中に二酸化イオウと酸素との混合ガスを吹込み、二酸化
イオウのみを反応吸収させて硫酸マグネシウムとヨウ化
マグネシウム水溶液からなるスラリーを生成させると共
に、分離した酸素を反応系から取出す工程、 (ロ)前記工程(イ)で得られたスラリーを固液分離し
て硫酸マグネシウムとヨウ化マグネシウム水溶液とをそ
れぞれ別個に得る工程、 (ハ)前記工程(ロ)で得られたヨウ化マグネシウム水
溶液を加熱濃縮し、加水分解によりヨウ化水素を発生さ
せると共に、残渣として得られる酸化マグネシウムを前
記工程(イ)に循環させる工程、(ニ)前記工程(ロ)
で得られた硫酸マグネシウムをそのまま又は再溶解して
水溶液とした後、高温で熱分解させて二酸化イオウと酸
素を発生させると共に、残渣として酸化マグネシウムを
得、これらの生成物を前記工程(イ)に循環させる工程
(a) A mixed gas of sulfur dioxide and oxygen is blown into an aqueous slurry containing magnesium oxide and iodine, and only sulfur dioxide is reacted and absorbed to produce a slurry consisting of an aqueous solution of magnesium sulfate and magnesium iodide, which is then separated. (b) separating the slurry obtained in the above step (a) into solid-liquid to obtain magnesium sulfate and magnesium iodide aqueous solution separately; (c) the above step (b) ) A step of heating and concentrating the magnesium iodide aqueous solution obtained in step (2) to generate hydrogen iodide through hydrolysis, and circulating the magnesium oxide obtained as a residue to the step (a), (d) the step (b)
The magnesium sulfate obtained in step (1) as it is or redissolved to form an aqueous solution is thermally decomposed at high temperature to generate sulfur dioxide and oxygen, and obtain magnesium oxide as a residue, and these products are processed in step (a). The process of circulating.

(ホ)前記工程(ハ)で得られたヨウ化水素をヨウ素と
水素に分解し、得られたヨウ素を前記工程(イ)に循環
すると共に、水素を反応系から取出す」工程、 からなることを特徴とする水からの熱化学的水素製造法
が提供される。
(e) decomposing the hydrogen iodide obtained in the step (c) into iodine and hydrogen, circulating the obtained iodine to the step (a), and removing hydrogen from the reaction system. Provided is a method for thermochemical hydrogen production from water, characterized by:

本発明における工程(イ)は、次の反応式で表わされる
Step (a) in the present invention is represented by the following reaction formula.

+ (1/2)02 (g) この反応式(i)において、nの値は8〜32、好まし
くは10〜20である。Mg5O4・mH20(c)は
、硫酸マグネシウム無水塩又は含水塩結晶を表わし、m
の値は通常0〜7の範囲である。
+ (1/2)02 (g) In this reaction formula (i), the value of n is 8 to 32, preferably 10 to 20. Mg5O4・mH20(c) represents magnesium sulfate anhydrous salt or hydrated salt crystal, m
The value of usually ranges from 0 to 7.

前記反応式(i)で表わされる反応は、0〜120°C
において、酸化マグネシウム(一部硫酸マグネシウムを
含む)とヨウ素とを、水(一部ヨウ化水素又はヨウ化マ
グネシウムを含む)にけんだくさせた水性スラリー中に
、二酸化イオウと酸素との混合ガスを吹込み、二酸化イ
オウのみを反応吸収させることによって実施される。こ
の場合、使用する水量を少なくすると硫酸マグネシウム
無水塩又は含水塩とヨウ化マグネシウム濃厚溶液とのス
ラリーが得られ、同時に酸素を反応系から分離回収する
ことができる。この工程において、使用する水の量を少
なくすることにより、硫酸マグネシウムとヨウ化マグネ
シウムとの分離性を高めることができ、水の址をヨウ素
1モルに対し31モル以下に調節することにより、析出
する硫酸マグネシウムの収率を80%以」二にすること
ができ、硫酸マグネシウムのヨウ化マグネシウム水溶液
への混入を著しく抑制することができる。使用する水の
量がヨウ素1モルに対し、20モル程度まで減少させる
と。
The reaction represented by the reaction formula (i) is carried out at 0 to 120°C.
In this method, a mixed gas of sulfur dioxide and oxygen is added to an aqueous slurry in which magnesium oxide (partially containing magnesium sulfate) and iodine are suspended in water (partially containing hydrogen iodide or magnesium iodide). This is carried out by blowing and reacting and absorbing only sulfur dioxide. In this case, by reducing the amount of water used, a slurry of anhydrous or hydrated magnesium sulfate and a concentrated magnesium iodide solution can be obtained, and at the same time, oxygen can be separated and recovered from the reaction system. In this process, by reducing the amount of water used, it is possible to improve the separation between magnesium sulfate and magnesium iodide, and by adjusting the amount of water to 31 mol or less per 1 mol of iodine, precipitation The yield of magnesium sulfate can be increased to 80% or more, and the mixing of magnesium sulfate into the aqueous magnesium iodide solution can be significantly suppressed. When the amount of water used is reduced to about 20 moles per mole of iodine.

析出する硫酸マグネシウムの収率はほぼ100%に近い
値となる。
The yield of precipitated magnesium sulfate is close to 100%.

硫酸マグネシウムをヨウ化マグネシウムを含む水溶液中
から析出させる場合、従来法に従って、硫酸マグネシウ
ムとヨウ化マグネシウムの混合溶液を一度生成させ、こ
れから水分を蒸発させ濃縮する方法によっても、硫酸マ
グネシウム含水塩(又は無水塩)を析出させることは原
理的に可能であるが、この場合は、いわゆる均一沈澱法
となるため、硫酸マグネシウム含水塩は1μ0以下の極
めて細かい粒子として析出する。従って、濾過等の物理
的な固液分離方法に多くの固層が生ずる。本発明の最も
大きな特徴は工程(イ)に存在しており、so2ガスを
徐々に吹き込みながら1反応(i)を次第に進行させる
ため、生成するMgSO4・mH2O粒子は、数10μ
m程度までに大きく成長し、物理的手段によって容易に
分離する事ができる。
When magnesium sulfate is precipitated from an aqueous solution containing magnesium iodide, it is also possible to precipitate magnesium sulfate hydrate (or Although it is possible in principle to precipitate anhydrous salt), in this case, a so-called homogeneous precipitation method is used, and the magnesium sulfate hydrate is precipitated as extremely fine particles of 1μ0 or less. Therefore, many solid layers are generated in physical solid-liquid separation methods such as filtration. The most significant feature of the present invention is in step (a), in which one reaction (i) is gradually progressed while gradually blowing in SO2 gas, so the generated MgSO4 mH2O particles are several tens of microns.
It grows to a size of about 1.5 m and can be easily separated by physical means.

次に、工程(ロ)は、工程(イ)で得られたスラリーを
濾過、遠心分離、傾斜法等の固液分離操作によって分離
し、硫酸マグネシウム無水塩又は含水塩の結晶とヨウ化
マグネシウム濃厚溶液とを別個に得るものである。
Next, in step (b), the slurry obtained in step (a) is separated by solid-liquid separation operations such as filtration, centrifugation, and decanting, and crystals of anhydrous magnesium sulfate or hydrated salt and concentrated magnesium iodide are separated. The solution is obtained separately.

工程(ハ)は、工程(ロ)で得られたヨウ化マグネシウ
ム溶液を加熱濃縮し、蒸発乾固したのち、さらに約40
0℃まで加熱することによって実施される。この際、蒸
発乾固後、150℃付近よりヨウ化水素が発生し始め、
400℃まで昇温する間にヨウ化水素は完全に放出され
、はぼ純粋な酸化マグネシウムが得られる。この反応は
、前記反応式(2)で表わされ、生成した酸化マグネシ
ウムは工程(イ)に循環される。
In step (c), the magnesium iodide solution obtained in step (b) is heated and concentrated, evaporated to dryness, and then further reduced to about 40%
It is carried out by heating to 0°C. At this time, after evaporation to dryness, hydrogen iodide started to be generated from around 150℃,
During heating up to 400° C., hydrogen iodide is completely released and almost pure magnesium oxide is obtained. This reaction is expressed by the reaction formula (2) above, and the produced magnesium oxide is recycled to step (a).

工程(ニ)は、工程(ロ)により分離された硫酸マグネ
シウム無水塩又は含水塩をそのまま、あるいは再溶解し
て溶液としたのち、900〜1200℃に加熱すること
により実施される。この工程により、前記反応式(3)
で表わされるように硫酸マグネシウムは熱分解し、二酸
化イオウと酸素(一部二酸化イオウを含む)とを発生し
、酸化マグネシウムを残渣として生ずる。これらの生成
物は工程(イ)に循環される。
Step (d) is carried out by heating the anhydrous or hydrated magnesium sulfate salt separated in step (b) to 900 to 1200°C, either as it is or after redissolving it to form a solution. Through this step, the reaction formula (3)
As shown, magnesium sulfate decomposes thermally, generating sulfur dioxide and oxygen (including some sulfur dioxide), and producing magnesium oxide as a residue. These products are recycled to step (a).

工程(ホ)においては、工程(ハ)により発生したヨウ
化水素を、そのままあるいは−見本溶液としたのち熱、
光あるいは電気エネルギーを用いて前記反応(4)に従
って分解させ、水素とヨウ素(水蒸気又は水と、未解離
のヨウ化水素を含む)とを混合ガスとして、あるいは別
個に得るものである。
In step (e), the hydrogen iodide generated in step (c) is heated as it is or after being made into a sample solution.
Hydrogen and iodine (containing water vapor or water and undissociated hydrogen iodide) are obtained as a mixed gas or separately by decomposition according to reaction (4) using light or electrical energy.

ヨウ化水素の分解例を示すと、例えば、熱分解の場合、
ヨウ化水素を300〜1000℃に加熱することにより
、光分解の場合、250nm以下の紫外線照射により実
施することができ、また電気分解の場合、110°C以
上でリン酸液膜を電解質として用いて電気分解すること
により、又は一度水溶液とした後、常温〜100°Cで
電気分解することにより実施することができる。発生す
る水素とヨウ素とが、混合ガスとして生成した場合、こ
の混合ガスは分離膜により分離したり、あるいはこれを
冷却(0〜120°C)シ、水素以外の成分を凝縮させ
ることより。
To give an example of decomposition of hydrogen iodide, for example, in the case of thermal decomposition,
In the case of photolysis, it can be carried out by heating hydrogen iodide to 300-1000 °C, by irradiation with ultraviolet light of 250 nm or less, and in the case of electrolysis, it can be carried out at 110 °C or more using a phosphoric acid liquid film as an electrolyte. It can be carried out by electrolyzing at normal temperature to 100° C. after forming an aqueous solution. When hydrogen and iodine are generated as a mixed gas, this mixed gas is separated by a separation membrane or cooled (0 to 120°C) to condense components other than hydrogen.

水素とヨウ素(水及びヨウ化水素を含む)とに分離する
ことができる。この工程で得られたヨウ素は工程(イ)
に循環され、一方、水素は反応系から分離回収される。
It can be separated into hydrogen and iodine (including water and hydrogen iodide). The iodine obtained in this step is
Meanwhile, hydrogen is separated and recovered from the reaction system.

〔効  果〕〔effect〕

本発明による水からの熱化学的水素製造法は従来法の欠
点を克服したもので、 (1)工程(イ)、(ハ)および(ニ)のいずれも、9
5%以上の高い収率で行なうことができ、かつ反応速度
が大きい。
The thermochemical hydrogen production method from water according to the present invention overcomes the drawbacks of the conventional method.
It can be carried out with a high yield of 5% or more, and the reaction rate is high.

(2)工8(イ)〜(ホ)の各工程において、生成物の
分離が容易である。
(2) In each step of Step 8 (a) to (e), the products can be easily separated.

(3)反応を進行させるために過剰の反応物質を用いる
必要がなく、直接反応にかかわる物質のみを循環させる
だけで十分である。特に使用する本社を少なくすること
が可能となり、熱効率の大幅な向上が図られる。
(3) There is no need to use excess reactants to advance the reaction, and it is sufficient to circulate only the substances directly involved in the reaction. In particular, it will be possible to reduce the number of head offices used, leading to a significant improvement in thermal efficiency.

(4)@体を含むすべてのサイクル物質を輸送、循環し
、各工程を連続的に行なうことができるため、装置の大
型化が容易である。
(4) Since all cycle materials including @ bodies can be transported and circulated and each process can be performed continuously, it is easy to increase the size of the device.

(5)水素発生物質であるヨウ化マグネシウムと酸素発
生物質である硫酸マグネシウムとを分離するため、安全
性が高い。
(5) High safety because magnesium iodide, which is a hydrogen generating substance, and magnesium sulfate, which is an oxygen generating substance, are separated.

などの特徴を有し、本発明は、水の熱化学反応による水
素と酸素とを連続的に取出す工業的実施用の反応サイク
ルとして好適である。
With these characteristics, the present invention is suitable as a reaction cycle for industrial implementation in which hydrogen and oxygen are continuously extracted through a thermochemical reaction of water.

〔実施例〕〔Example〕

次に、本発明を実施例に基づきさらに詳細に説明する。 Next, the present invention will be explained in more detail based on examples.

実施例 (A)  工程(イ) ヨウ化マグネシウムの加水分解により調製した酸化マグ
ネシウム粉末0.15mol及び硫酸マグネシウムの熱
分解により調製した酸化マグネシウム粉末0.15mo
lを、ヨウ素粉末0.15molと混合し、これに水2
.5〜4.5molを加えてスラリーとした。次に、こ
のスラリー中に硫酸マグネシウムの熱分解で生成した二
酸化イオウと酸素との混合ガスを約1時間吹込むと、二
酸化イオウが前記反応(1)に従って反応吸収され、硫
酸マグネシウム7水塩とヨウ化マグネシウム溶液からな
るスラリーが生成し、ヨウ素による着色が薄(なった。
Example (A) Step (a) 0.15 mol of magnesium oxide powder prepared by hydrolysis of magnesium iodide and 0.15 mol of magnesium oxide powder prepared by thermal decomposition of magnesium sulfate.
1 is mixed with 0.15 mol of iodine powder, and 2 mol of water is added to this.
.. 5 to 4.5 mol was added to form a slurry. Next, when a mixed gas of sulfur dioxide and oxygen produced by thermal decomposition of magnesium sulfate is blown into this slurry for about 1 hour, the sulfur dioxide is reacted and absorbed according to the reaction (1) above, and becomes magnesium sulfate heptahydrate. A slurry consisting of magnesium iodide solution was formed, and the coloring caused by iodine became lighter.

一方、出口ガスはアルカリ吸収びんを通したのち、流量
計とジルコニアセンサ一式酸素濃度計に導いた。出口ガ
スにつ′いては、消費されたアルカリ量から二酸化イオ
ウの量を、ガス流量と酸素濃度の積分値から酸素量をそ
れぞれ求めた。これらの値を熱分解した硫酸マグネシウ
ムの量と比較すると、反応(1)による二酸化イオウの
吸収率が70〜90%以上であるのに対し、酸素はほと
んど吸収されず、両者がよく分離されることが示された
On the other hand, the outlet gas passed through an alkali absorption bottle and then led to a flowmeter and an oxygen concentration meter set with a zirconia sensor. Regarding the outlet gas, the amount of sulfur dioxide was determined from the amount of alkali consumed, and the amount of oxygen was determined from the integrated value of gas flow rate and oxygen concentration. Comparing these values with the amount of thermally decomposed magnesium sulfate, the absorption rate of sulfur dioxide in reaction (1) is 70-90% or more, while oxygen is hardly absorbed and the two are well separated. It was shown that

(B)  工程(ロ) 上記反応で得られたスラリーをグラスフィルターを用い
て分離し、固相のX線分析と液相の化学分析(EDTA
を用いたMg滴定、遊離ヨウ素滴定、次亜塩素酸ナトリ
ウム溶液を酸化剤とする全ヨウ素滴定)を行なったとこ
ろ、固体はほぼ純粋な硫酸マグネシウム7水塩の結晶で
あること、及び析出する硫酸マグネシウム結晶の収率と
、使用した水のモル数(n)(使用したヨウ素1モル基
準)とは、表に示すような関係にあることが明らかとな
った。即ち、本発明の場合は、工程(イ)で析出するヨ
ウ化マグネシウムに対する硫酸マグネシウムの混入量は
、使用する水の社を調節することにより加減することが
でき、水の履を減少させることにより、その混入量を減
少させることができる。従って。
(B) Step (b) The slurry obtained in the above reaction was separated using a glass filter, and subjected to X-ray analysis of the solid phase and chemical analysis of the liquid phase (EDTA
Mg titration, free iodine titration, and total iodine titration using sodium hypochlorite solution as the oxidizing agent) revealed that the solid was almost pure crystals of magnesium sulfate heptahydrate, and that the precipitated sulfuric acid It became clear that the yield of magnesium crystals and the number of moles (n) of water used (based on 1 mole of iodine used) had a relationship as shown in the table. That is, in the case of the present invention, the amount of magnesium sulfate mixed into the magnesium iodide precipitated in step (a) can be adjusted by adjusting the amount of water used, and by reducing the amount of water used. , the amount of contamination can be reduced. Therefore.

本発明の場合は、熱効率的に有利な高濃度溶液において
硫酸マグネシウムとヨウ化マグネシウムとを分離させる
ことができるので、工業的実施には極めて好都合である
The present invention is extremely convenient for industrial implementation because magnesium sulfate and magnesium iodide can be separated in a highly concentrated solution that is advantageous in terms of thermal efficiency.

また、前記工程(イ)において、反応を90℃で行った
時には、Mg504・H2Oが析出することが、X線分
析で確認された。
Further, in the step (a), when the reaction was carried out at 90° C., it was confirmed by X-ray analysis that Mg504.H2O was precipitated.

表 (C)  工程(ハ) 上記工程(ロ)で得られたヨウ化マグネシウム水溶液の
一部を石英ボートEに採取し、これを窒素気流中で40
0℃まで昇温しで加熱し、この際発生したガスを凝縮器
で凝縮させ捕集した。400°Cで20分間保持した場
合の石英ボート中の残渣の大部分は酸化マグネシウムで
あることがX線分析により確認された。
Table (C) Step (c) A part of the magnesium iodide aqueous solution obtained in the above step (b) was collected in a quartz boat E, and it was heated in a nitrogen stream for 40 minutes.
The temperature was raised to 0°C, and the gas generated at this time was condensed and collected in a condenser. It was confirmed by X-ray analysis that most of the residue in the quartz boat when held at 400°C for 20 minutes was magnesium oxide.

次いで、留出液について、化学分析(遊離ヨウ素滴定、
全ヨウ素滴定、中和滴定)を行なったところ、ヨウ化水
素が90%以上の収率で回収されたことが明らかとなっ
た。
Next, the distillate was subjected to chemical analysis (free iodine titration,
When total iodine titration and neutralization titration were performed, it was revealed that hydrogen iodide was recovered with a yield of 90% or more.

(D)  工程(ニ) 上記工程(ロ)で分離された硫酸マグネシウム7水塩結
晶の一部を石英ボートに採取し、窒素気流中で、100
0〜1200℃まで昇温し、約1時間加熱したところ、
前記反応(3)にしたがって二酸化イオウと酸素とが発
生した。残渣は酸化マグネシウムであることがX線分析
より確認された。
(D) Step (d) A part of the magnesium sulfate heptahydrate crystals separated in the above step (b) was collected in a quartz boat, and heated in a nitrogen stream for 100 min.
When the temperature was raised to 0-1200℃ and heated for about 1 hour,
Sulfur dioxide and oxygen were generated according to reaction (3). X-ray analysis confirmed that the residue was magnesium oxide.

(E)  工程(ホ) 上記(C)と同様にして、工程(ロ)で得られたヨウ化
マグネシウム水溶液を400°Cまで加熱し、発生した
ガスを800〜1000°Cに保った石英管中に導入し
、約10分間滞留させて分解反応(前記反応(4))を
行なわせたのち、凝縮器で凝縮させた。
(E) Step (E) In the same manner as in (C) above, the magnesium iodide aqueous solution obtained in Step (B) was heated to 400°C, and the generated gas was kept at 800 to 1000°C in a quartz tube. After the decomposition reaction (reaction (4) above) was carried out, it was condensed in a condenser.

次に、この凝縮液の化学分析(遊離ヨウ素滴定、全ヨウ
素滴定)を行なった。一方、出口ガスをアルカリ吸収び
んを通したのち、流量計、熱伝導型水素濃度計に導き、
ガス流量と水素濃度の積分値から発生した水素量を計算
した。これらの結果からヨウ化水素の20〜30%が解
離している事が認められた。
Next, this condensate was subjected to chemical analysis (free iodine titration, total iodine titration). On the other hand, after the outlet gas passes through an alkali absorption bottle, it is guided to a flow meter and a thermal conduction hydrogen concentration meter.
The amount of hydrogen generated was calculated from the integral value of gas flow rate and hydrogen concentration. From these results, it was confirmed that 20 to 30% of hydrogen iodide was dissociated.

Claims (2)

【特許請求の範囲】[Claims] (1)水を熱化学的に分解するにあたり、 (イ)酸化マグネシウムとヨウ素とを含む水性スラリー
中に二酸化イオウと酸素との混合ガスを吹込み、二酸化
イオウのみを反応吸収させて硫酸マグネシウムとヨウ化
マグネシウム水溶液からなるスラリーを生成させると共
に、分離した酸素を反応系から取出す工程、 (ロ)前記工程(イ)で得られたスラリーを固液分離し
て硫酸マグネシウムとヨウ化マグネシウム水溶液とをそ
れぞれ別個に得る工程、 (ハ)前記工程(ロ)で得られたヨウ化マグネシウム水
溶液を加熱濃縮し、加水分解によりヨウ化水素を発生さ
せると共に、残渣として得られる酸化マグネシウムを前
記工程(イ)に循環させる工程、 (ニ)前記工程(ロ)で得られた硫酸マグネシウムをそ
のまま又は再溶解して水溶液とした後、高温で熱分解さ
せて二酸化イオウと酸素を発生させると共に、残渣とし
て酸化マグネシウムを得、これらの生成物を前記工程(
イ)に循環させる工程、 (ホ)前記工程(ハ)で得られたヨウ化水素をヨウ素と
水素に分解し、得られたヨウ素を前記工程(イ)に循環
すると共に、水素を反応系から取出す工程、 からなることを特徴とする水からの熱化学的水素製造法
(1) In thermochemically decomposing water, (a) A mixed gas of sulfur dioxide and oxygen is blown into an aqueous slurry containing magnesium oxide and iodine, and only the sulfur dioxide is reacted and absorbed to form magnesium sulfate. A step of producing a slurry consisting of an aqueous magnesium iodide solution and removing the separated oxygen from the reaction system; (b) solid-liquid separation of the slurry obtained in step (a) to separate magnesium sulfate and an aqueous magnesium iodide solution; (c) heating and concentrating the magnesium iodide aqueous solution obtained in the step (b) to generate hydrogen iodide through hydrolysis, and converting the magnesium oxide obtained as a residue into the step (a); (d) The magnesium sulfate obtained in step (b) is made into an aqueous solution as it is or is redissolved, and then thermally decomposed at high temperature to generate sulfur dioxide and oxygen, and leave magnesium oxide as a residue. and these products were subjected to the above step (
(e) decomposing the hydrogen iodide obtained in the step (c) into iodine and hydrogen, circulating the obtained iodine to the step (a), and removing hydrogen from the reaction system. 1. A thermochemical hydrogen production method from water, comprising the steps of:
(2)前記工程(イ)において、水性スラリー中の水の
量が、ヨウ素1モルあたり8〜32モルの範囲にある特
許請求の範囲第1項の方法。
(2) The method according to claim 1, wherein in step (a), the amount of water in the aqueous slurry is in the range of 8 to 32 moles per mole of iodine.
JP60201317A 1985-09-11 1985-09-11 Thermochemical production of hydrogen from water Granted JPS6265901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201317A JPS6265901A (en) 1985-09-11 1985-09-11 Thermochemical production of hydrogen from water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201317A JPS6265901A (en) 1985-09-11 1985-09-11 Thermochemical production of hydrogen from water

Publications (2)

Publication Number Publication Date
JPS6265901A true JPS6265901A (en) 1987-03-25
JPH0437001B2 JPH0437001B2 (en) 1992-06-18

Family

ID=16439002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201317A Granted JPS6265901A (en) 1985-09-11 1985-09-11 Thermochemical production of hydrogen from water

Country Status (1)

Country Link
JP (1) JPS6265901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335602A (en) * 2005-06-02 2006-12-14 Japan Atomic Energy Agency Apparatus for continuously producing hydrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2005240696A (en) * 2004-02-26 2005-09-08 Mitsubishi Heavy Ind Ltd Compressor
JP2009209694A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JP2010525225A (en) * 2007-04-27 2010-07-22 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Compressor for exhaust gas turbocharger
US20120266593A1 (en) * 2007-01-19 2012-10-25 Cummins Turbo Technologies Limited Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2005240696A (en) * 2004-02-26 2005-09-08 Mitsubishi Heavy Ind Ltd Compressor
US20120266593A1 (en) * 2007-01-19 2012-10-25 Cummins Turbo Technologies Limited Compressor
JP2010525225A (en) * 2007-04-27 2010-07-22 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Compressor for exhaust gas turbocharger
JP2009209694A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Centrifugal compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335602A (en) * 2005-06-02 2006-12-14 Japan Atomic Energy Agency Apparatus for continuously producing hydrogen

Also Published As

Publication number Publication date
JPH0437001B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
JPS62282621A (en) Desulfurization of smoke
US2819950A (en) Conversion of hydrogen sulfide to sulfur with quinones
EP0016290B1 (en) Continuous process for the removal of sulphur dioxide from waste gases, and hydrogen and sulphuric acid produced thereby
US2385483A (en) Recovery and purification of iodine
JP2017137221A (en) Recovery method of hydrofluoric acid and nitric acid
WO2019144475A1 (en) Method for preparing high-valence iron salt
JPH07508704A (en) Method for producing ferric chloride
JPS6265901A (en) Thermochemical production of hydrogen from water
US2531137A (en) Preparation of sulfuric acid and sodium chloride from sodium sulfate solutions
US3969493A (en) Thermochemical process for manufacture of hydrogen and oxygen from water
JPH0363245A (en) Industrial production of aqueous solution of glyoxylic acid
US3110563A (en) Process for the production of high percentage nitric oxide
US4255399A (en) Process for the recovery of magnesium oxide of high purity
JPS60255620A (en) Production of basic zinc carbonate and fine powder of zinc oxide
JP3319657B2 (en) How to convert transuranium oxalate into chloride
JP2006232561A (en) Apparatus and method for producing hydrogen
JP2008137824A (en) Apparatus for and method of thermochemically producing hydrogen
US1102715A (en) Purification of mixtures containing nitrids.
US4169884A (en) Hydrogen production from water using copper and barium hydroxide
RU2305659C2 (en) Method of production of the amorphous mesoporous aerogel of the aluminum hydroxide with the laminated-fibrous microstructure
SU917694A3 (en) Process for producing chlorine dioxide
JPS62148301A (en) Thermochemical preparation of hydrogen from water
US4259108A (en) Thermochemical process for recovering Cu from CuO or CuO2
SU859288A1 (en) Method of producing sulphur from pyrite containing material
JPH05815A (en) Production of cuprous oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term