JP2005240696A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2005240696A
JP2005240696A JP2004052380A JP2004052380A JP2005240696A JP 2005240696 A JP2005240696 A JP 2005240696A JP 2004052380 A JP2004052380 A JP 2004052380A JP 2004052380 A JP2004052380 A JP 2004052380A JP 2005240696 A JP2005240696 A JP 2005240696A
Authority
JP
Japan
Prior art keywords
flow path
blade group
upstream
channel
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004052380A
Other languages
Japanese (ja)
Inventor
Seiichi Ibaraki
誠一 茨木
Keiji Hisama
啓司 久間
Takeshi Osako
雄志 大迫
Keiichi Shiraishi
啓一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004052380A priority Critical patent/JP2005240696A/en
Publication of JP2005240696A publication Critical patent/JP2005240696A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor suppressing the decrease of compression efficiency in an operating region. <P>SOLUTION: The compressor comprises a moving blade group 5 arranged in a centrifugal compression flow path 3 formed inside a casing 1, a main flow path 2 formed inside the casing 1 as an upstream side of the moving blade group 5, and a detouring flow path 14 formed upstream of the moving blade group 5 in an outer region of the main flow path 2. A downstream side port 15 of the detouring flow path 14 is located upstream of the upstream side end of the moving blade group 5. Such a positional relationship can expand operating range by addition of flow to the end of the moving blade, and suppress the decrease of compression efficiency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮機に関し、特に、サージングを抑制して動作範囲拡大する圧縮機に関する。   The present invention relates to a compressor, and more particularly, to a compressor that suppresses surging and expands an operating range.

過給機、ガスタービン、産業用機械に用いられる圧縮機には、高効率化とともに、動作範囲の拡大化が求められる。   Compressors used in turbochargers, gas turbines, and industrial machines are required to have high efficiency and an extended operating range.

規定される回転数の回転動翼群は、ガス量の低下に伴って、サージ現象が生じることが知られている。回転動翼群が回転する環状空間に向かって流入するガスの量が規定以下になれば、その流域のガスに自励振動が生じる。このような自励現象は、サージ現象と呼ばれている。サージ現象は、流量と圧力比の関係を示すサージ曲線により定量的に表される。サージ曲線上の点は、運転が許容される最低流量を示す。このような最低流量を低減化することによるワイドレンジ化が求められる。   It is known that a rotating blade group having a specified number of rotations causes a surge phenomenon as the amount of gas decreases. If the amount of gas flowing toward the annular space in which the rotating blade group rotates becomes less than the specified amount, self-excited vibration is generated in the gas in the basin. Such a self-excited phenomenon is called a surge phenomenon. The surge phenomenon is quantitatively represented by a surge curve indicating the relationship between the flow rate and the pressure ratio. The point on the surge curve indicates the minimum flow rate that is allowed to operate. A wide range is required by reducing such a minimum flow rate.

ワイドレンジ化は、最近の重要な課題である。そのような課題の解決に向かう技術は、後掲特許文献1,2で知られている。公知の技術は、上流側のガス導入流路と圧縮流路との間でガス流が循環する循環流路を設けることによりワイドレンジ化を実現している。翼前縁(動翼上流側端)より下流側に循環流路の始端口が配置される公知技術では、還流流路の入り口から導入して上流側に戻すガス流の流量をより多くするように、還流流路の入り口を高圧化するために翼前縁より下流側に配置することが試みられている。ワイドレンジ化を優先的に考える公知のそのような技術には、圧縮効率の問題がある。還流流路の入り口の近傍で圧縮されるガス流が還流され上流側に戻ることは、ワイドレンジ化に寄与するが、圧縮効率の低下を招く。このように、公知の圧縮機は、動作範囲を拡大することができるが、圧縮効率の低下を招くという問題が残存している。   Wide range is an important issue recently. Technologies for solving such problems are known in Patent Documents 1 and 2 listed below. In the known technology, a wide range is realized by providing a circulation passage through which a gas flow circulates between a gas introduction passage and a compression passage on the upstream side. In the known technique in which the starting end of the circulation channel is arranged downstream from the blade leading edge (upstream blade upstream end), the flow rate of the gas flow introduced from the inlet of the reflux channel and returned to the upstream side is increased. In addition, in order to increase the pressure at the inlet of the reflux channel, an attempt has been made to arrange the inlet downstream of the blade leading edge. There is a problem of compression efficiency in such a known technology that gives priority to wide range. The return of the gas flow compressed in the vicinity of the inlet of the reflux flow path to the upstream side contributes to a wide range, but causes a reduction in compression efficiency. As described above, the known compressor can expand the operating range, but the problem that the compression efficiency is lowered remains.

動作領域で圧縮効率を低下させないことが望まれる。その環流路の動作特性の積極的改善が更に求められる。   It is desirable not to reduce the compression efficiency in the operating region. There is a further need for positive improvements in the operating characteristics of the annular flow path.

特開2003−106293号JP 2003-106293 A 特開2003−106299号JP 2003-106299 A

本発明の課題は、動作領域で圧縮効率を低下させない圧縮機を提供することにある。   The subject of this invention is providing the compressor which does not reduce compression efficiency in an operation | movement area | region.

本発明による圧縮機は、ケーシング(1)と、ケーシング(1)の内側に形成される遠心圧縮流路(3)に配列される動翼群(6)と、動翼群(6)の上流側としてケーシング(1)の内側に形成される主流路(2)と、主流路(2)の外側領域で動翼群(6)の上流側に形成される迂回流路(14)とから構成されている。迂回流路(14)は、主流路(2)の下流側で主流路(2)に連通する下流側口(15)と、主流路(2)の上流側で主流路(2)に連通する上流側口(16)とから形成されている。下流側口(15)は、動翼群(6)の上流側端より上流側に位置している。   The compressor according to the present invention includes a casing (1), a moving blade group (6) arranged in a centrifugal compression flow path (3) formed inside the casing (1), and an upstream of the moving blade group (6). A main flow path (2) formed inside the casing (1) as a side, and a bypass flow path (14) formed on the upstream side of the blade group (6) in the outer region of the main flow path (2) Has been. The bypass channel (14) communicates with the downstream port (15) communicating with the main channel (2) on the downstream side of the main channel (2) and with the main channel (2) on the upstream side of the main channel (2). And an upstream side port (16). The downstream port (15) is located upstream from the upstream end of the blade group (6).

下流側口(15)が遠心圧縮流路(3)に流れ方向に重合すれば、高圧流が迂回流路に逃げて圧縮効率が低下する。下流側口(15)は遠心圧縮流路(3)より適正に上流側に位置しているから、圧縮効率の低減が抑制される。迂回流路(14)の存在がサージを抑制して動作領域を拡大する効果は、公知の圧縮機の効果を概ねそのままに踏襲している。   If the downstream side port (15) is polymerized in the flow direction to the centrifugal compression channel (3), the high-pressure flow escapes to the bypass channel and the compression efficiency decreases. Since the downstream side port (15) is appropriately positioned upstream from the centrifugal compression flow path (3), a reduction in compression efficiency is suppressed. The effect that the presence of the bypass channel (14) suppresses the surge and expands the operation area follows the effect of the known compressor almost as it is.

下流側口(15)の下流側端と動翼群(6)の上流側端(7)との間の回転軸心線方向距離はDで表され、上流側端(7)に位置的に対応する圧縮流路(3)の直径は2Rで表され、回転軸心線方向距離Dと直径2Rとは、下記関係:0<D<0.3×2Rにより規定される。Dが0.3×2Rより大きくなれば、動作範囲の拡大は、実用的に有意義でなくなる。離隔距離Dは、実用的に適正である範囲が実験的に確認される。0<D<0.1×2Rであることは実用的に更に好ましい。流路(14)の内側周面の直径は2R1で表され、R<R1であることは公知の圧縮機の通りに有意義である。   The distance in the rotational axis direction between the downstream end of the downstream port (15) and the upstream end (7) of the blade group (6) is represented by D, and is positioned at the upstream end (7). The diameter of the corresponding compression flow path (3) is represented by 2R, and the rotational axis direction distance D and the diameter 2R are defined by the following relationship: 0 <D <0.3 × 2R. If D is greater than 0.3 × 2R, the expansion of the operating range is not practically meaningful. The range in which the separation distance D is practically appropriate is experimentally confirmed. It is more practically preferable that 0 <D <0.1 × 2R. The diameter of the inner peripheral surface of the flow path (14) is represented by 2R1, and it is significant as in a known compressor that R <R1.

迂回流路(14)は開閉自在であり、主流路(2)の流量が規定量以上である際に迂回流路(14)は閉じられる。下流側口(15)の下流側端と動翼群(6)の上流側端(7)との間の回転軸心線方向距離はDで表され、下記関係:0<D<0.3×2Rにより規定される点は、既述の発明に同じである。   The bypass channel (14) is openable and closable, and the bypass channel (14) is closed when the flow rate of the main channel (2) is equal to or greater than a specified amount. The distance in the rotational axis direction between the downstream end of the downstream port (15) and the upstream end (7) of the blade group (6) is represented by D, and the following relationship: 0 <D <0.3 The point defined by × 2R is the same as the invention described above.

本発明による圧縮機は、動作領域で圧縮効率を低下させない。   The compressor according to the present invention does not reduce the compression efficiency in the operating region.

本発明による圧縮機の実現態は、図に対応して、詳細に記述される。圧縮機10は、図1に示されるように、ケーシング1の中に導入側の主流路2と、遠心圧縮流路3と、吐出口(図示されず)に連通する概環状圧縮室4とを形成している。環状に配列される複数の動翼から形成される動翼群6は、遠心圧縮流路3に相当する環状空間の中に配列されている。動翼群6は、回転軸心線Lのまわりに回転する。主流2は、回転軸心線の方向にケーシング1の中に導入され概軸流を形成している。主流2を形成するガス流は、動翼群6により遠心方向に流れ方向を変えられ、概環状圧縮室4に送り込まれる。このように、ガス流は動翼群6により圧縮されて概環状圧縮室4に送られる。   The implementation of the compressor according to the invention is described in detail in correspondence with the figures. As shown in FIG. 1, the compressor 10 includes a main flow path 2 on the introduction side, a centrifugal compression flow path 3, and a substantially annular compression chamber 4 communicating with a discharge port (not shown) in the casing 1. Forming. A moving blade group 6 formed of a plurality of moving blades arranged in an annular shape is arranged in an annular space corresponding to the centrifugal compression flow path 3. The moving blade group 6 rotates around the rotation axis L. The main flow 2 is introduced into the casing 1 in the direction of the rotation axis to form an almost axial flow. The gas flow forming the main flow 2 is changed in the flow direction in the centrifugal direction by the moving blade group 6 and is fed into the substantially annular compression chamber 4. Thus, the gas flow is compressed by the moving blade group 6 and sent to the substantially annular compression chamber 4.

ケーシング1の内周面は、動翼群6の前端縁(上流側端縁)7より上流側に位置する前縁近傍領域面8と、迂回流路形成領域面9と、主流形成領域面11として区別される複数の流路形成内周面として形成されている。迂回流路形成領域面9は、前縁近傍領域面8より上流側に位置している。主流形成領域面11は、迂回流路形成領域面9より上流側に配置されている。迂回流路形成領域面9の内側に環状迂回流路形成環12が固定的に配置される。環状迂回流路形成環12は、迂回流路形成領域面9に固定される複数の支持体(図示されず)により支持されている。そのような複数の支持体は、回転軸心線Lのまわりに配置され、ケーシング1の内周面と環状迂回流路形成環12の環状迂回流路形成面13との間に固定的に介設されている。迂回流路形成領域面9と環状迂回流路形成面13の間の環状空間は、環状迂回流路14として形成されている。   The inner peripheral surface of the casing 1 includes a front edge vicinity region surface 8 located upstream from a front end edge (upstream end edge) 7 of the moving blade group 6, a bypass flow path formation region surface 9, and a main flow formation region surface 11. Are formed as a plurality of flow path forming inner peripheral surfaces. The bypass flow path forming region surface 9 is located upstream of the front edge vicinity region surface 8. The main flow forming region surface 11 is disposed on the upstream side of the detour channel forming region surface 9. An annular detour channel forming ring 12 is fixedly arranged inside the detour channel forming region surface 9. The annular detour channel forming ring 12 is supported by a plurality of supports (not shown) fixed to the detour channel forming region surface 9. Such a plurality of supports are arranged around the rotation axis L, and are fixedly interposed between the inner peripheral surface of the casing 1 and the annular bypass passage forming surface 13 of the annular bypass passage forming ring 12. It is installed. An annular space between the detour channel forming region surface 9 and the annular detour channel forming surface 13 is formed as an annular detour channel 14.

前縁近傍領域面8の有効直径は、2R1に設計されている。前縁近傍領域面8は、概ね円筒面であることが好ましい。迂回流路形成領域面9の有効直径は、2R2に設計されている。迂回流路形成領域面9は、概ね円筒面であることが好ましい。環状迂回流路形成面13の有効直径は、2R3に設計されている。環状迂回流路形成面13は、概ね円筒面であることが好ましい。主流形成領域面11の有効直径は、2R4に設計されている。主流形成領域面11は、概ね円筒面であることが好ましい。4つの半径R1,R2,R3,R4の間の関係は、下記のように設定される。
R1<R2,R3<R2
であり、下記であることが好ましい。
R1=<R4
本実現態では、環状迂回流路形成環12の内周面の直径は、前縁近傍領域面8の直径R1に概ね等しく設計されている。環状迂回流路14の下流側口15は、環状迂回流路14の内周側に相当する環状迂回流路形成面13より内側(回転軸心線側)に位置づけられ、且つ、環状迂回流路14の上流側口16は環状迂回流路形成面13より内側に位置づけられている。
The effective diameter of the front edge vicinity region surface 8 is designed to be 2R1. The front edge vicinity region surface 8 is preferably a substantially cylindrical surface. The effective diameter of the bypass flow path forming region surface 9 is designed to be 2R2. The bypass flow path forming region surface 9 is preferably a substantially cylindrical surface. The effective diameter of the annular detour channel forming surface 13 is designed to be 2R3. The annular bypass flow path forming surface 13 is preferably a generally cylindrical surface. The effective diameter of the main flow forming region surface 11 is designed to be 2R4. The main flow forming region surface 11 is preferably substantially a cylindrical surface. The relationship between the four radii R1, R2, R3, R4 is set as follows.
R1 <R2, R3 <R2
It is preferable that it is the following.
R1 = <R4
In this realization state, the diameter of the inner peripheral surface of the annular bypass flow path forming ring 12 is designed to be approximately equal to the diameter R1 of the front edge vicinity region surface 8. The downstream port 15 of the annular detour channel 14 is positioned on the inner side (rotation axis side) of the annular detour channel forming surface 13 corresponding to the inner peripheral side of the annular detour channel 14, and the annular detour channel The upstream side opening 16 is positioned on the inner side of the annular bypass flow path forming surface 13.

下流側口15の後端縁(下流側端縁)と動翼群6の前端縁7との間の回転軸心線方向距離Dは、下記条件で規定されている。
0<D<0.3・2R1
このように、下流側口15の下流側端縁位置は、図2に示されるように、動翼群6の前端縁7より上流側に位置し、動翼群6の前端縁7の最大直径に概ね等しい前縁近傍領域面8の直径2R1の30%より小さい距離で動翼群6の前端縁7より上流側に離隔している。
A rotational axis direction distance D between the rear end edge (downstream end edge) of the downstream port 15 and the front end edge 7 of the blade group 6 is defined by the following conditions.
0 <D <0.3 ・ 2R1
Thus, as shown in FIG. 2, the downstream edge position of the downstream port 15 is located upstream from the front edge 7 of the blade group 6, and the maximum diameter of the front edge 7 of the blade group 6. Is separated from the front edge 7 of the blade group 6 upstream by a distance smaller than 30% of the diameter 2R1 of the front edge vicinity region surface 8 that is substantially equal to.

主流2のガス流の一部は、図3に示されるように、動翼群6の前端縁7より下流側の圧縮開始点P1で急速に高圧化する。圧縮開始点P1の圧力は、動翼群6の前端縁7より僅かに上流側の圧縮開始直前点P2の圧力に対して増大している。下流側口15の近傍点P3の圧力は、圧縮開始直前点P2の圧力よりも更に低いが、動翼群6の前端近傍による圧縮開始の影響を受けていて、主流2の側の有効主流点P4の圧力より高い。有効主流点P4の圧力は、概ね上流側口16の近傍の圧力に近い。主流2の流量がサージング発生領域に近づく程度に低下する際に、点P3の下流側近傍位置は前縁近傍領域面8の直径2R1の30%より大きい距離に点P2から離隔していないので、点P3の圧力は点P4の圧力より適正に高く維持されている。このような適正圧力が点P3で維持されているので、点P3のガス流の一部分18は、図3に示されるように、下流側口15から環状迂回流路14の中に吸い込まれ、図2に示されるように、上流側口16から主流路2に還流し、更に、遠心圧縮流路3に向かって順方向に(下流側に)向かい、遠心圧縮流路3の圧縮流に補充される。このような補充により、サージング現象が有効に回避される。   As shown in FIG. 3, a part of the gas flow of the main flow 2 rapidly increases in pressure at the compression start point P <b> 1 on the downstream side of the front end edge 7 of the moving blade group 6. The pressure at the compression start point P <b> 1 increases slightly with respect to the pressure at the point P <b> 2 immediately before the compression start slightly upstream from the front end edge 7 of the blade group 6. The pressure at the vicinity point P3 of the downstream side port 15 is lower than the pressure at the point P2 immediately before the start of compression, but is affected by the start of compression near the front end of the moving blade group 6, and the effective main stream point on the main stream 2 side. Higher than P4 pressure. The pressure at the effective main stream point P4 is approximately close to the pressure in the vicinity of the upstream side port 16. Since the downstream vicinity position of the point P3 is not separated from the point P2 by a distance larger than 30% of the diameter 2R1 of the front edge vicinity region surface 8 when the flow rate of the main flow 2 decreases to the extent that it approaches the surging occurrence region, The pressure at point P3 is maintained appropriately higher than the pressure at point P4. Since such an appropriate pressure is maintained at the point P3, a portion 18 of the gas flow at the point P3 is sucked into the annular bypass channel 14 from the downstream port 15 as shown in FIG. 2, the refrigerant flows back to the main flow path 2 from the upstream port 16, and further forwards (downstream) toward the centrifugal compression flow path 3 to be replenished to the compression flow of the centrifugal compression flow path 3. The By such replenishment, the surging phenomenon is effectively avoided.

図4は、性能比較試験を示している。縦軸は圧力比(圧縮率)を示し、横軸は流量を示している。サージ線(サージ発生境界線)C2は、還流迂回流路が設けられていない公知のサージ線を示している。サージ線C3は、還流迂回流路14が設けられている本発明のサージ線を示している。サージ線C3は、還流迂回流路が設けられている公知のサージ線に概ね同形であるが、本発明の圧力比曲線K(例示:K1)に見られるように、B1で示す圧力比が公知の還流迂回流路付き圧縮機のB1’に比べて高く、効率低下が抑制されている。   FIG. 4 shows a performance comparison test. The vertical axis represents the pressure ratio (compression ratio), and the horizontal axis represents the flow rate. A surge line (surge generation boundary line) C2 indicates a known surge line in which no return bypass flow path is provided. The surge line C3 indicates the surge line of the present invention in which the return bypass flow path 14 is provided. The surge line C3 is generally the same shape as a known surge line provided with a return bypass flow path, but the pressure ratio indicated by B1 is known as seen in the pressure ratio curve K (example: K1) of the present invention. Compared to B1 ′ of the compressor with the reflux bypass flow path, the efficiency reduction is suppressed.

図5は、本発明による圧縮機の他の実現態を示している。本実現態では、ケーシング1と環状迂回流路形成環12とにより形成される環状迂回流路14が開閉動作制御レバー21により開閉自在である。下流側口15は、開閉動作制御レバー21により開閉自在である。減少する流量がサージ限界に近づけば、閉じていた環状迂回流路形成環12が後退し(逆軸流方向に移動し)、下流側口15が開く。サージングが発生しやすい小流量側の下流側口15のみを開く制御は有効である。   FIG. 5 shows another implementation of the compressor according to the invention. In this realization state, the annular bypass passage 14 formed by the casing 1 and the annular bypass passage forming ring 12 can be opened and closed by the opening / closing operation control lever 21. The downstream port 15 can be freely opened and closed by an opening / closing operation control lever 21. When the decreasing flow rate approaches the surge limit, the closed circular bypass passage forming ring 12 moves backward (moves in the reverse axial flow direction), and the downstream port 15 opens. Control that opens only the downstream port 15 on the small flow rate side where surging is likely to occur is effective.

図4は、性能試験結果を示している。C1で示される線を境にして、それより小流量側で還流迂回流路を開き、C1より大流量側で迂回流路14を閉じることにより、サージ流量を低減して作動範囲を拡大し、大流量側では高効率な作動が実現されている。   FIG. 4 shows the performance test results. By opening the return bypass flow path on the smaller flow rate side from the line indicated by C1 and closing the bypass flow path 14 on the larger flow rate side than C1, the surge flow rate is reduced and the operating range is expanded, Highly efficient operation is realized on the large flow rate side.

図1は、本発明による圧縮機の実現態を示す断面図である。FIG. 1 is a cross-sectional view showing an implementation of a compressor according to the present invention. 図2は、図1の一部を示す断面図である。FIG. 2 is a cross-sectional view showing a part of FIG. 図3は、図2の一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of FIG. 図4は、性能比較試験を示すグラフである。FIG. 4 is a graph showing a performance comparison test. 図5は、本発明による圧縮機の更に他の実現態を示す断面図である。FIG. 5 is a sectional view showing still another embodiment of the compressor according to the present invention.

符号の説明Explanation of symbols

1…ケーシング
2…主流路
3…遠心圧縮流路
6…動翼群
7…上流側端
14…迂回流路
15…下流側口
16…上流側口
19…旋回羽根
DESCRIPTION OF SYMBOLS 1 ... Casing 2 ... Main flow path 3 ... Centrifugal compression flow path 6 ... Moving blade group 7 ... Upstream end 14 ... Detour flow path 15 ... Downstream side port 16 ... Upstream side port 19 ... Swirling blade

Claims (5)

ケーシングと、
前記ケーシングの内側に形成される遠心圧縮流路に配列される動翼群と、
前記動翼群の上流側として前記ケーシングの内側に形成される主流路と、
前記主流路の外側領域で前記動翼群の上流側に形成される迂回流路とを具え、
前記迂回流路は、
前記主流路の下流側で前記主流路に連通する下流側口と、
前記主流路の上流側で前記主流路に連通する上流側口とを備え、
前記下流側口は、前記動翼群の上流側端より上流側に位置している
圧縮機。
A casing,
A group of blades arranged in a centrifugal compression flow path formed inside the casing;
A main channel formed inside the casing as the upstream side of the blade group;
A detour channel formed on the upstream side of the blade group in the outer region of the main channel,
The bypass channel is
A downstream port communicating with the main channel downstream of the main channel;
An upstream side port communicating with the main channel on the upstream side of the main channel;
The downstream port is located upstream from an upstream end of the blade group.
前記下流側口の下流側端と前記動翼群の上流側端との間の回転軸心線方向距離はDで表され、前記上流側端に位置的に対応する圧縮流路の直径は2Rで表され、前記回転軸心線方向距離Dと前記直径2Rとは、下記関係:
0<D<0.3×2R
により規定される
請求項1の圧縮機。
The distance in the rotational axis direction between the downstream end of the downstream port and the upstream end of the blade group is represented by D, and the diameter of the compression flow path corresponding to the upstream end is 2R. The rotational axis center line direction distance D and the diameter 2R are represented by the following relationship:
0 <D <0.3 × 2R
The compressor according to claim 1.
0<D<0.1×2R
である
請求項2の圧縮機。
0 <D <0.1 × 2R
The compressor according to claim 2.
前記迂回流路の内側周面の直径は2R1で表され、R<R1である
請求項2の圧縮機。
The compressor according to claim 2, wherein a diameter of an inner peripheral surface of the bypass channel is represented by 2R1 and R <R1.
前記迂回回路は開閉自在であり、前記主流路の流量が規定量以上である際に前記迂回流路は閉じられる
請求項1の圧縮機。
The compressor according to claim 1, wherein the bypass circuit is freely openable and closable, and the bypass channel is closed when a flow rate of the main channel is equal to or greater than a predetermined amount.
JP2004052380A 2004-02-26 2004-02-26 Compressor Withdrawn JP2005240696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052380A JP2005240696A (en) 2004-02-26 2004-02-26 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052380A JP2005240696A (en) 2004-02-26 2004-02-26 Compressor

Publications (1)

Publication Number Publication Date
JP2005240696A true JP2005240696A (en) 2005-09-08

Family

ID=35022695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052380A Withdrawn JP2005240696A (en) 2004-02-26 2004-02-26 Compressor

Country Status (1)

Country Link
JP (1) JP2005240696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265901A (en) * 1985-09-11 1987-03-25 Agency Of Ind Science & Technol Thermochemical production of hydrogen from water
JP2015040505A (en) * 2013-08-22 2015-03-02 株式会社Ihi Centrifugal compressor and supercharger
KR101850783B1 (en) * 2017-04-27 2018-04-20 (주)대주기계 Tip injection device for the improvement of performance and operation stability of air-compressor
KR20180103229A (en) * 2017-03-09 2018-09-19 한화파워시스템 주식회사 Comprssor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265901A (en) * 1985-09-11 1987-03-25 Agency Of Ind Science & Technol Thermochemical production of hydrogen from water
JP2015040505A (en) * 2013-08-22 2015-03-02 株式会社Ihi Centrifugal compressor and supercharger
KR20180103229A (en) * 2017-03-09 2018-09-19 한화파워시스템 주식회사 Comprssor
KR102310369B1 (en) * 2017-03-09 2021-10-07 한화파워시스템 주식회사 Comprssor
KR101850783B1 (en) * 2017-04-27 2018-04-20 (주)대주기계 Tip injection device for the improvement of performance and operation stability of air-compressor

Similar Documents

Publication Publication Date Title
JP5221985B2 (en) Centrifugal compressor
WO2011007467A1 (en) Impeller and rotary machine
JP2009209701A (en) Turbine, and turbocharger provided with the same
WO2013128539A1 (en) Rotary machine
WO2011007466A1 (en) Impeller and rotary machine
JP2013148053A (en) Centrifugal compressor
JP2012184751A (en) Turbocompressor
JP2010144698A (en) Centrifugal compressor
JP6642711B2 (en) Centrifugal compressor
JP2018115581A (en) Turbine exhaust chamber
JP5430684B2 (en) Centrifugal compressor with non-axisymmetric self-circulating casing treatment
JP2013019385A (en) Centrifugal compressor
JP2019007425A (en) Centrifugal compressor and turbocharger
JP2009068372A (en) Centrifugal compressor
WO2018155546A1 (en) Centrifugal compressor
JP2005240696A (en) Compressor
JP4811438B2 (en) Variable capacity turbocharger
JP2012107619A (en) Exhaust hood diffuser
JP2007177737A (en) Centrifugal compressor
JPWO2018179112A1 (en) Compressor scroll shape and turbocharger
JP2010229842A (en) Compressor
JP2010065669A (en) Centrifugal compressor
JP2018059482A (en) Centrifugal compressor and turbocharger
CN110520630B (en) Centrifugal compressor
JP2011231779A (en) Turbine and turbocharger including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090305

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090317