JP2006232561A - Apparatus and method for producing hydrogen - Google Patents

Apparatus and method for producing hydrogen Download PDF

Info

Publication number
JP2006232561A
JP2006232561A JP2005044973A JP2005044973A JP2006232561A JP 2006232561 A JP2006232561 A JP 2006232561A JP 2005044973 A JP2005044973 A JP 2005044973A JP 2005044973 A JP2005044973 A JP 2005044973A JP 2006232561 A JP2006232561 A JP 2006232561A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen iodide
iodine
iodide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044973A
Other languages
Japanese (ja)
Other versions
JP4535269B2 (en
Inventor
Kenichi Mimura
健一 味村
Michitomo Kato
倫与 加藤
Takaharu Tsukada
隆治 塚田
Kenichi Kaeruishi
健一 蛙石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2005044973A priority Critical patent/JP4535269B2/en
Publication of JP2006232561A publication Critical patent/JP2006232561A/en
Application granted granted Critical
Publication of JP4535269B2 publication Critical patent/JP4535269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high purity hydrogen by utilizing a decomposition reaction of hydrogen iodide that is produced by Bunsen reaction to produce hydrogen in a closed cycle, wherein hydrogen iodide in the hydrogen is easily and simply removed without using a large amount of water and without producing a very low temperature condition. <P>SOLUTION: The apparatus for continuously producing hydrogen comprises a hydrogen iodide distillation means (A), a hydrogen iodide decomposition means (B) for decomposing hydrogen iodide obtained through the distillation into hydrogen and iodine, an iodine removal means (C) for obtaining a hydrogen mixture containing hydrogen and residual hydrogen iodide, a hydrogen iodide removal means (D) for separating and obtaining hydrogen and for removing hydrogen iodide in the hydrogen mixture by dissolving the hydrogen iodide into the raw aqueous solution of hydrogen iodide by contacting the hydrogen mixture with the raw aqueous solution of hydrogen iodide, and a hydrogen washing means (E) for washing the separated and obtained hydrogen with water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヨウ化水素の分解反応を利用し、連続的に水素を製造する装置及び水素の製造方法に関する。   The present invention relates to an apparatus for continuously producing hydrogen using a decomposition reaction of hydrogen iodide and a method for producing hydrogen.

水素の製造方法として、ブンゼン反応により製造したヨウ化水素の分解反応を利用する方法が広く知られている。この方法は、収支バランス的には、水を熱分解して水素を得る方法であるが、次の3つの反応から構成されている。
(反応1)水とヨウ素との混合物に二酸化硫黄ガスを吸収させ、約100℃の温度でヨウ化水素と硫酸を得る反応(ブンゼン反応)。
(反応2)ヨウ化水素を400〜500℃に加熱して熱分解させ、水素とヨウ素とを得る反応。
(反応3)硫酸を約850℃に加熱して熱分解させ、水と二酸化イオウと酸素とを得る反応。
As a method for producing hydrogen, a method using a decomposition reaction of hydrogen iodide produced by the Bunsen reaction is widely known. This method is a method of obtaining hydrogen by thermally decomposing water in terms of balance, but is composed of the following three reactions.
(Reaction 1) A reaction in which sulfur dioxide gas is absorbed in a mixture of water and iodine to obtain hydrogen iodide and sulfuric acid at a temperature of about 100 ° C. (Bunsen reaction).
(Reaction 2) A reaction in which hydrogen iodide is heated to 400 to 500 ° C. and thermally decomposed to obtain hydrogen and iodine.
(Reaction 3) Reaction in which sulfuric acid is heated to about 850 ° C. and thermally decomposed to obtain water, sulfur dioxide and oxygen.

Figure 2006232561
Figure 2006232561

この方法では、水以外の硫黄およびヨウ素の化合物(循環物質)はプロセス内で繰り返し使用されており、すべての反応物質が気体または液体状態で取り扱うことができる。従って、この方法を利用し、循環物質の損耗を極力抑え、閉サイクルで水素を製造するプロセスが提案されている。   In this method, sulfur and iodine compounds (circulating materials) other than water are repeatedly used in the process, and all the reactants can be handled in a gaseous or liquid state. Therefore, there has been proposed a process for producing hydrogen in a closed cycle by using this method while minimizing the wear of the circulating material.

このようなプロセスに適用する水素の製造装置の概略図を図3に示す。31はヨウ化水素蒸留塔であり、32はヨウ化水素分解器であり、33は冷却塔であり、34は水素洗浄塔であり、35はヨウ化水素回収塔である。   A schematic diagram of a hydrogen production apparatus applied to such a process is shown in FIG. 31 is a hydrogen iodide distillation tower, 32 is a hydrogen iodide decomposer, 33 is a cooling tower, 34 is a hydrogen washing tower, and 35 is a hydrogen iodide recovery tower.

ヨウ化水素蒸留塔31では、ブンゼン反応生成物から硫酸を除去し、電気透析等の方法によりヨウ化水素を濃縮したヨウ化水素原料水溶液を蒸留して、実質的に水を含有しないヨウ化水素を得る。蒸留残渣のヨウ化水素水溶液は、成分を調整した上で、再びヨウ化水素蒸留塔31に戻される。得られた水を実質的に含有しないヨウ化水素は、ヨウ化水素分解器32に導かれ、熱分解を受ける。ヨウ化水素分解器32から排出される熱分解生成物は、水素とヨウ素と未反応のヨウ化水素との混合物である。次に、この混合物を、冷却塔33に送り冷却する。すると、ヨウ素がヨウ化水素に溶解した状態で除去回収でき、一方で水素が得られる。回収したヨウ素のヨウ化水素溶液は、ヨウ化水素回収塔35に投入し、ヨウ化水素を回収すると共にヨウ素を回収する。回収したヨウ化水素はヨウ化水素分解器32に投入される。回収したヨウ素は、ブンゼン反応に用いる。冷却塔33で得られた水素にはヨウ化水素が混入しているため、次に、水素洗浄塔34に送り、ヨウ化水素の除去効率を考慮してヨウ化水素の約4倍モル以上の水で洗浄することによりヨウ化水素を除去し、それにより高純度の水素が得られる。   In the hydrogen iodide distillation column 31, sulfuric acid is removed from the Bunsen reaction product, and a hydrogen iodide raw material aqueous solution concentrated with hydrogen iodide is distilled by a method such as electrodialysis, so that hydrogen iodide is substantially free of water. Get. The hydrogen iodide aqueous solution of the distillation residue is returned to the hydrogen iodide distillation column 31 again after adjusting the components. The obtained hydrogen iodide substantially free of water is led to the hydrogen iodide decomposer 32 and undergoes thermal decomposition. The thermal decomposition product discharged from the hydrogen iodide decomposer 32 is a mixture of hydrogen, iodine and unreacted hydrogen iodide. Next, this mixture is sent to the cooling tower 33 to be cooled. Then, iodine can be removed and recovered in a state dissolved in hydrogen iodide, while hydrogen is obtained. The recovered iodine hydrogen iodide solution is put into a hydrogen iodide recovery tower 35 to recover hydrogen iodide and iodine. The recovered hydrogen iodide is put into the hydrogen iodide decomposer 32. The recovered iodine is used for the Bunsen reaction. Since hydrogen iodide is mixed in the hydrogen obtained in the cooling tower 33, it is then sent to the hydrogen washing tower 34, and considering the hydrogen iodide removal efficiency, it is about 4 times mol or more of hydrogen iodide. Hydrogen iodide is removed by washing with water, whereby high purity hydrogen is obtained.

しかし、図3に示した装置では、冷却塔33で分離された水素にはヨウ化水素が53モル%程度混入しているため、水素洗浄塔34には大量の洗浄水を供給しなければならず、この大量の水をヨウ化水素蒸留塔31に戻すと、ヨウ化水素原料水溶液のヨウ化水素濃度が低下し、蒸留塔の負荷が増大するという問題がある。   However, in the apparatus shown in FIG. 3, about 53 mol% of hydrogen iodide is mixed in the hydrogen separated in the cooling tower 33, a large amount of washing water must be supplied to the hydrogen washing tower 34. However, if this large amount of water is returned to the hydrogen iodide distillation column 31, there is a problem that the hydrogen iodide concentration of the hydrogen iodide raw material aqueous solution decreases and the load on the distillation column increases.

参考のために、図4に水素洗浄塔34の特性(冷却温度と洗浄水量とに対するヨウ化水素ロス量の関係)を示す。図4おいて、HIロス量は、1時間当たりに水素洗浄塔34に進入したヨウ化水素190.7kg/hに対し回収できなかったヨウ化水素の量である。図4からは、40℃では40kg/hの洗浄水量では殆どヨウ化水素が回収できないことがわかる。温度を下げるとロス量が減少するが、除去しきるまでには至らない。0〜40℃の温度では、少なくとも100〜110kg/hの洗浄水量を使用する必要があることがわかる。しかし、この洗浄水量を使用すると、ヨウ化水素蒸留塔31に供給するヨウ化水素原料水溶液のヨウ化水素濃度を低下させてしまい、プロセス全体の効率を悪化させてしまう。   For reference, FIG. 4 shows the characteristics of the hydrogen cleaning tower 34 (relationship between the amount of hydrogen iodide loss with respect to the cooling temperature and the amount of cleaning water). In FIG. 4, the amount of HI loss is the amount of hydrogen iodide that could not be recovered with respect to 190.7 kg / h of hydrogen iodide that entered the hydrogen washing tower 34 per hour. FIG. 4 shows that at 40 ° C., hydrogen iodide can hardly be recovered with a washing water amount of 40 kg / h. When the temperature is lowered, the amount of loss is reduced, but not completely removed. It can be seen that at a temperature of 0 to 40 ° C., it is necessary to use a washing water amount of at least 100 to 110 kg / h. However, if this amount of washing water is used, the hydrogen iodide concentration of the hydrogen iodide raw material aqueous solution supplied to the hydrogen iodide distillation column 31 is lowered, and the efficiency of the entire process is deteriorated.

このため、水素からヨウ化水素を除去するために洗浄水を使用しないようにするために、図3の水素洗浄塔34を、水を使用しない新たな冷却塔36(図5参照)に代えることが試みられている。この冷却塔36は、その前段の冷却等33よりも低温に冷却できるものである。図6にこのような冷却塔のヨウ化水素凝縮分離特性を示す。これによれば、20℃以上ではヨウ化水素を除去できないことがわかる。従って、十分にヨウ化水素を凝縮除去するためには、0℃以下に冷却する必要があるが、−40℃でも完全にはヨウ化水素を除去できるわけではない。また、このような極低温条件下で、前段の冷却塔33からヨウ素が冷却塔36にスリップしてくると、冷却塔36中でヨウ素が固化し冷却塔36に閉塞が生じかねない。   For this reason, in order not to use washing water to remove hydrogen iodide from hydrogen, the hydrogen washing tower 34 in FIG. 3 is replaced with a new cooling tower 36 (see FIG. 5) that does not use water. Has been tried. The cooling tower 36 can be cooled to a temperature lower than that of the preceding cooling stage 33. FIG. 6 shows the hydrogen iodide condensation and separation characteristics of such a cooling tower. This shows that hydrogen iodide cannot be removed at 20 ° C. or higher. Therefore, in order to sufficiently condense and remove hydrogen iodide, it is necessary to cool to 0 ° C. or lower, but even at −40 ° C., hydrogen iodide cannot be completely removed. Further, when iodine slips from the cooling tower 33 in the previous stage to the cooling tower 36 under such a cryogenic condition, the iodine solidifies in the cooling tower 36 and the cooling tower 36 may be blocked.

特開平2004−232031号公報Japanese Unexamined Patent Publication No. 2004-232031

本発明は、ブンゼン反応により製造したヨウ化水素の分解反応を利用し、循環物質の損耗を極力抑え、閉サイクルで水素を製造するプロセスにおいて、多量の水を使用することなくあるいは極低温条件を作ることなく、少ないエネルギーで水素中のヨウ化水素を容易且つ簡便に除去し、それにより高純度の水素を得られるようにすることを目的とする。   The present invention utilizes the decomposition reaction of hydrogen iodide produced by the Bunsen reaction to minimize the loss of circulating materials, and in the process of producing hydrogen in a closed cycle, without using a large amount of water or at cryogenic conditions. An object is to easily and easily remove hydrogen iodide in hydrogen with less energy without making it, thereby obtaining high-purity hydrogen.

本発明者は、ヨウ化水素の分解生成物を冷却してヨウ素をヨウ化水素溶液として除いた後の、水素と残余のヨウ化水素との水素混合物を、ヨウ化水素蒸留塔に投入すべきヨウ化水素原料水溶液で洗浄することにより、水素混合物中のヨウ化水素をヨウ化水素原料水溶液に溶解させて除去でき、それにより水素洗浄のために要する水量を非常に少なくできることを見出し、本発明を完成させた。   The inventor should cool the hydrogen iodide decomposition product to remove iodine as a hydrogen iodide solution, and then add the hydrogen mixture of hydrogen and the remaining hydrogen iodide to the hydrogen iodide distillation column. It was found that by washing with a hydrogen iodide raw material aqueous solution, hydrogen iodide in the hydrogen mixture can be dissolved and removed in the hydrogen iodide raw material aqueous solution, whereby the amount of water required for hydrogen cleaning can be greatly reduced. Was completed.

即ち、本発明は、ヨウ化水素の分解反応を利用して水素を製造する方法において、以下の工程(1)〜(5):
(1) ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液を蒸留処理して、ヨウ化水素を分離取得するヨウ化水素蒸留工程;
(2) 工程(1)[ヨウ化水素蒸留工程(1)]で分離されたヨウ化水素を、水素とヨウ素とに分解処理し、水素とヨウ素と未分解のヨウ化水素と含有する分解組成物を得るヨウ化水素分解工程;
(3) 工程(2)[ヨウ化水素分解工程(2)]で得られた該分解組成物を冷却し、ヨウ素とヨウ化水素とをヨウ素−ヨウ化水素溶液として該分解組成物から除去すると共に、水素と残余ヨウ化水素とを含有する水素混合物を得るヨウ素除去工程;
(4) 工程(3)[ヨウ素除去工程(3)]で得られた該水素混合物を、工程(1)[ヨウ化水素蒸留工程(1)]に投入すべき、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液と接触させることにより、該水素混合物中のヨウ化水素を該ヨウ化水素原料水溶液に溶解させて該水素混合物から除去し、それによりヨウ化水素濃度が高められたヨウ化水素原料水溶液を得ると共に、水素を分離取得するヨウ化水素除去工程; 及び
(5) 工程(4)[ヨウ化水素除去工程(4)]で分離された水素を水で洗浄し、精製された水素を得る水素洗浄工程
を有する製造方法を提供する。
That is, the present invention provides the following steps (1) to (5) in a method for producing hydrogen using a decomposition reaction of hydrogen iodide:
(1) A hydrogen iodide distillation step of distilling a hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide, and water to separate and obtain hydrogen iodide;
(2) Decomposition composition containing the hydrogen iodide separated in the step (1) [hydrogen iodide distillation step (1)] into hydrogen and iodine, and containing hydrogen, iodine and undecomposed hydrogen iodide Hydrogen iodide decomposition step to obtain a product;
(3) Step (2) The decomposition composition obtained in [hydrogen iodide decomposition step (2)] is cooled, and iodine and hydrogen iodide are removed from the decomposition composition as an iodine-hydrogen iodide solution. And an iodine removal step to obtain a hydrogen mixture containing hydrogen and residual hydrogen iodide;
(4) The hydrogen mixture obtained in step (3) [iodine removal step (3)] should be put into step (1) [hydrogen iodide distillation step (1)], iodine, hydrogen iodide and water. And hydrogen iodide in the hydrogen mixture is dissolved in the hydrogen iodide raw material aqueous solution and removed from the hydrogen mixture, thereby increasing the hydrogen iodide concentration. A hydrogen iodide removing step of obtaining a hydrogen iodide raw material aqueous solution and separating and acquiring hydrogen; and (5) washing the hydrogen separated in step (4) [hydrogen iodide removing step (4)] with water; Provided is a production method having a hydrogen washing step for obtaining purified hydrogen.

また、本発明は、ヨウ化水素の分解反応を利用して水素を製造するための装置であって、以下の手段(A)〜(E):
(A) ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液を蒸留処理して、ヨウ化水素を分離取得するためのヨウ化水素蒸留手段;
(B) 手段(A)[ヨウ化水素蒸留手段(A)]から供給されるヨウ化水素を、水素とヨウ素とに分解処理し、水素とヨウ素と未分解のヨウ化水素と含有する分解組成物を得るためのヨウ化水素分解手段;
(C) 手段(B)[ヨウ化水素分解手段(B)]で得られた該分解組成物を冷却し、その分解組成物中のヨウ化水素とヨウ素とをヨウ素−ヨウ化水素溶液として該分解組成物から除去すると共に、水素と残余のヨウ化水素とを含有する水素混合物を得るためのヨウ素除去手段;
(D) 手段(C)[ヨウ素除去手段(C)]で得られた該水素混合物を、手段(A)[ヨウ化水素蒸留手段(A)]に投入すべき、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液と接触させることにより、該水素混合物中のヨウ化水素を該ヨウ化水素原料水溶液に溶解させて該水素混合物から除去し、それによりヨウ化水素濃度が高められたヨウ化水素原料水溶液を得ると共に、水素を分離取得するためのヨウ化水素除去手段; 及び
(E) 手段(D)[ヨウ化水素除去手段(D)]で得られた水素を水で洗浄し、精製された水素を得るための水素洗浄手段
を有する製造装置を提供する。
Further, the present invention is an apparatus for producing hydrogen using a decomposition reaction of hydrogen iodide, and the following means (A) to (E):
(A) Hydrogen iodide distillation means for separating and obtaining hydrogen iodide by subjecting a hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide and water to distillation treatment;
(B) Decomposition composition comprising hydrogen iodide supplied from means (A) [hydrogen iodide distillation means (A)] decomposed into hydrogen and iodine, and containing hydrogen, iodine and undecomposed hydrogen iodide Hydrogen iodide decomposition means for obtaining a product;
(C) The decomposition composition obtained by the means (B) [hydrogen iodide decomposition means (B)] is cooled, and the hydrogen iodide and iodine in the decomposition composition are used as an iodine-hydrogen iodide solution. Means for removing iodine from the cracking composition and for obtaining a hydrogen mixture containing hydrogen and residual hydrogen iodide;
(D) Means (C) [iodine removal means (C)] The hydrogen mixture obtained in the means (A) [hydrogen iodide distillation means (A)] should be put into iodine, hydrogen iodide and water And hydrogen iodide in the hydrogen mixture is dissolved in the hydrogen iodide raw material aqueous solution and removed from the hydrogen mixture, thereby increasing the hydrogen iodide concentration. Hydrogen iodide removing means for obtaining a hydrogen iodide raw material aqueous solution and separating and obtaining hydrogen; and (E) Hydrogen obtained by means (D) [hydrogen iodide removing means (D)] is washed with water. And a production apparatus having a hydrogen cleaning means for obtaining purified hydrogen.

本発明によれば、ヨウ化水素が混入している水素を、ヨウ化水素蒸留塔に投入するためのヨウ化水素原料水溶液に接触させるので、極低温条件を作り出すことなく、水素中の不純分のヨウ化水素をヨウ化水素原料水溶液に溶解させて除去することができる。従って、水素の洗浄に要する水量を飛躍的に少なくすることができ、連続的に高純度の水素を製造できる。   According to the present invention, the hydrogen iodide mixed solution is brought into contact with the hydrogen iodide raw material aqueous solution to be introduced into the hydrogen iodide distillation column, so that an impurity component in hydrogen can be produced without creating a cryogenic condition. The hydrogen iodide can be removed by dissolving it in a hydrogen iodide raw material aqueous solution. Accordingly, the amount of water required for hydrogen cleaning can be drastically reduced, and high-purity hydrogen can be produced continuously.

本発明の水素を連続的に製造するための装置は、図1に示すように、ヨウ化水素蒸留手段(A)、ヨウ化水素分解手段(B)、ヨウ素除去手段(C)、ヨウ化水素除去手段(D)及び水素洗浄手段(E)を有する。更に、ヨウ化水素回収手段(F)を有することが好ましい。また、ブンゼン反応手段と原料調製手段とを有することが好ましい。これらの手段について、以下に詳細に説明する。   As shown in FIG. 1, the apparatus for continuously producing hydrogen according to the present invention comprises hydrogen iodide distillation means (A), hydrogen iodide decomposition means (B), iodine removal means (C), hydrogen iodide. It has removal means (D) and hydrogen cleaning means (E). Furthermore, it is preferable to have a hydrogen iodide recovery means (F). Moreover, it is preferable to have a Bunsen reaction means and a raw material preparation means. These means will be described in detail below.

本発明において、ヨウ化水素蒸留手段(A)は、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液を蒸留処理して、ヨウ化水素を分離取得するための装置であり、公知の蒸留塔を使用することができる。本手段(A)で得られるヨウ化水素は、実質的に水を含有しないものである。また、蒸留残渣としてヨウ化水素とヨウ素と水とを含有する混合物が得られる。なお、このヨウ化水素蒸留手段(A)においては、後述するヨウ化水素蒸留工程(1)が実施される。ここで、実質的に水を含有しないヨウ化水素とは、95モル%以上のヨウ化水素という意味である。   In the present invention, the hydrogen iodide distillation means (A) is an apparatus for distilling a hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide and water, and separating and obtaining hydrogen iodide. Distillation towers can be used. The hydrogen iodide obtained by this means (A) contains substantially no water. Moreover, the mixture containing hydrogen iodide, iodine, and water is obtained as a distillation residue. In addition, in this hydrogen iodide distillation means (A), the hydrogen iodide distillation process (1) mentioned later is implemented. Here, hydrogen iodide substantially free of water means 95 mol% or more of hydrogen iodide.

ヨウ化水素分解手段(B)は、ヨウ化水素蒸留手段(A)から供給されるヨウ化水素を水素とヨウ素とに分解処理し、水素とヨウ素と未分解のヨウ化水素とを含有している分解組成物を得るための装置であり、公知の熱分解器を使用することができる。なお、このヨウ化水素分解手段(B)においては、後述するヨウ化水素分解工程(2)が実施される。   The hydrogen iodide decomposition means (B) decomposes hydrogen iodide supplied from the hydrogen iodide distillation means (A) into hydrogen and iodine, and contains hydrogen, iodine and undecomposed hydrogen iodide. It is an apparatus for obtaining the decomposition composition which can be used, A well-known thermal decomposer can be used. In addition, in this hydrogen iodide decomposition | disassembly means (B), the hydrogen iodide decomposition | disassembly process (2) mentioned later is implemented.

ヨウ素除去手段(C)は、ヨウ化水素分解手段(B)で得られた該分解組成物を冷却し、その分解組成物中のヨウ化水素とヨウ素とをヨウ素−ヨウ化水素溶液として該分解組成物から除去すると共に、水素と残余のヨウ化水素を含有する水素混合物を得るための装置であり、公知の冷却器を使用することができる。なお、このヨウ素除去手段(C)においては、後述するヨウ素除去工程(3)が実施される。また、水素混合物中のヨウ化水素濃度は低い程好ましい。   The iodine removal means (C) cools the decomposition composition obtained by the hydrogen iodide decomposition means (B), and decomposes the hydrogen iodide and iodine in the decomposition composition as an iodine-hydrogen iodide solution. It is an apparatus for removing hydrogen from the composition and obtaining a hydrogen mixture containing hydrogen and residual hydrogen iodide, and a known cooler can be used. In this iodine removal means (C), an iodine removal step (3) described later is performed. Moreover, the hydrogen iodide concentration in the hydrogen mixture is preferably as low as possible.

ヨウ化水素除去手段(D)は、ヨウ素除去手段(C)で得られた該水素混合物を、該ヨウ化水素蒸留手段(A)に投入すべき、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液と接触させることにより、該水素混合物中のヨウ化水素を該ヨウ化水素原料水溶液に溶解させて該水素混合物から除去し、それによりヨウ化水素濃度が高められたヨウ化水素原料水溶液を得ると共に、水素を分離取得するための装置であり、公知の気液接触装置を使用することができる。ここで、ヨウ化水素除去手段(D)で得られた、ヨウ化水素濃度が高められたヨウ化水素原料水溶液が、循環使用のために、ヨウ化水素蒸留手段(A)に投入されるような装置構成とすることが好ましい。その手段としては、特に限定されない。なお、このヨウ化水素除去手段(D)においては、後述のヨウ化水素除去工程(4)が実施される。   The hydrogen iodide removing means (D) contains iodine, hydrogen iodide and water to be added to the hydrogen iodide distillation means (A) with the hydrogen mixture obtained by the iodine removing means (C). Hydrogen iodide in the hydrogen mixture is dissolved in the hydrogen iodide source aqueous solution and removed from the hydrogen mixture by contacting with the hydrogen iodide source aqueous solution, whereby hydrogen iodide concentration is increased. This is an apparatus for obtaining a raw material aqueous solution and separating and acquiring hydrogen, and a known gas-liquid contact apparatus can be used. Here, the hydrogen iodide raw material aqueous solution with an increased hydrogen iodide concentration obtained by the hydrogen iodide removing means (D) is introduced into the hydrogen iodide distillation means (A) for circulation use. It is preferable to use a simple apparatus configuration. The means is not particularly limited. In this hydrogen iodide removing means (D), a hydrogen iodide removing step (4) described later is performed.

水素洗浄手段(E)は、ヨウ化水素除去手段(D)で得られた水素を水で洗浄し、精製した水素を得るための装置であり、公知の水素洗浄装置を使用することができる。この水素洗浄手段(E)においては、後述の水素洗浄工程(5)が実施される。   The hydrogen washing means (E) is an apparatus for washing the hydrogen obtained by the hydrogen iodide removing means (D) with water to obtain purified hydrogen, and a known hydrogen washing apparatus can be used. In this hydrogen cleaning means (E), a hydrogen cleaning step (5) described later is performed.

ヨウ化水素回収手段(F)は、ヨウ素除去手段(C)で得られたヨウ素−ヨウ化水素溶液からヨウ化水素を蒸留回収すると共に、残渣としてヨウ素を回収するための装置である。ここで、ヨウ化水素回収手段(F)で蒸留回収されたヨウ化水素が、循環使用のために、ヨウ化水素蒸留手段(A)で分離された水非含有ヨウ化水素と共に、ヨウ化水素分解手段(B)に投入されるような装置構成とすることが好ましい。その手段としては、特に限定されない。なお、このヨウ化水素回収手段(F)においては、後述のヨウ化水素回収工程(6)が実施される。   The hydrogen iodide recovery means (F) is an apparatus for recovering iodine as a residue while distilling and recovering hydrogen iodide from the iodine-hydrogen iodide solution obtained by the iodine removal means (C). Here, the hydrogen iodide distilled and recovered by the hydrogen iodide recovery means (F) is used together with the water-free hydrogen iodide separated by the hydrogen iodide distillation means (A) for recycle use. It is preferable to adopt an apparatus configuration that is put into the disassembling means (B). The means is not particularly limited. In this hydrogen iodide recovery means (F), a hydrogen iodide recovery step (6) described later is performed.

本発明の水素製造装置は、ヨウ化水素回収手段(F)で回収されたヨウ素を二酸化イオウと水と共にブンゼン反応させるための公知のブンゼン反応手段、例えば、気泡塔反応器や撹拌槽型反応器と、ブンゼン反応手段で得られたブンゼン反応生成物から硫酸を除去し、残余のブンゼン反応生成物から、ヨウ化水素除去手段(D)に投入するためのヨウ化水素原料組成物を調製するための公知の原料調製手段、例えば、電気透析器や膜分離器とを有することが好ましい。   The hydrogen production apparatus of the present invention is a known Bunsen reaction means for reacting iodine recovered by the hydrogen iodide recovery means (F) together with sulfur dioxide and water, such as a bubble column reactor or a stirred tank reactor. And removing the sulfuric acid from the Bunsen reaction product obtained by the Bunsen reaction means, and preparing a hydrogen iodide raw material composition for introduction into the hydrogen iodide removal means (D) from the remaining Bunsen reaction product It is preferable to have a known raw material preparation means such as an electrodialyzer or a membrane separator.

次に、図1の製造装置を利用する、以下の工程(1)〜(5)を含む発明の製造方法について、工程毎に図1を参照しながら詳細に説明する。   Next, the manufacturing method of the invention including the following steps (1) to (5) using the manufacturing apparatus of FIG. 1 will be described in detail with reference to FIG.

ヨウ化水素蒸留工程(1)
この工程では、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液を、ヨウ化水素蒸留手段(A)に投入して蒸留処理し、水を実質的に含有しない水非含有ヨウ化水素と、ヨウ化水素とヨウ素と水とを含有する蒸留残渣とに分離する。即ち、蒸留塔の塔底は、ヨウ素を含むヨウ化水素と水との共沸物であり、共沸組成から過剰なヨウ化水素が分離されるのである。ここで、ヨウ化水素の水を除去する理由は、ヨウ化水素の分解反応に水が存在するとヨウ化水素の熱分解が不十分となるからである。ヨウ化水素濃度が低下した蒸留残渣であるヨウ化水素水溶液は、成分の調整を行った後、後述のヨウ化水素除去工程(4)に投入される。
Hydrogen iodide distillation process (1)
In this step, a hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide and water is put into the hydrogen iodide distillation means (A) and subjected to distillation treatment, and water-free iodination substantially free of water. Separated into hydrogen and a distillation residue containing hydrogen iodide, iodine and water. That is, the bottom of the distillation column is an azeotrope of hydrogen iodide containing iodine and water, and excess hydrogen iodide is separated from the azeotropic composition. Here, the reason for removing water of hydrogen iodide is that thermal decomposition of hydrogen iodide becomes insufficient if water is present in the decomposition reaction of hydrogen iodide. The hydrogen iodide aqueous solution, which is a distillation residue having a reduced hydrogen iodide concentration, is adjusted to the components and then charged into a hydrogen iodide removal step (4) described later.

このヨウ化水素蒸留工程(1)において使用するヨウ化水素原料水溶液の好ましい組成は、ヨウ素0〜25モル%、ヨウ化水素15〜50モル%、水25〜85モル%である。また、蒸留条件は、好ましくは温度40〜300℃、圧力1〜3Mpaである。   The preferable composition of the hydrogen iodide raw material aqueous solution used in this hydrogen iodide distillation step (1) is 0 to 25 mol% iodine, 15 to 50 mol% hydrogen iodide, and 25 to 85 mol% water. The distillation conditions are preferably a temperature of 40 to 300 ° C. and a pressure of 1 to 3 MPa.

ヨウ化水素分解工程(2)
次に、ヨウ化水素蒸留工程(1)で分離された水非含有ヨウ化水素を、ヨウ化水素分解手段(B)に送り、水素とヨウ素とに分解処理し、水素とヨウ素と未分解のヨウ化水素と含有する分解組成物を得る。ヨウ化水素の熱分解条件は、公知の条件を採用することができるが、ヨウ化水素が通常の冷却水(40℃程度)により液体として回収可能な、1MPa以上の圧力で分解することが好ましい。
Hydrogen iodide decomposition process (2)
Next, the water-free hydrogen iodide separated in the hydrogen iodide distillation step (1) is sent to the hydrogen iodide decomposition means (B), decomposed into hydrogen and iodine, and the hydrogen, iodine and undecomposed A decomposition composition containing hydrogen iodide is obtained. As the thermal decomposition conditions for hydrogen iodide, known conditions can be adopted, but it is preferable to decompose hydrogen iodide at a pressure of 1 MPa or more, which can be recovered as a liquid with ordinary cooling water (about 40 ° C.). .

ヨウ素除去工程(3)
次に、ヨウ化水素分解工程(2)で得られた分解組成物を、ヨウ素除去手段(C)に送り、冷却し、その分解組成物の未反応のヨウ化水素とヨウ素とをヨウ素−ヨウ化水素溶液として該分解組成物から除去する。それにより、水素と残りのヨウ化水素とからなる水素混合物を得る。ここで、水素混合物中のヨウ化水素の濃度は低い程好ましい。また、冷却温度は、好ましくは20〜40℃であり、圧力は1〜3Mpaである。
Iodine removal step (3)
Next, the decomposition composition obtained in the hydrogen iodide decomposition step (2) is sent to the iodine removing means (C), cooled, and unreacted hydrogen iodide and iodine of the decomposition composition are converted into iodine-iodine. Remove from the decomposition composition as a hydrogen fluoride solution. Thereby, a hydrogen mixture comprising hydrogen and the remaining hydrogen iodide is obtained. Here, the concentration of hydrogen iodide in the hydrogen mixture is preferably as low as possible. The cooling temperature is preferably 20 to 40 ° C., and the pressure is 1 to 3 MPa.

ヨウ化水素除去工程(4)
次に、ヨウ素除去工程(3)で得られた水素混合物を、ヨウ化水素蒸留工程(1)に投入すべき、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液でヨウ化水素除去手段(D)において接触させる。これにより、該水素混合物中の殆どのヨウ化水素をヨウ化水素原料水溶液に溶解させて除去することができる。この場合、図2(ヨウ化水素除去手段(ヨウ化水素吸収塔)の特性図)に示されているように、好ましくは温度を60℃以下、より好ましくは通常の冷却水で維持可能な40℃程度に設定することが好ましい。圧力は、好ましくは1〜3Mpaである。
Hydrogen iodide removal step (4)
Next, the hydrogen mixture obtained in the iodine removal step (3) is added to the hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide and water to be added to the hydrogen iodide distillation step (1). Contact is made in the removing means (D). Thereby, most hydrogen iodide in the hydrogen mixture can be dissolved in the hydrogen iodide raw material aqueous solution and removed. In this case, as shown in FIG. 2 (characteristic diagram of hydrogen iodide removing means (hydrogen iodide absorption tower)), the temperature is preferably 60 ° C. or less, more preferably 40 which can be maintained with normal cooling water. It is preferable to set to about ° C. The pressure is preferably 1 to 3 MPa.

ヨウ化水素は水溶液に吸収される際には、ヨウ素や水と素早く結合するため、吸収能が高く、溶液中で解離するために蒸気圧が非常に小さくなる。このため、ヨウ化水素濃度が高められたヨウ化水素原料水溶液が得られると共に、ヨウ化水素濃度が従来より著しく低減した水素を得ることができる。   When hydrogen iodide is absorbed in an aqueous solution, it quickly binds to iodine and water, so that it has a high absorption capacity and dissociates in the solution, resulting in a very low vapor pressure. Therefore, a hydrogen iodide raw material aqueous solution having an increased hydrogen iodide concentration can be obtained, and hydrogen having a significantly reduced hydrogen iodide concentration can be obtained.

この工程で得られた、ヨウ化水素濃度が高められたヨウ化水素原料水溶液は、循環使用のため、ヨウ化水素蒸留工程(1)へ投入することが好ましい。   It is preferable to add the hydrogen iodide raw material aqueous solution with an increased hydrogen iodide concentration obtained in this step to the hydrogen iodide distillation step (1) for circulation.

水素洗浄工程(5)
次に、ヨウ化水素除去工程(4)で得られた水素を、水素洗浄手段(E)に導き、水で洗浄する。ヨウ化水素の量が著しく減少しているので、この工程で使用する水の量は、従来より著しく少ない。洗浄に用いた水は回収し、そして洗浄に用いた水から分離された高純度に精製した水素が得られる。
Hydrogen cleaning process (5)
Next, the hydrogen obtained in the hydrogen iodide removing step (4) is introduced into the hydrogen washing means (E) and washed with water. Since the amount of hydrogen iodide is significantly reduced, the amount of water used in this process is significantly less than in the past. The water used for washing is recovered, and highly purified hydrogen separated from the water used for washing is obtained.

この工程で回収された水は、ヨウ化水素蒸留工程(1)で回収した蒸留残渣に混合することが好ましい。   The water recovered in this step is preferably mixed with the distillation residue recovered in the hydrogen iodide distillation step (1).

本発明の製造方法においては、更に、以下の工程(6)[ヨウ化水素回収工程(6)]を設けることが循環使用のために好ましい。   In the production method of the present invention, it is preferable to provide the following step (6) [hydrogen iodide recovery step (6)] for circulation use.

ヨウ化水素回収工程(6)
この工程においては、ヨウ素除去工程(3)で得られたヨウ素−ヨウ化水素溶液を、ヨウ化水素回収手段(6)に導き、ヨウ化水素を蒸留回収すると共に、残渣としてヨウ素を回収する。
Hydrogen iodide recovery process (6)
In this step, the iodine-hydrogen iodide solution obtained in the iodine removal step (3) is guided to a hydrogen iodide recovery means (6), and hydrogen iodide is recovered by distillation and iodine is recovered as a residue.

この工程で蒸留回収したヨウ化水素は、ヨウ化水素蒸留工程(1)で分離された水非含有ヨウ化水素と共に、ヨウ化水素分解手段(B)に送り、循環使用のためにヨウ化水素分解工程(2)に投入することが好ましい。   The hydrogen iodide distilled and recovered in this step is sent to the hydrogen iodide decomposition means (B) together with the water-free hydrogen iodide separated in the hydrogen iodide distillation step (1), and hydrogen iodide for circulation use. It is preferable to put into the decomposition step (2).

ヨウ化水素回収工程(6)で回収されたヨウ素は、二酸化イオウと水と共にブンゼン反応させ、得られたブンゼン反応生成物を静置分離することにより上層の硫酸を除去し、残余の下層のブンゼン反応生成物(水とヨウ素とヨウ化水素との3成分混合物であり、ヨウ化水素は水と共沸組成にある。水/ヨウ化水素のモル比は約5.3であり、ヨウ素/ヨウ化水素のモル比は約3.8である。)を、適当な濃縮方法(例えば、電気透析法等)により、共沸組成以上に濃縮することが好ましい。濃縮後、ヨウ化水素除去工程(4)に投入することが好ましい。   The iodine recovered in the hydrogen iodide recovery step (6) is subjected to a Bunsen reaction with sulfur dioxide and water, and the resulting Bunsen reaction product is left to stand to remove sulfuric acid in the upper layer, and the remaining lower Bunsen. The reaction product (a ternary mixture of water, iodine and hydrogen iodide, which is in an azeotropic composition with water. The molar ratio of water / hydrogen iodide is about 5.3, iodine / iodine The molar ratio of hydrogen fluoride is about 3.8.) Is preferably concentrated to an azeotropic composition or higher by an appropriate concentration method (for example, electrodialysis). After concentration, it is preferable to add to the hydrogen iodide removing step (4).

なお、図1の製造装置で本発明の製造方法を実施した際の物質収支の例を以下の表1に示す。   In addition, Table 1 below shows an example of the material balance when the manufacturing method of the present invention is carried out with the manufacturing apparatus of FIG.

Figure 2006232561
Figure 2006232561

表1の結果から、本発明によれば、非常に少量の水(ストリーム記号112参照)で水素を洗浄することができ、しかも、水素の純度が高いことがわかる(ストリーム記号113参照)。   From the results of Table 1, it can be seen that according to the present invention, hydrogen can be washed with a very small amount of water (see stream symbol 112), and the purity of hydrogen is high (see stream symbol 113).

本発明によれば、ヨウ化水素蒸留塔に供給するヨウ化水素原料水溶液を、ヨウ化水素分解反応生成物からヨウ素とヨウ化水素とを除いた水素と少量のヨウ化水素とからなる水素混合物と接触させて、ヨウ化水素原料水溶液に水素中のヨウ化水素を回収できるので、水素ガスの洗浄水量を著しく低減することができ、回収水を戻すヨウ化水素蒸留塔の負荷を軽減することができる。また、このヨウ化水素の回収時の温度は60℃以下、好ましくは40℃程度で十分であるため、通常の冷却水による冷却で操作可能である。更に、ヨウ化水素原料水溶液のヨウ化水素濃度を高くできるので、投入すべきヨウ化水素蒸留塔の負荷を軽減することができる。従って、本発明の水素の製造装置及び製造方法は、水素の連続的な工業的な製造に非常に有用である。   According to the present invention, a hydrogen iodide raw material aqueous solution to be supplied to a hydrogen iodide distillation column is a hydrogen mixture composed of hydrogen obtained by removing iodine and hydrogen iodide from a hydrogen iodide decomposition reaction product and a small amount of hydrogen iodide. Since hydrogen iodide in hydrogen can be recovered in the hydrogen iodide raw material aqueous solution by bringing it into contact with hydrogen iodide, the amount of hydrogen gas washing water can be significantly reduced, and the load on the hydrogen iodide distillation column that returns the recovered water can be reduced. Can do. Further, since the temperature at the time of recovery of hydrogen iodide is 60 ° C. or less, preferably about 40 ° C., it can be operated by cooling with ordinary cooling water. Furthermore, since the hydrogen iodide concentration of the hydrogen iodide raw material aqueous solution can be increased, it is possible to reduce the load of the hydrogen iodide distillation column to be charged. Therefore, the hydrogen production apparatus and production method of the present invention are very useful for continuous industrial production of hydrogen.

本発明の水素の製造装置の概略図である。It is the schematic of the manufacturing apparatus of hydrogen of this invention. 本発明におけるヨウ化水素除去手段(ヨウ化水素吸収塔)の特性図Characteristic diagram of hydrogen iodide removing means (hydrogen iodide absorption tower) in the present invention 従来の水素の製造装置の概略図である。It is the schematic of the conventional hydrogen production apparatus. 水素洗浄塔の特性図である。It is a characteristic view of a hydrogen washing tower. 従来の水素の製造装置の概略図である。It is the schematic of the conventional hydrogen production apparatus. 冷却塔のヨウ化水素凝縮分離特性図である。It is a hydrogen iodide condensation-separation characteristic figure of a cooling tower.

符号の説明Explanation of symbols

A ヨウ化水素蒸留手段
B ヨウ化水素分解手段
C ヨウ素除去手段
D ヨウ化水素除去手段
E 水素洗浄手段
F ヨウ化水素回収手段
A Hydrogen iodide distillation means B Hydrogen iodide decomposition means C Iodine removal means D Hydrogen iodide removal means E Hydrogen cleaning means F Hydrogen iodide recovery means

Claims (10)

ヨウ化水素の分解反応を利用して水素を製造する方法において、以下の工程(1)〜(5):
(1) ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液を蒸留処理して、ヨウ化水素を分離取得するヨウ化水素蒸留工程;
(2) 工程(1)で分離されたヨウ化水素を、水素とヨウ素とに分解処理し、水素とヨウ素と未分解のヨウ化水素と含有する分解組成物を得るヨウ化水素分解工程;
(3) 工程(2)で得られた該分解組成物を冷却し、ヨウ素とヨウ化水素とをヨウ素−ヨウ化水素溶液として該分解組成物から除去すると共に、水素と残余ヨウ化水素とを含有する水素混合物を得るヨウ素除去工程;
(4) 工程(3)で得られた該水素混合物を、工程(1)に投入すべき、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液と接触させることにより、該水素混合物中のヨウ化水素を該ヨウ化水素原料水溶液に溶解させて該水素混合物から除去し、それによりヨウ化水素濃度が高められたヨウ化水素原料水溶液を得ると共に、水素を分離取得するヨウ化水素除去工程; 及び
(5) 工程(4)で分離された水素を水で洗浄し、精製された水素を得る水素洗浄工程
を有する製造方法。
In the method for producing hydrogen using the decomposition reaction of hydrogen iodide, the following steps (1) to (5):
(1) A hydrogen iodide distillation step of distilling a hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide, and water to separate and obtain hydrogen iodide;
(2) The hydrogen iodide decomposition step of decomposing the hydrogen iodide separated in step (1) into hydrogen and iodine to obtain a decomposition composition containing hydrogen, iodine and undecomposed hydrogen iodide;
(3) The decomposition composition obtained in the step (2) is cooled, and iodine and hydrogen iodide are removed from the decomposition composition as an iodine-hydrogen iodide solution, and hydrogen and residual hydrogen iodide are removed. An iodine removal step to obtain a hydrogen mixture containing;
(4) The hydrogen mixture obtained in step (3) is brought into contact with a hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide and water, which is to be introduced into step (1). Hydrogen iodide is dissolved in the hydrogen iodide raw material aqueous solution and removed from the hydrogen mixture, thereby obtaining a hydrogen iodide raw material aqueous solution having an increased hydrogen iodide concentration, and separating and obtaining hydrogen. And (5) A production method comprising a hydrogen washing step in which the hydrogen separated in step (4) is washed with water to obtain purified hydrogen.
工程(4)で得られた、ヨウ化水素濃度が高められたヨウ化水素原料水溶液を、工程(1)へ投入する請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the hydrogen iodide raw material aqueous solution with an increased hydrogen iodide concentration obtained in the step (4) is added to the step (1). 以下の工程(6):
(6) 工程(3)で得られたヨウ素−ヨウ化水素溶液からヨウ化水素を蒸留回収すると共に、残渣としてヨウ素を回収する工程
を更に有する請求項1又は2記載の製造方法。
The following step (6):
(6) The method according to claim 1 or 2, further comprising a step of distilling and recovering hydrogen iodide from the iodine-hydrogen iodide solution obtained in step (3), and further recovering iodine as a residue.
工程(6)で蒸留回収されたヨウ化水素を、工程(1)で分離されたヨウ化水素と共に、工程(2)に投入する請求項3記載の製造方法。   The production method according to claim 3, wherein the hydrogen iodide distilled and recovered in the step (6) is added to the step (2) together with the hydrogen iodide separated in the step (1). 工程(6)で回収されたヨウ素を二酸化イオウと水と共にブンゼン反応させ、得られたブンゼン反応生成物から硫酸を除去し、残余のブンゼン反応生成物を成分調整した後に、工程(4)に投入するヨウ化水素原料組成物として使用する請求項1記載の製造方法。   The iodine recovered in step (6) is subjected to a Bunsen reaction with sulfur dioxide and water, sulfuric acid is removed from the resulting Bunsen reaction product, and the remaining Bunsen reaction product is adjusted for components, and then introduced into step (4). The manufacturing method of Claim 1 used as a hydrogen iodide raw material composition. ヨウ化水素の分解反応を利用して水素を製造するための装置であって、以下の手段(A)〜(E):
(A) ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液を蒸留処理して、ヨウ化水素を分離取得するためのヨウ化水素蒸留手段;
(B) 手段(A)から供給されるヨウ化水素を、水素とヨウ素とに分解処理し、水素とヨウ素と未分解のヨウ化水素と含有する分解組成物を得るためのヨウ化水素分解手段;
(C) 手段(B)で得られた該分解組成物を冷却し、その分解組成物中のヨウ化水素とヨウ素とをヨウ素−ヨウ化水素溶液として該分解組成物から除去すると共に、水素と残余のヨウ化水素とを含有する水素混合物を得るためのヨウ素除去手段;
(D) 手段(C)で得られた該水素混合物を、手段(A)に投入すべき、ヨウ素とヨウ化水素と水とを含有するヨウ化水素原料水溶液と接触させることにより、該水素混合物中のヨウ化水素を該ヨウ化水素原料水溶液に溶解させて該水素混合物から除去し、それによりヨウ化水素濃度が高められたヨウ化水素原料水溶液を得ると共に、水素を分離取得するためのヨウ化水素除去手段; 及び
(E) 手段(D)で得られた水素を水で洗浄し、精製された水素を得るための水素洗浄手段
を有する製造装置。
An apparatus for producing hydrogen using a decomposition reaction of hydrogen iodide, comprising the following means (A) to (E):
(A) Hydrogen iodide distillation means for separating and obtaining hydrogen iodide by subjecting a hydrogen iodide raw material aqueous solution containing iodine, hydrogen iodide and water to distillation treatment;
(B) Hydrogen iodide decomposition means for decomposing hydrogen iodide supplied from means (A) into hydrogen and iodine to obtain a decomposition composition containing hydrogen, iodine and undecomposed hydrogen iodide ;
(C) The decomposition composition obtained in the means (B) is cooled, and hydrogen iodide and iodine in the decomposition composition are removed from the decomposition composition as an iodine-hydrogen iodide solution. Means for removing iodine to obtain a hydrogen mixture containing residual hydrogen iodide;
(D) The hydrogen mixture obtained by the means (C) is brought into contact with an aqueous hydrogen iodide raw material solution containing iodine, hydrogen iodide and water to be added to the means (A). The hydrogen iodide contained therein is dissolved in the hydrogen iodide raw material aqueous solution and removed from the hydrogen mixture, thereby obtaining a hydrogen iodide raw material aqueous solution having an increased hydrogen iodide concentration, and an iodine for separating and obtaining hydrogen. And (E) a production apparatus having a hydrogen washing means for washing the hydrogen obtained by the means (D) with water to obtain purified hydrogen.
手段(D)で得られた、ヨウ化水素濃度が高められたヨウ化水素原料水溶液が、手段(A)に投入されるように構成されている請求項6記載の製造装置。   The manufacturing apparatus according to claim 6, wherein the hydrogen iodide raw material aqueous solution having a high hydrogen iodide concentration obtained by the means (D) is introduced into the means (A). 以下の手段(F):
(F) 手段(C)で得られたヨウ素−ヨウ化水素溶液からヨウ化水素を蒸留回収すると共に、残渣としてヨウ素を回収するためのヨウ化水素回収手段
を更に有する請求項6又は7記載の製造装置。
The following means (F):
(F) The hydrogen iodide recovery means for recovering iodine as a residue while distilling and recovering hydrogen iodide from the iodine-hydrogen iodide solution obtained by the means (C). Manufacturing equipment.
手段(F)で蒸留回収されたヨウ化水素が、手段(A)で分離された水非含有ヨウ化水素と共に、手段(B)に投入されるように構成されている請求項8記載の製造装置。   9. The production according to claim 8, wherein the hydrogen iodide distilled and recovered by the means (F) is added to the means (B) together with the water-free hydrogen iodide separated by the means (A). apparatus. 手段(F)で回収されたヨウ素を二酸化イオウと水と共にブンゼン反応させるためのブンゼン反応手段と、ブンゼン反応手段で得られたブンゼン反応生成物から硫酸を除去し、残余のブンゼン反応生成物から、手段(D)に投入するためのヨウ化水素原料組成物を調製するための原料調製手段とを有する請求項6〜9のいずれかに記載の製造装置。
Bunsen reaction means for reacting iodine recovered by means (F) together with sulfur dioxide and water, sulfuric acid is removed from the Bunsen reaction product obtained by the Bunsen reaction means, and from the remaining Bunsen reaction product, The manufacturing apparatus according to any one of claims 6 to 9, further comprising a raw material preparation means for preparing a hydrogen iodide raw material composition to be charged into the means (D).
JP2005044973A 2005-02-22 2005-02-22 Hydrogen production apparatus and hydrogen production method Expired - Fee Related JP4535269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044973A JP4535269B2 (en) 2005-02-22 2005-02-22 Hydrogen production apparatus and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044973A JP4535269B2 (en) 2005-02-22 2005-02-22 Hydrogen production apparatus and hydrogen production method

Publications (2)

Publication Number Publication Date
JP2006232561A true JP2006232561A (en) 2006-09-07
JP4535269B2 JP4535269B2 (en) 2010-09-01

Family

ID=37040628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044973A Expired - Fee Related JP4535269B2 (en) 2005-02-22 2005-02-22 Hydrogen production apparatus and hydrogen production method

Country Status (1)

Country Link
JP (1) JP4535269B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871972B1 (en) 2007-06-14 2008-12-08 한국원자력연구원 Concentration and decomposition method of hi for producing nuclear hydrogen
WO2016031771A1 (en) * 2014-08-25 2016-03-03 千代田化工建設株式会社 System for producing hydrogen, and method for producing hydrogen and method for producing ammonia using same
JP2018177614A (en) * 2017-04-20 2018-11-15 国立研究開発法人日本原子力研究開発機構 Hydrogen production system using is process and iodine recovery method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220394A (en) * 1975-08-04 1977-02-16 Gen Atomic Co Thermoochemical manufacture of hydrogen
JPS5258094A (en) * 1975-11-10 1977-05-13 Agency Of Ind Science & Technol Method for production of hydrogen by thermochemical disintegration of water
JPS52143995A (en) * 1976-05-26 1977-11-30 Kouzou Hirota Method of manufacturing hydrogen from gaseous mixtures mainly consisting of hydrogen iodide
JPS58208101A (en) * 1982-05-07 1983-12-03 ジ−エイ・テクノロジ−ズ・インコ−ポレ−テツド Manufacture of hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220394A (en) * 1975-08-04 1977-02-16 Gen Atomic Co Thermoochemical manufacture of hydrogen
JPS5258094A (en) * 1975-11-10 1977-05-13 Agency Of Ind Science & Technol Method for production of hydrogen by thermochemical disintegration of water
JPS52143995A (en) * 1976-05-26 1977-11-30 Kouzou Hirota Method of manufacturing hydrogen from gaseous mixtures mainly consisting of hydrogen iodide
JPS58208101A (en) * 1982-05-07 1983-12-03 ジ−エイ・テクノロジ−ズ・インコ−ポレ−テツド Manufacture of hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871972B1 (en) 2007-06-14 2008-12-08 한국원자력연구원 Concentration and decomposition method of hi for producing nuclear hydrogen
WO2016031771A1 (en) * 2014-08-25 2016-03-03 千代田化工建設株式会社 System for producing hydrogen, and method for producing hydrogen and method for producing ammonia using same
JP2018177614A (en) * 2017-04-20 2018-11-15 国立研究開発法人日本原子力研究開発機構 Hydrogen production system using is process and iodine recovery method

Also Published As

Publication number Publication date
JP4535269B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US7132579B2 (en) Method of chlorine purification and process for producing 1,2-dichloroethane
JP2007008898A (en) Method for separation and recovery of aromatic compound and hydrogen chloride
US8765991B2 (en) Process for the preparation of isocyanates
KR20160065820A (en) Method for purifying phosphorus pentafluoride
JP4535269B2 (en) Hydrogen production apparatus and hydrogen production method
JP4011286B2 (en) Process for producing diaryl carbonate
US7592484B2 (en) Method for producing carbonyl difluoride
JP4308810B2 (en) Method for producing chlorine gas, sodium hypochlorite aqueous solution and liquid chlorine
JP4529885B2 (en) Method for producing carbon monoxide, method for producing phosgene, and method for producing diaryl carbonate
JP4401105B2 (en) Method for producing chlorine and method for producing aromatic polycarbonate
JP2017137221A (en) Recovery method of hydrofluoric acid and nitric acid
JP2009507869A (en) Distillation tower operation and combined caustic soda evaporative concentration method for the purification of 1,2-dichloroethane
US6790428B2 (en) Process for the reduction or elimination of NH3/HF byproduct in the manufacture of nitrogen trifluoride
JPH04503658A (en) Continuous recovery method for hydrofluoric acid gas
KR101315094B1 (en) Method for recycling zirconium tetrafluoride to form zirconia
WO2005092786A1 (en) Method of purifying hydrofluoric acid and purification apparatus
JP2008100881A (en) Method of manufacturing iodine pentafluoride
JP5357607B2 (en) Method for producing carbonyl difluoride
WO2011061892A1 (en) Methods for producing allyl chloride and dichlorohydrin
WO2005056472A1 (en) Method and apparatus for producing carbonyl fluoride
JP3115426B2 (en) Method for producing perfluoro organic compound
JP4713128B2 (en) Method for producing sodium hypochlorite aqueous solution
US6355223B1 (en) Closed loop process for producing chlorine from hydrogen chloride
JP5040109B2 (en) Process for producing phenol and chlorine
JP4269212B2 (en) Purification method of fluorine-containing chlorosulfonylalkyl vinyl ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees